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Dimitris Samaras 

Introduction to Deep Learning 

Most uncredited slides by I. Kokkinos 

Back Propagation, Neural Networks 
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Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 



7 

Loss 

Slide credit:Fei-Fei Li 
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Multiclass SVM Loss 

Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 
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Putting it all together: 

Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 
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A Single Neuron 

Slide credit:Fei-Fei Li 
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Slide credit:Fei-Fei Li 
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Neural Network Structure 
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Activation functions 

Sigmoidal 

Step  

Hyperbolic tangent 

Rectified Linear Unit (RELU) 
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Slide credit:Fei-Fei Li 
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Perceptron, ‘60s 

non-adaptive 

hand-coded 

features 

output units  

e.g. class 

labels 

input units 

e.g. pixels 

Fixed 

mapping 

Slide credits: G. Hinton 

Step function, single layer   
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Multi-Layer Perceptrons (~1985) 

input vector 

hidden 

layers 

outputs 

Slide credits: G. Hinton 
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Single layer perceptron:  

Linear classifier 

 

Expressiveness of perceptrons 

All continuous functions w/ 2 layers, all functions w/ 3 layers 

Two opposite `soft threshold’ functions: a ridge   

 

`soft threshold function’ 

 

Two ridges: a bump 
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A network for a single bump 

Any function: sum of bumps 
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From flat to deep 
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From flat to deep 
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From flat to deep 
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Multi-Layer Perceptrons (~1985) 

input vector 

hidden 

layers 

outputs 

Slide credits: G. Hinton 
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Training Multi-Layer Perceptrons  

input vector 

hidden 

layers 

outputs 

Back-propagate                

error signal to get 

derivatives for 

learning 

Compare outputs 

with correct answer 

to get error signal 

Slide credits: G. Hinton 
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A neural network for multi-way classification  

Inputs Outputs 

Hidden layer 
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A neural network:  

Inputs 

Hidden layer 
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A neural network:  

Outputs 

Hidden layer 
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Training a neural network 
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Training a neural network 
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Training a neural network 
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Slide credits: A. Ng 
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Learned features 

Slide credits: A. Ng 
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In the 

plane 
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The Gradient Properties 

• The gradient defines (hyper) plane approximating the function 

infinitesimally 
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The Gradient properties 

• By the chain rule: (important for later use) 
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The Gradient properties 

• Proposition 1: 

            is maximal choosing  

 

             

            is minimal choosing 

 

 

 

(intuitive: the gradient points at the greatest change direction) 
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Steepest Descent 

• What it mean? 

• We now use what we have learned to implement the most basic 

minimization technique. 

• First we introduce the algorithm, which is a version of the model 

algorithm. 

• The problem:  

)(min xf
x
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Steepest Descent 

• Steepest descent algorithm: 

Data:  

Step 0: set i=0 

Step 1: if   stop,  

 else, compute search direction  

Step 2:  compute the step-size  

 

Step 3: set    go to step 1 
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Steepest Descent 

• From the chain rule: 

 

 

 

• Therefore the method of steepest descent looks like this: 
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Steepest Descent 
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Steepest Descent 

• The steepest descent find critical point and local minimum. 

• Implicit step-size rule 

• Actually we reduced the problem to finding minimum:  

 

• There are extensions that gives the step size rule in discrete 

sense. (Armijo) 

RRf :
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Steepest Descent 

• Back with our connectivity shapes: the authors solve the 1-

dimension problem analytically. 

 

 

• They change the spring energy and get a quartic polynomial in x 
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Convolutional models & deep networks 

Honglak Lee & Andrew Ng, ICML 2010 
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Network connectivity 

Slide credits: M. A. Ranzatto 
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Network connectivity 

Slide credits: M. A. Ranzatto 
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Network connectivity 
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Network connectivity 
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Network connectivity 
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Network connectivity 
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Network connectivity 
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Network connectivity 
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Network connectivity 

Slide credits: M. A. Ranzatto 
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Network connectivity 
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Network connectivity 
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Network connectivity 
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Network connectivity 
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Slide credits: A. Vedaldi 
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Network connectivity 
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Network connectivity 
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Network connectivity 

Slide: M-A Ranzatto 


