Introduction to Deep Learning
Back Propagation, Neural Networks
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Last time: Image Classification

assume given set of discrete labels
{dog, cat, truck, plane, ...}

> cat

Slide credit:Fei-Fel Li



k-Nearest Neighbor

training set
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Linear Classification

1. define a score function

- class scores

Slide credit:Fei-Fel Li



Linear Classification

1. define a score function data (image)

/

f(zi,W,b) = Wz; +b

/ “weights” “bias vector”
class scores
“parameters”

Slide credit:Fei-Fel Li



Interpreting a Linear Classifier
f(x;,W,b) =Wx; + b

car classifier

airplane classiﬁe/ ’

deer classifier

Slide credit:Fei-Fel Li



Loss

2. Define a loss function (or cost function, or objective)

- scores, label — Joss.
f(whW) Yi L;

Question: if you were to
assign a single number
13, —7,11] to how “unhappy” you

L A are with these scores,
Ji = what would you do?

Example:

Slide credit:Fei-Fel Li




Multiclass SVM Loss

2. Define a loss function (or cost function, or objective)
One (of many ways) to do it: Multiclass SVM Loss

Li{= ) |max(0,|f(z;, W), — f(z:, W), [+ A)

! J7Yi T
loss dueto X\

example i sum over all
incorrect labels

difference between the correct class
score and incorrect class score

Slide credit:Fei-Fel Li



L5 ) |max(0,f(zi, W), — f(z:, W), |+ A)
! J7Yi T
lossdueto X\

example i sum over all
incorrect labels

difference between the correct class
score and incorrect class score

1 11 delta
1 . +

scores for other classes score for correct class

Slide credit:Fei-Fel Li




L2 Regularization

R(W) = Z Z Wk%l

L= % ZZ [max(ﬂ,f(wﬁw)j — flzi W), + A)] B

L JFY;

Regularization strength

Slide credit:Fei-Fel Li



Putting it all together:

regularization loss

Li near C I asSs iﬁ CatiO N score function u f( Wl)1 G e
L, ;

SVM:
L=+ 33 [max(0, f(z;; W), — (@ W), + &) + A3 S W,
k l

1 JFY;

Slide credit:Fei-Fel Li



Optimization Landscape

Slide credit:Fei-Fel Li



Gradient Descent

df(z) . f(zx+h)— f(z)
B ko h

Numerical gradient: slow :(, approximate :(, easy to write :)

Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
implementation with numerical gradient

Slide credit:Fei-Fel Li



A Single Neuron
Activation Functions

Lo wo
*@® synapse
axon from a neuron \\y P
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@ f(Zw,-w,-er)
> zwimi+b f i

w11

output axon

activation
function

WaT2
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Neural Network Structure

input layer

hidden layer

output layer
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‘ output layer

hidden layer 1 hidden layer 2

input layer

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three inputs.
Right: A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both
cases there are connections (synapses) between neurons across layers, but not within a layer.




Activation functions

Step
1 a>0

Sigmoidal 1

Rt exp(—a)

Hyperbolic tangent

exp(a) — exp(—a)

exp(a) + exp(—a)

Rectified Linear Unit (RELU)

g(a) = max(0, a)




Slide credit:Fei-Fel Li




Perceptron, ‘60s

Step function, single layer

output units
e.g. class
labels

non-adaptive
hand-coded
features

Fixed
mapping Input units
e.g. pixels

Slide credits: G. Hinton

Perceptrons




Multi-Layer Perceptrons (~1985)
Uy g( Z wk,z’g( Z wm,kum""bk) +bz>

keN (i) meN (k)

outputs

hidden

4 Input vector

Slide credits: G. Hinton



Expressiveness of perceptrons

Perceptron output

Single layer perceptron:
Linear classifier

Two opposite “soft threshold’ functions: a ridge

Two ridges: a bump




A network for a single bump

Any function: sum of bumps




From flat to deep

1 layer of

trainable
weights 6

separating hyperplane




From flat to deep

2 layers of
trainable
weights
convex




From flat to deep




Multi-Layer Perceptrons (~1985)
Uy g( Z wk,z’g( Z wm,kum""bk) +bz>

keN (i) meN (k)

outputs

hidden

4 Input vector

Slide credits: G. Hinton



Training Multi-Layer Perceptrons

Compare outputs
with correct answer
to get error signal

Back-propagate
error signal to get outputs
derivatives for
learning

hidden

4 Input vector

Slide credits: G. Hinton



A neural network for multi-way classification

Hidden layer




A neural network:

Hidden layer



A neural network:

Hidden layer




Training a neural network




Training a neural network




Training a neural network




Neuron model: Logistic unit

Sigmoid (logistic) activation function.

Slide credits: A. NgQ



Neural Network D) e e L ,
- a;”’ = "activation” of unit ¢in layer j
©(7) — matrix of weights controlling
function mapping from layer j to

layer 7 + 1

agg) = g(@&%})xo + 9( )x + @(1):{: + @13) 3)
agg) = g(@( xo + @(1)331 - @élz)ﬂ.?g -1 @23).1133)
aég) = g(@( To + @(1)351 + e§12)$2 = 9:(313):133)
ho(x) = af” = g(0(7ai” + €Y al? +0Yal?) + 67 af”)

If network has s; units in layer j, s;1 unitsin layer j + 1, then©(7)
will be of dimension s;4+1 X (s; +1).

Slide credits: A. NgQ









Layer 2 Layer 3

Learned features

Slide credits: A. N




Hidden layer(s)

Input layer o Qutput layer

1. Diff. to desired values
2. Backprop output layer




Hidden layer(s)

Input layer % Output layer

3. Hidden error values




Hidden layer(s)

o8
5,

XK

N

e , 3. Hidden error values

4. andsoon...




Hidden layer(s)

Input layer y -y Qutput layer

A

1. DifT. to desired values
2. Backprop output layer




The Gradient: Definition In

R2

L I

In the
plane




1 1
f:=(x,y)—> cos EX COS Ey X




The Gradient Properties

« The gradient defines (hyper) plane approximating the function
Infinitesimally




The Gradient properties

- By the chain rule: (important for later use)

of
M=t —(p)=(Vf,)




The Gradient properties

 Proposition 1:
IS maximal choosing

of

— Is minimal choosing

oV
v=—""\Vf

P
(intuitive: the gradient points at the greatest charUge (Hiuection)




Steepest Descent

What it mean?

We now use what we have learned to implement the most basic
minimization technique.

First we introduce the algorithm, which is a version of the model
algorithm.

The problem:

mxin f(x)




Steepest Descent

« Steepest descent algorithm:

Data: XO e Rn

Step 0: set =0

step 1: if VT (Xi) —(0 stop,
else, compute search direction

Step 2: compute the step-size

h

~VE (x,)

Step 3: set A arg TZ'Q FOx+4-h) go to step 1

Xiq =X +4-h




Steepest Descent

* From the chain rule:

d
o f(x,+A-h)=(VE(x,+1-h),h)=0

* Therefore the method of steepest descent looks like this:







Steepest Descent

The steepest descent find critical point and local minimum.
Implicit step-size rule
Actually we reduced the problem to finding minimum:

There are extensions that gives the step size rule in discrete

sense. (Armijo)
f:R—>R




Steepest Descent

« Back with our connectivity shapes: the authors solve the 1-
dimension problem analytically.

A earg min f(x+A4-h)
* They change the spring energy and get a quartic polynomial in x

e (xe™)= 3 (fx-x [ -1)

(1,))eE




Convolutional models & deep networks

A LD ITNALY Y

Honglak Lee & Andrew Ng, ICML 2010



Network connectivity

Fully Connected Layer

Example: 200x200 image
40K hidden units
m) 2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
40
training samples anyway..
9 P yway Ranzaton

Slide credits: M. A. Ranzatto




Network connectivity

Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .

face recognition).
' ' Ranzat
Slide credits: M. A. Ranzatto anzatoli




Network connectivity

Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .,
face recognition). Ranzatonl




Network connectivity

Convolutional Layer

Share the same parameters across
different locations (assuming input is

stationary):
Convolutions with learned kernels

Slide credits: M. A. Ranzatto Ranzaton



Network connectivity

Convolutional Layer

input feature kernel
feature map map

n!
n!
n!

Shide credits: M. A. Ranzatto



Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

ide credits: M. A. Ranzatto



Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

68
Ranzaton

ide credits: M. A. Ranzatto



Pooling Layer: Examples
Max-pooling:
n n—1/_ _
hj(x’ y):maxxeN(x),jzeN(y)hj (-X, y)
Average-pooling:

n _ n—1/—- —
L2-pooling:

n _ n—1,/—_ —\2
hj(x’y)_\/zxeN(x),yeN(y) hj (x,y)

L2-pooling over features:

n _ n—1 2
hj(x’y)_\/zkeN(J)hk (x’y)

69
Slide credits: M. A. Ranzatto Ranzaton




Pooling Layer: Receptive Field Size

hn_l hn hn+l

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

73
Ranzaton

Slide credits:



Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

73
Ranzaton



Pooling Layer: Receptive Field Size

hn—l h" hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

74
Ranzaton



Local Contrast Normalization

i W) (N (x, )
hxy) max (€,0' (N (x, y)))

Performed also across features
and in the higher layers..

Effects:

— improves invariance
— improves optimization
— increases sparsity

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton



Local Contrast Normalization

i+1 hi(x,y)_mi(N(x,y))
h X, V)= :
(%, ) max (€, 0' (N (x,y)))

75
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CNN components

linear 3D filters downsampling

(Fb) FHy=Fx*xx+b

i ay sy Wl

normalization

‘Z —y = max{0, x} sliding 12

=}

spatial pooling

il = MaX Xpagk
Y PaER; pq

Slide credits: A. Vedaldi



ConvNets: Typical Stage

One stage (zoom)

Rectification
+
Contrast

Filter Bank Pooling

COUI"[GSY of Normalization
K. Kavukcuoglu Ranzaton




Note: after one stage the number of feature maps is usually increased
(conv. layer) and the spatial resolution is usually decreased (stride in
conv. and pooling layers). Receptive field gets bigger.

Reasons:
- gain invariance to spatial translation (pooling layer)
- increase specificity of features (approaching object specific units)

Rectification
+
Contrast

Normalization
Ranzaton

Filter Bank

courtesy of
K. Kavukcuoglu




ConvNets: Typical Architecture

Whole system

Input Class
Image | Fully Conn. |Labels
Layers
1%t stage 2" stage 3" stage

Conceptually similar to:

SIFT — K-Means — Pyramid Pooling —» SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT — Fisher Vect. — Pooling - SVM
Sanchez et al. “Image classifcation with F.V.: Theory and practice” [JCV 2012

82
Slide: M-A Ranzatto Ranzaton




