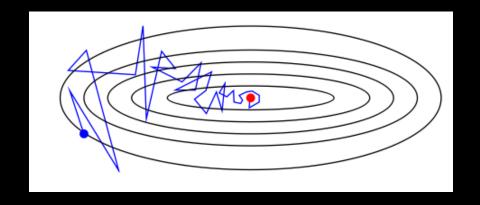
Introduction to Deep Learning Back Propagation, Neural Networks



**Dimitris Samaras** 

Most uncredited slides by I. Kokkinos

# Last time: Image Classification

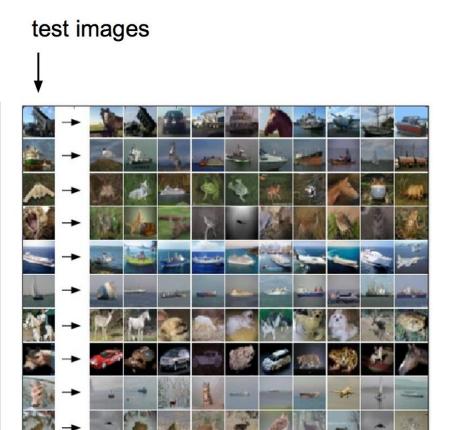


assume given set of discrete labels {dog, cat, truck, plane, ...}

──→ cat

|            | training set                                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------|
| airplane   | 🛁 🔊 🌉 📈 🖌 = 🛃 🚳 🔤 👀                                                                                             |
| automobile | 🔁 🐳 💓 🕵 🚾 🕍 📷 🐝                                                                                                 |
| bird       | in the second |
| cat        | 💒 🕵 🐳 🔤 🎇 🐜 🕰 🙋 🥪 📂                                                                                             |
| deer       | Mi 🔛 🏹 💏 🎆 Mi 🖓 🕅 🗱 🧱                                                                                           |
| dog        | 193 🔬 🖚 🎒 🍋 🎯 👩 📢 🔊 🌋                                                                                           |
| frog       | N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                         |
| horse      | 🕌 🐟 🕸 🚵 🕅 📷 🖙 🖓 🚵 🗤                                                                                             |
| ship       | 😂 🥶 🔤 🕍 🗫 💋 🖉 🚵                                                                                                 |
| truck      | i i i i i i i i i i i i i i i i i i i                                                                           |

# k-Nearest Neighbor

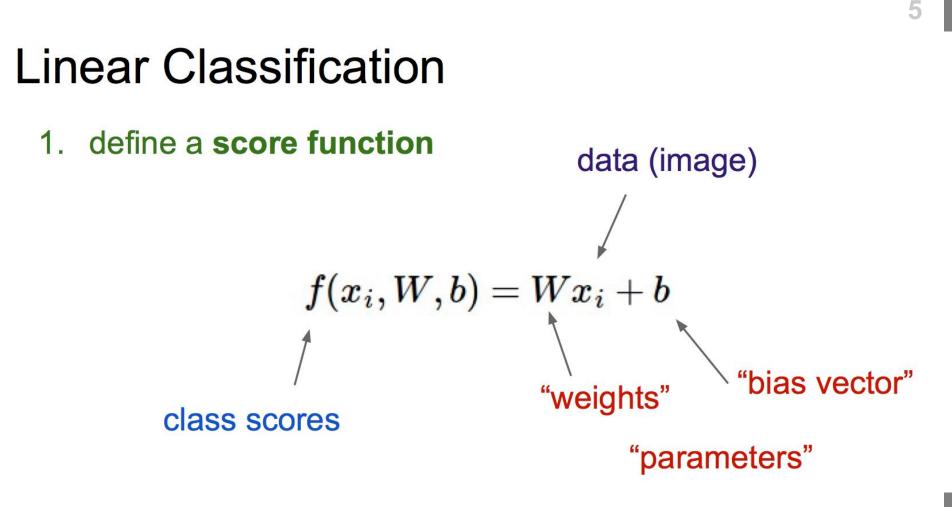


# **Linear Classification**

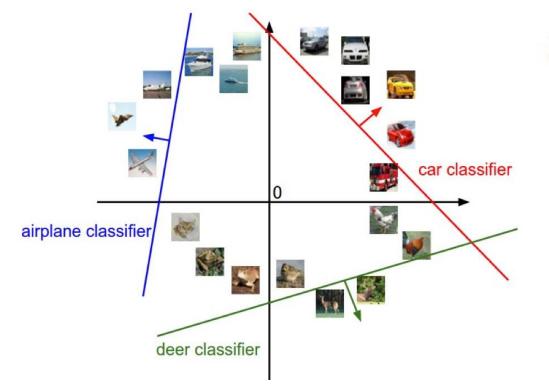
# 1. define a score function



## class scores



# **Interpreting a Linear Classifier**



 $f(x_i, W, b) = Wx_i + b$ 

## Loss

## 2. Define a loss function (or cost function, or objective)

- scores, label  $\longrightarrow$  loss.  $f(x_i, W) \quad y_i \quad L_i$ 

## **Example:**

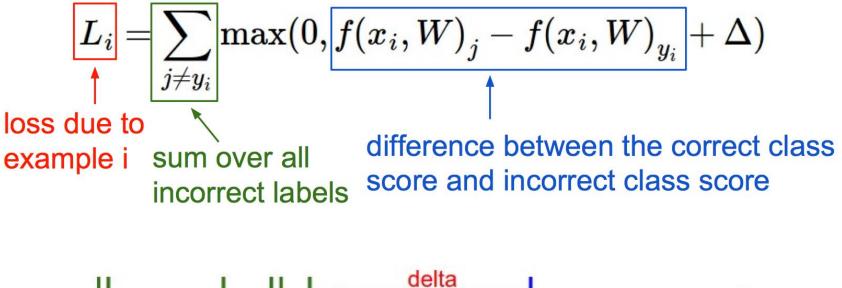
Question: if you were to assign a single number to how "unhappy" you are with these scores, what would you do?

## **Multiclass SVM Loss**

2. Define a loss function (or cost function, or objective) One (of many ways) to do it: Multiclass SVM Loss

$$L_{i} = \sum_{\substack{j \neq y_{i} \\ \text{loss due to} \\ \text{example i}}} \max(0, f(x_{i}, W)_{j} - f(x_{i}, W)_{y_{i}} + \Delta)$$

$$\int_{\text{loss due to} \\ \text{sum over all} \\ \text{incorrect labels}}$$
difference between the correct class score





# L2 Regularization

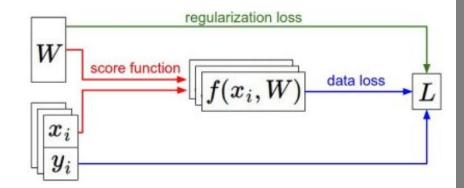
0

$$egin{aligned} R(W) &= \sum_k \sum_l W_{k,l}^2 \ L &= rac{1}{N} \sum_i \sum_{j 
eq y_i} \left[ \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta) 
ight] + egin{aligned} \lambda R(W) \ \lambda R(W) \end{array}$$

**Regularization strength** 

Putting it all together:

**Linear Classification** 



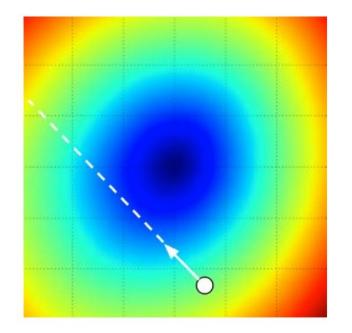
SVM:

$$L = rac{1}{N}\sum_i \sum_{j 
eq y_i} \left[ \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta) 
ight] + \lambda \sum_k \sum_l W_{k,l}^2$$

Softmax:

$$L = rac{1}{N} \sum_i -\log\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight) + \lambda \sum_k \sum_l W_{k,l}^2$$

# **Optimization Landscape**





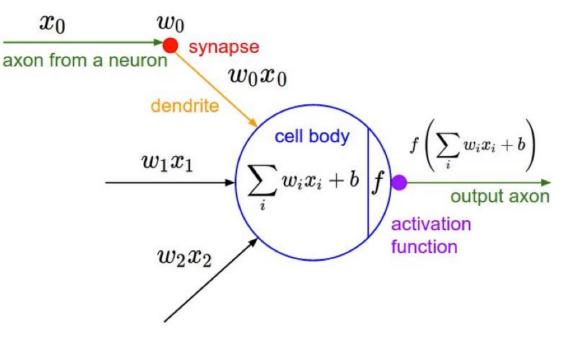
## **Gradient Descent**

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

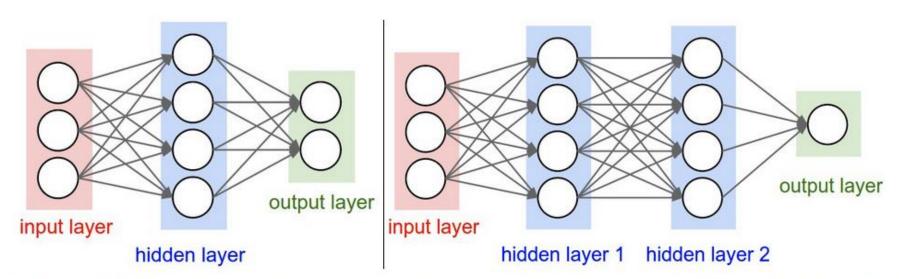
# A Single Neuron Activation Functions



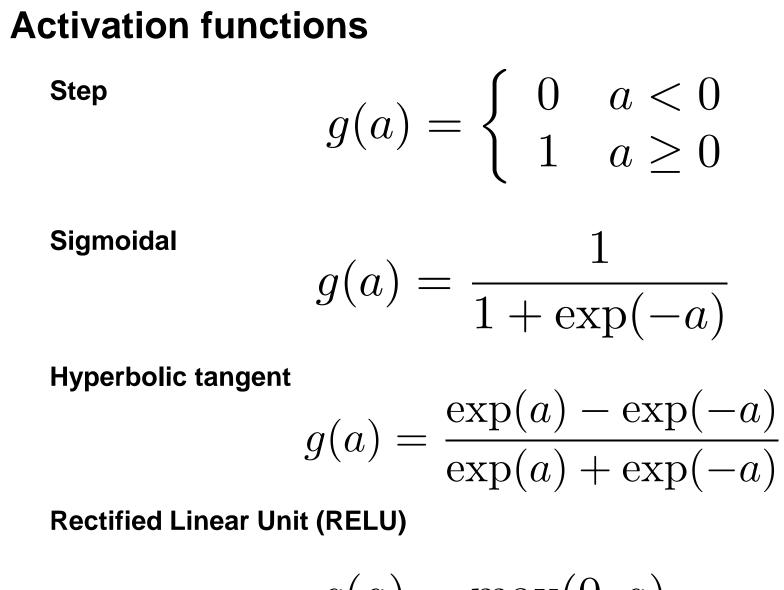
Slide credit:Fei-Fei Li

15

## **Neural Network Structure**



Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three inputs. Right: A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both cases there are connections (synapses) between neurons across layers, but not within a layer.



 $g(a) = \max(0, a)$ 

17

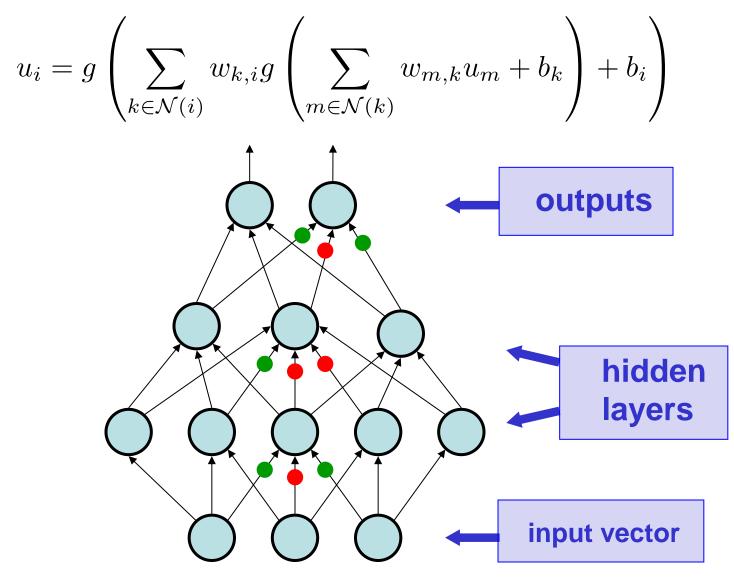
Slide credit:Fei-Fei Li

18

## Expanded Edition Perceptron, '60s Step function, single layer Perceptrons output units e.g. class labels Seymour A. Papent non-adaptive hand-coded features **Fixed** input units mapping e.g. pixels

Slide credits: G. Hinton

# Multi-Layer Perceptrons (~1985)



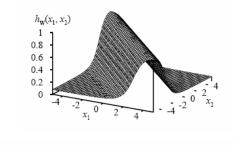
Slide credits: G. Hinton

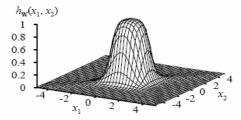
# **Expressiveness of perceptrons**

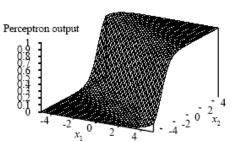
Single layer perceptron: Linear classifier

Two opposite `soft threshold' functions: a ridge

Two ridges: a bump



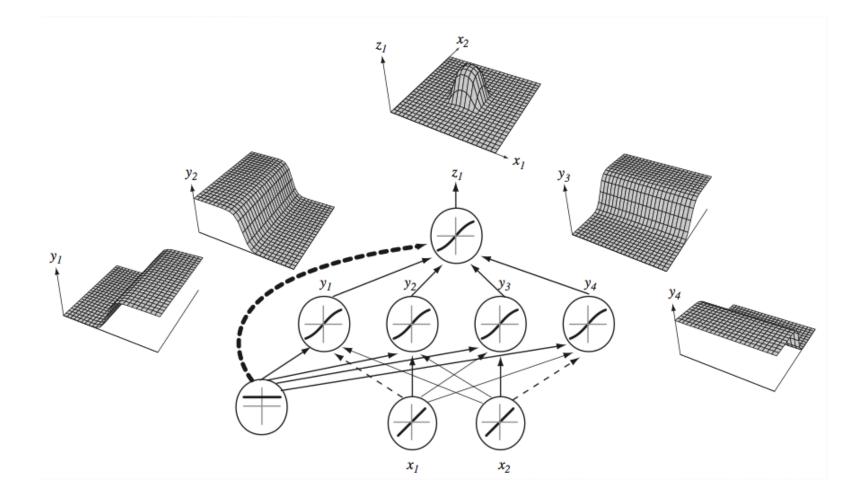




`soft threshold function'

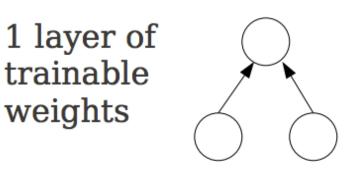
21

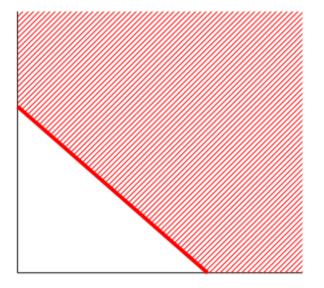
# A network for a single bump



Any function: sum of bumps

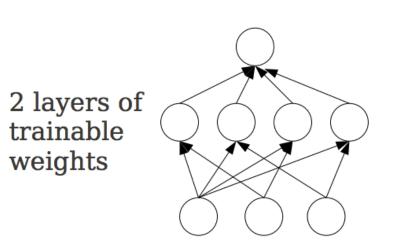


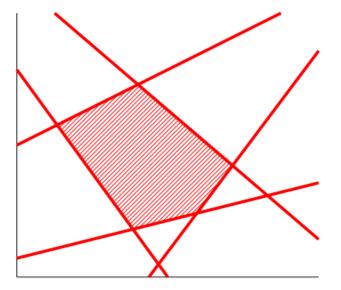




## separating hyperplane

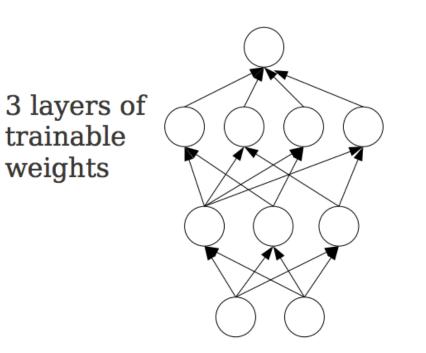
## From flat to deep

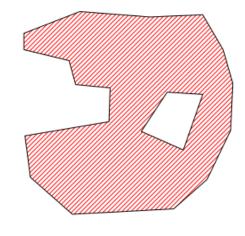




## convex polygon region

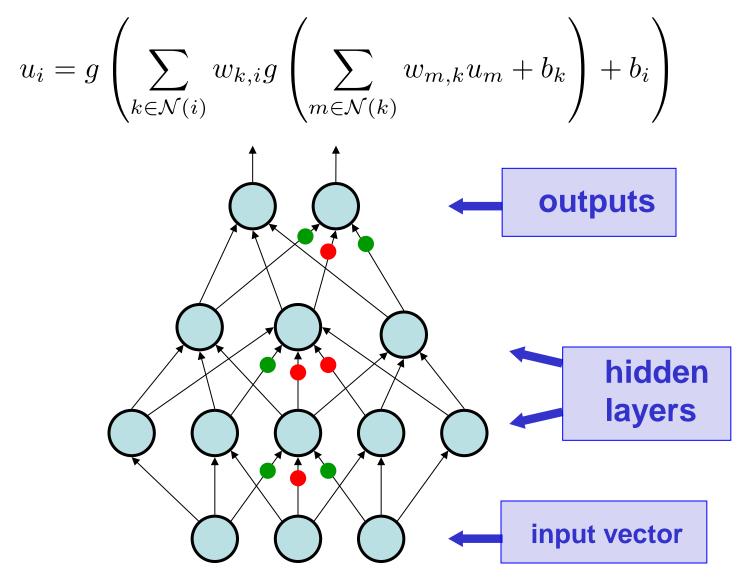






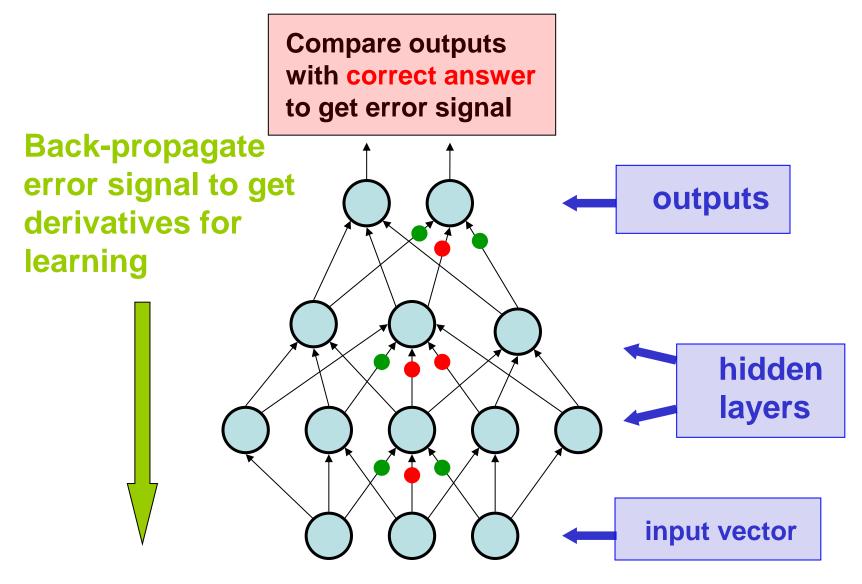
composition of polygons: convex regions

# **Multi-Layer Perceptrons (~1985)**



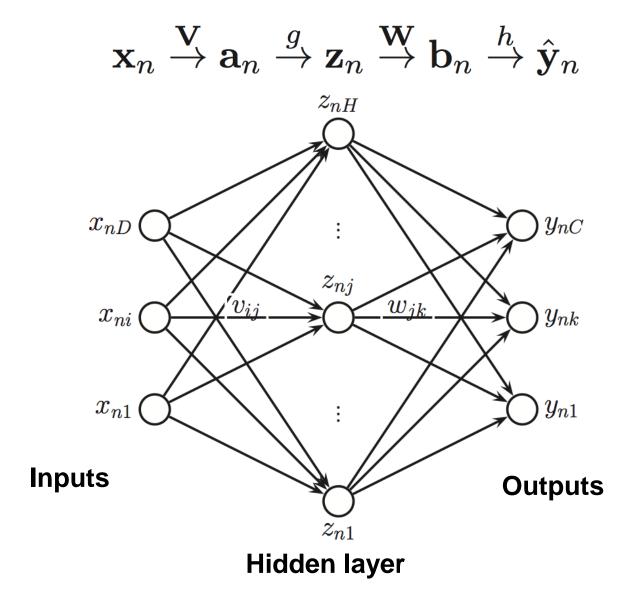
Slide credits: G. Hinton

# **Training Multi-Layer Perceptrons**



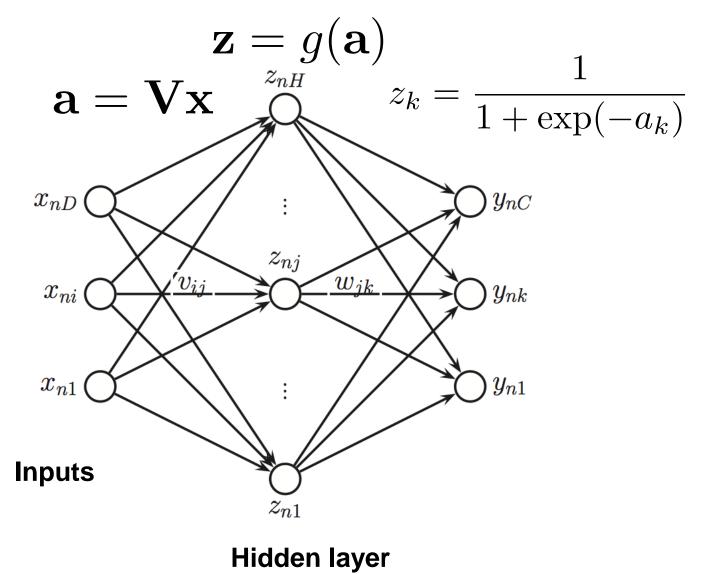
Slide credits: G. Hinton

# A neural network for multi-way classification



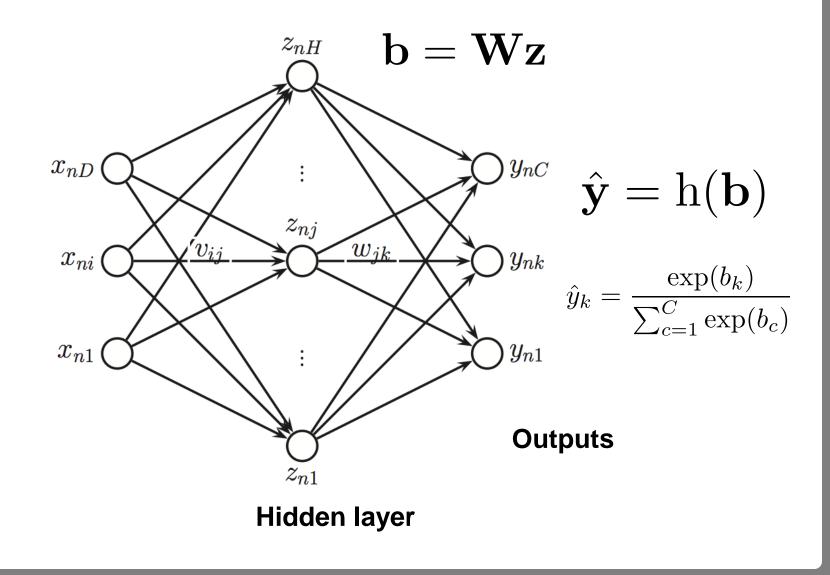
28

A neural network:

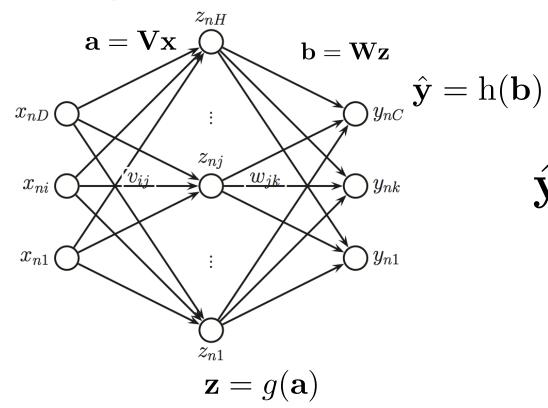


29

# A neural network:



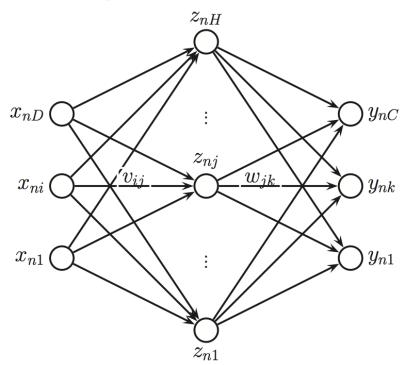
## **Training a neural network**



 $\hat{\mathbf{y}}(\theta) = f(\mathbf{x}; \theta)$ 

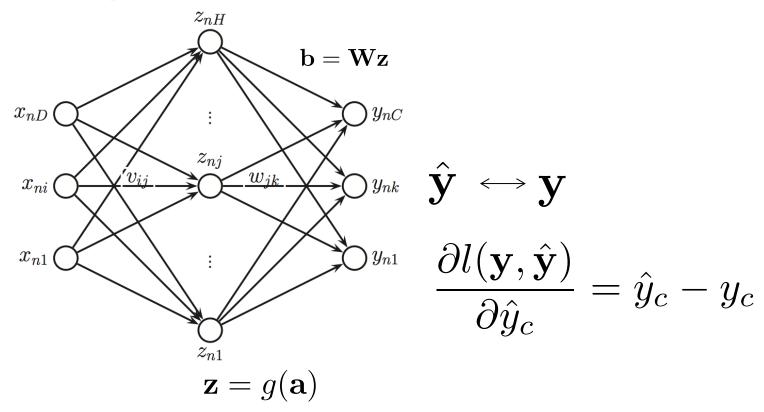
 $l(\theta) = l(\mathbf{y}, \hat{\mathbf{y}}(\theta))$  $\theta' = \theta - c\nabla_{\theta} l(\theta)$ 

## Training a neural network

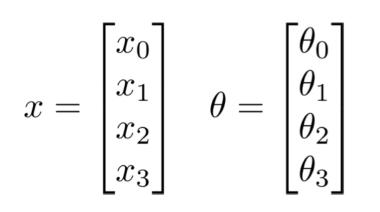


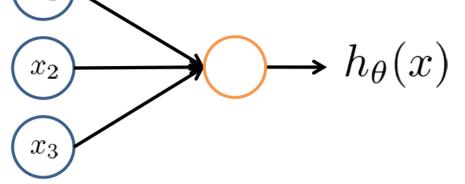
 $\hat{\mathbf{y}}(\theta) = f(\mathbf{x}; \theta)$  $l(\theta) = l(\mathbf{y}, \hat{\mathbf{y}}(\theta))$  $\theta' = \theta - c\nabla_{\theta} l(\theta)$ 

# Training a neural network



# Neuron model: Logistic unit $x_1$

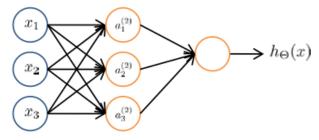




Sigmoid (logistic) activation function.

Slide credits: A. Ng

## **Neural Network**



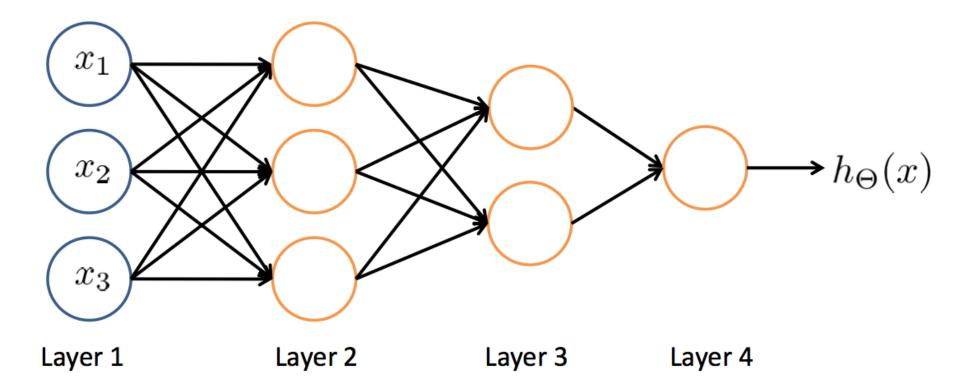
 $a_i^{(j)} =$  "activation" of unit i in layer j

$$\begin{split} \Theta^{(j)} &= \text{matrix of weights controlling} \\ & \text{function mapping from layer } j \text{ to} \\ & \text{layer } j+1 \end{split}$$

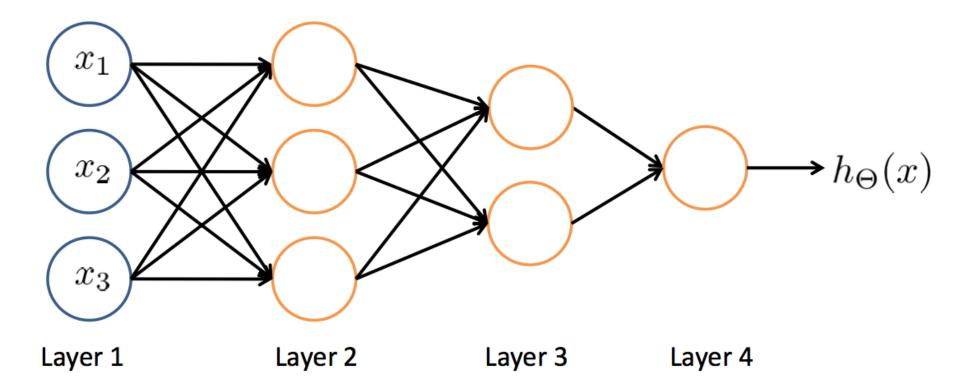
$$\begin{aligned} a_1^{(2)} &= g(\Theta_{10}^{(1)} x_0 + \Theta_{11}^{(1)} x_1 + \Theta_{12}^{(1)} x_2 + \Theta_{13}^{(1)} x_3) \\ a_2^{(2)} &= g(\Theta_{20}^{(1)} x_0 + \Theta_{21}^{(1)} x_1 + \Theta_{22}^{(1)} x_2 + \Theta_{23}^{(1)} x_3) \\ a_3^{(2)} &= g(\Theta_{30}^{(1)} x_0 + \Theta_{31}^{(1)} x_1 + \Theta_{32}^{(1)} x_2 + \Theta_{33}^{(1)} x_3) \\ h_{\Theta}(x) &= a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)}) \end{aligned}$$

If network has  $s_j$  units in layer j,  $s_{j+1}$  units in layer j + 1, then  $\Theta^{(j)}$  will be of dimension  $s_{j+1} \times (s_j + 1)$ .

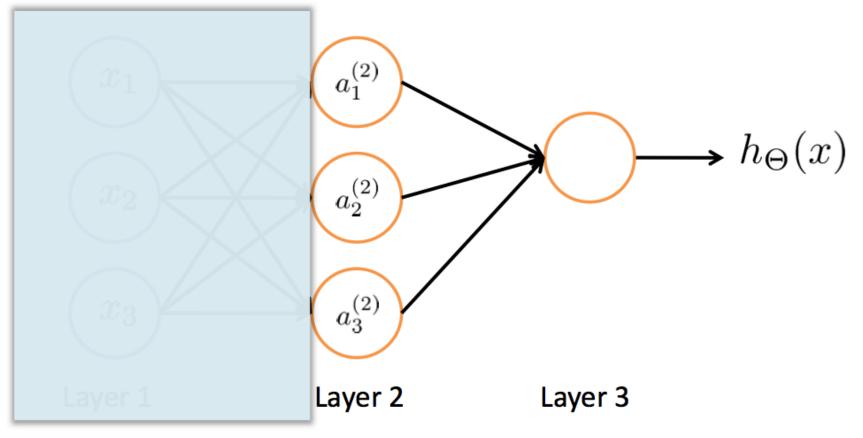
Slide credits: A. Ng



Slide credits: A. Ng

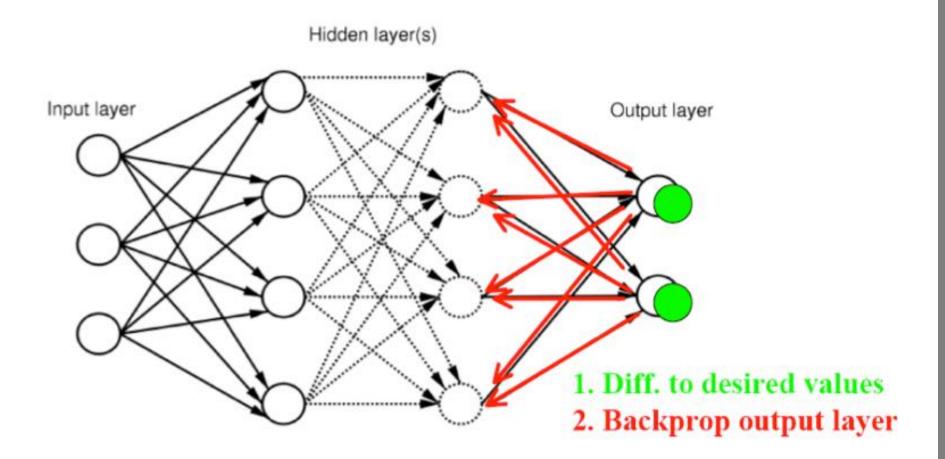


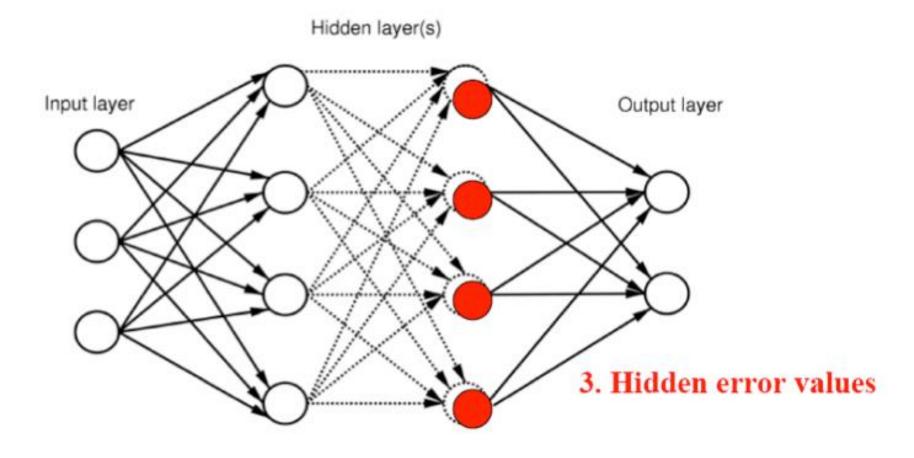
Slide credits: A. Ng

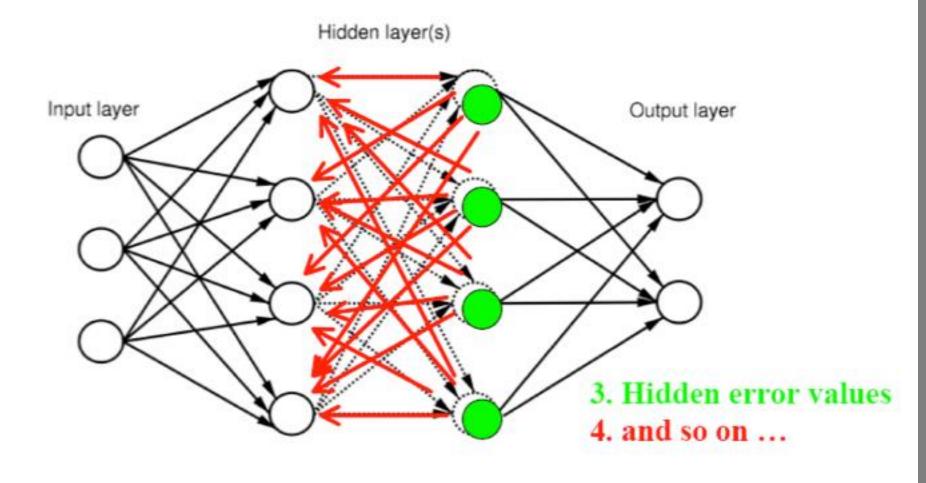


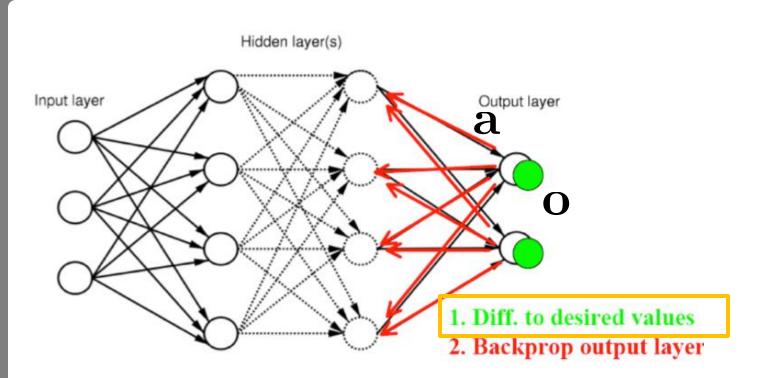
**Learned features** 

Slide credits: A. Ng



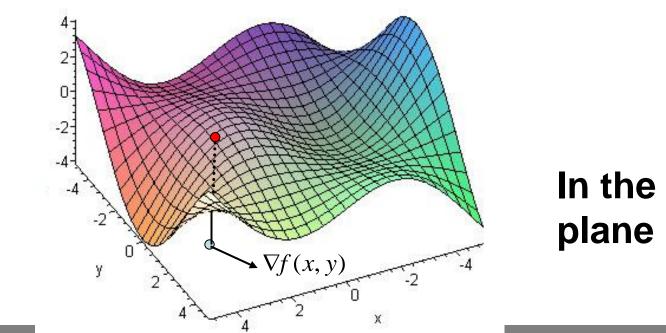




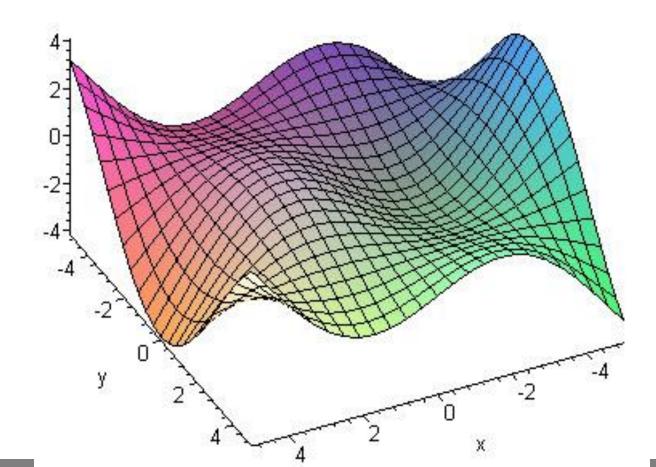


# The Gradient: Definition in $R^2$

$$f: \mathbb{R}^2 \to \mathbb{R} \qquad \nabla f(x, y) \coloneqq \left( \frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right)$$

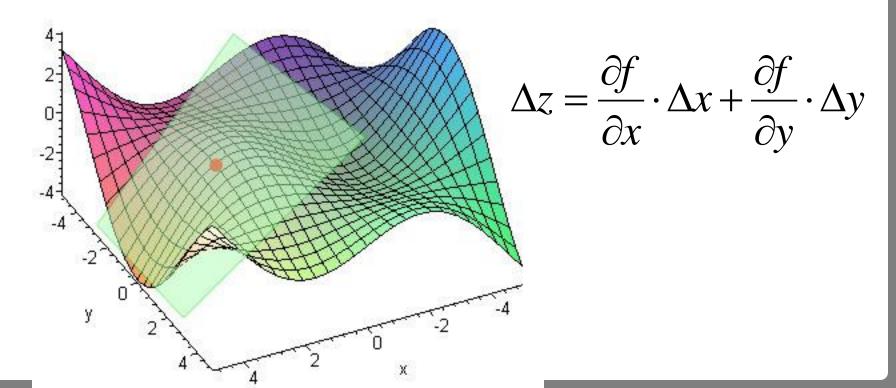


$$f := (x, y) \rightarrow \cos\left(\frac{1}{2}x\right)\cos\left(\frac{1}{2}y\right)x$$



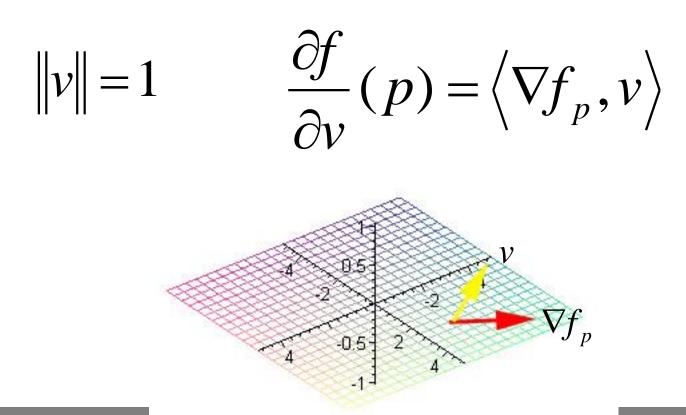
#### **The Gradient Properties**

The gradient defines (hyper) plane approximating the function infinitesimally



#### **The Gradient properties**

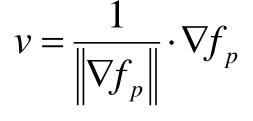
• By the chain rule: (important for later use)



#### **The Gradient properties**

 Proposition 1: is maximal choosing

$$\frac{\partial f}{\partial v}$$
 is minimal choosing



 $v = \frac{-1}{\|\nabla f_p\|} \cdot \nabla f_p$ (intuitive: the gradient points at the greatest change direction)

- What it mean?
- We now use what we have learned to implement the most basic minimization technique.
- First we introduce the algorithm, which is a version of the model algorithm.
- The problem:

 $\min f(x)$ 

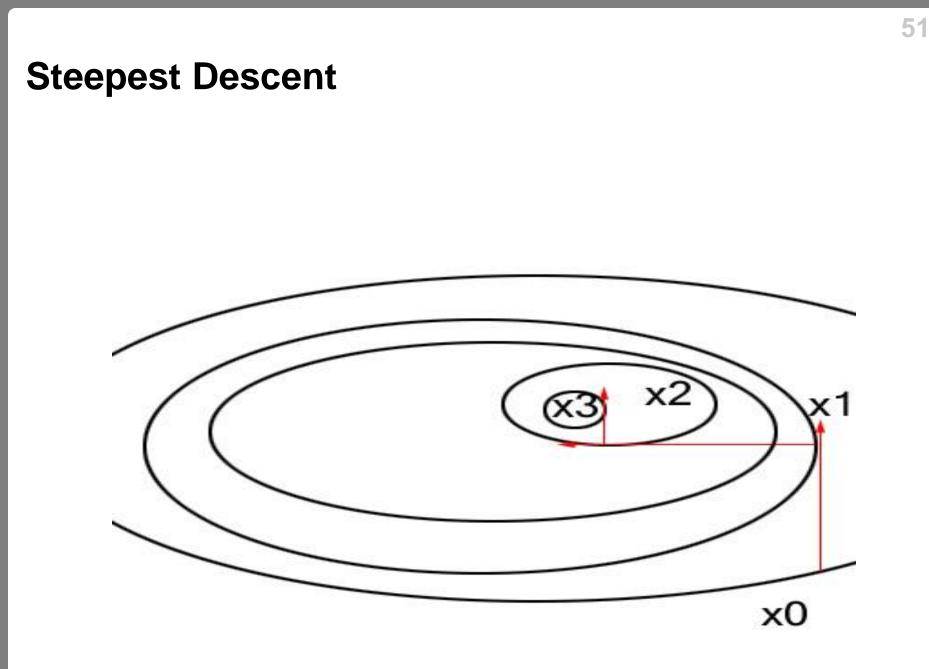
Steepest descent algorithm:

Data:  $x_0 \in \mathbb{R}^n$ Step 0: set i=0 Step 1: if  $\nabla f(x_i) = 0$  stop, else, compute **search direction** Step 2: compute the **step-size**  $h_i = -\nabla f(x_i)$ Step 3: set  $\lambda_i \in \arg\min_{\lambda \ge 0} f(x_i + \lambda \cdot h_i)$  go to step 1  $x_{i+1} = x_i + \lambda_i \cdot h_i$ 

• From the chain rule:

$$\frac{d}{d\lambda}f(x_i + \lambda \cdot h_i) = \langle \nabla f(x_i + \lambda \cdot h_i), h_i \rangle = 0$$

• Therefore the method of steepest descent looks like this:



- The steepest descent find critical point and local minimum.
- Implicit step-size rule
- Actually we reduced the problem to finding minimum:
- There are extensions that gives the step size rule in discrete sense. (Armijo)

$$f: R \to R$$

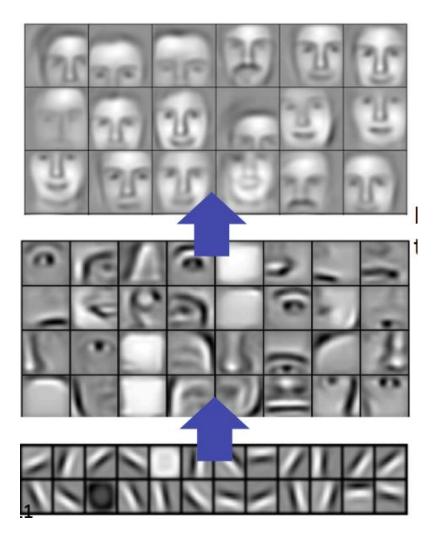
 Back with our connectivity shapes: the authors solve the 1dimension problem analytically.

$$\lambda_i \in \arg\min_{\lambda \ge 0} f(x_i + \lambda \cdot h_i)$$

• They change the spring energy and get a quartic polynomial in x

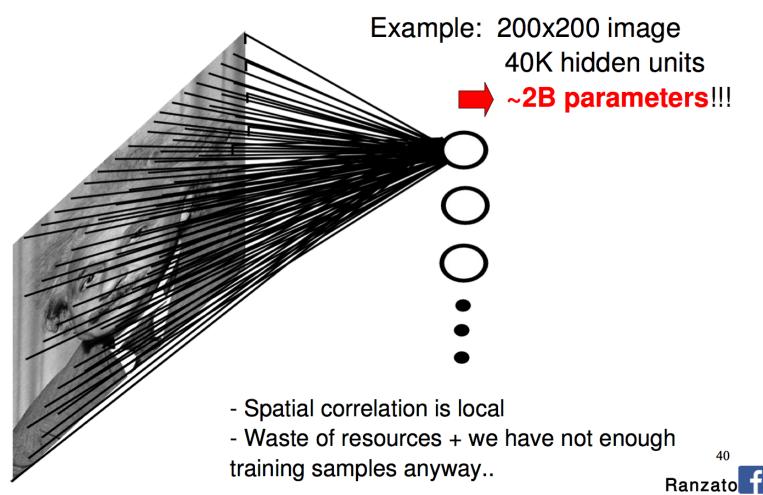
$$E_{s}(x \in \Box^{n \times 3}) = \sum_{(i,j) \in E} \left( \left\| x_{i} - x_{j} \right\|^{2} - 1 \right)^{2}$$

#### **Convolutional models & deep networks**



Honglak Lee & Andrew Ng, ICML 2010

## **Fully Connected Layer**



Slide credits: M. A. Ranzatto

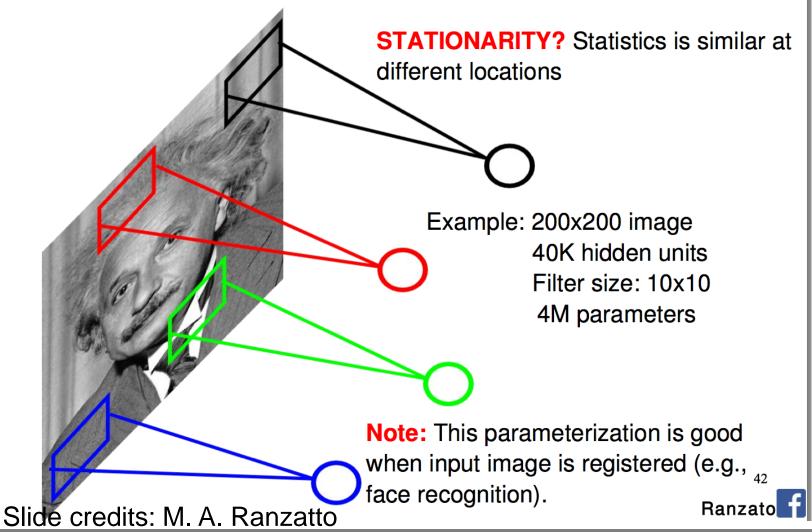


Example: 200x200 image 40K hidden units Filter size: 10x10 4M parameters

Note: This parameterization is good when input image is registered (e.g., face recognition).

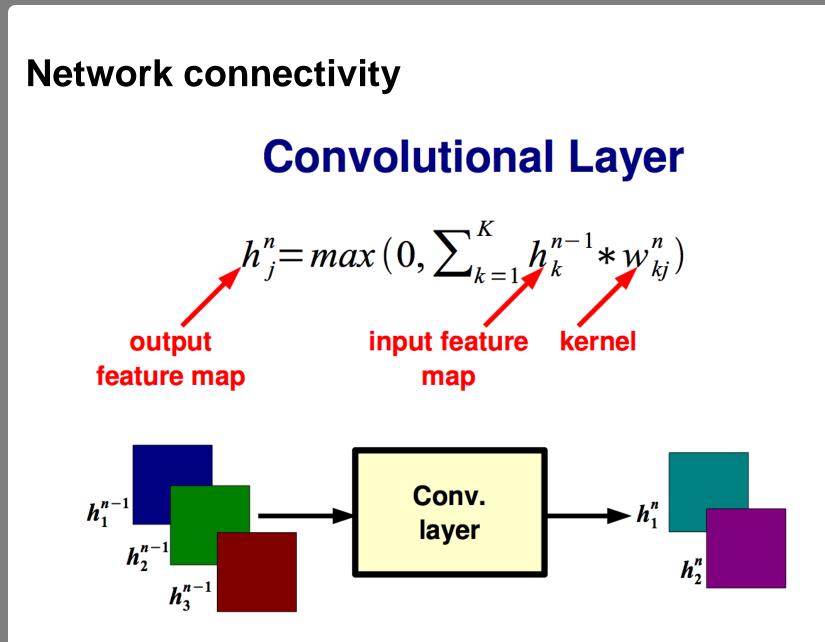
Slide credits: M. A. Ranzatto





### **Convolutional Layer**

Share the same parameters across different locations (assuming input is stationary): Convolutions with learned kernels Ranzato Slide credits: M. A. Ranzatto



Slide credits: M. A. Ranzatto

# **Pooling Layer**

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?



# **Pooling Layer**

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.



## **Pooling Layer: Examples**

Max-pooling:

$$h_j^n(x, y) = max_{\overline{x} \in N(x), \overline{y} \in N(y)} h_j^{n-1}(\overline{x}, \overline{y})$$

Average-pooling:

$$h_{j}^{n}(x, y) = 1/K \sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})$$

L2-pooling:

$$h_{j}^{n}(x, y) = \sqrt{\sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})^{2}}$$

69

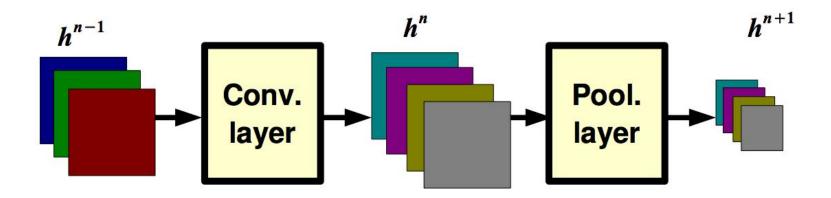
Ranzato

L2-pooling over features:

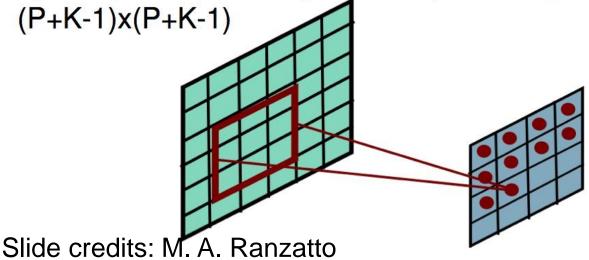
$$h_{j}^{n}(x, y) = \sqrt{\sum_{k \in N(j)} h_{k}^{n-1}(x, y)^{2}}$$

Slide credits: M. A. Ranzatto

## **Pooling Layer: Receptive Field Size**

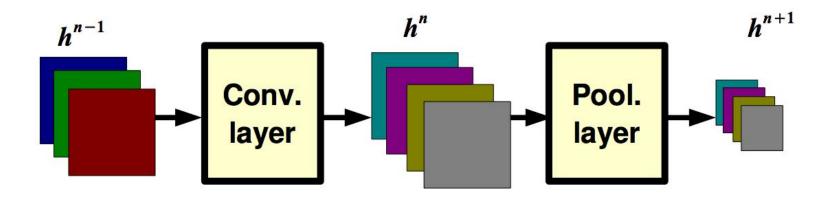


If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:

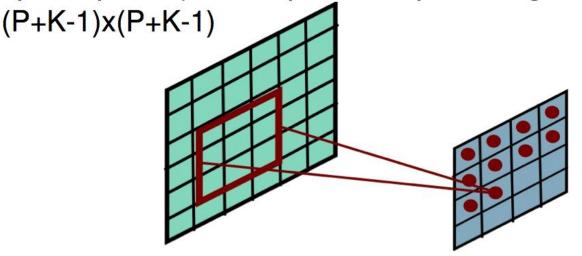




## **Pooling Layer: Receptive Field Size**

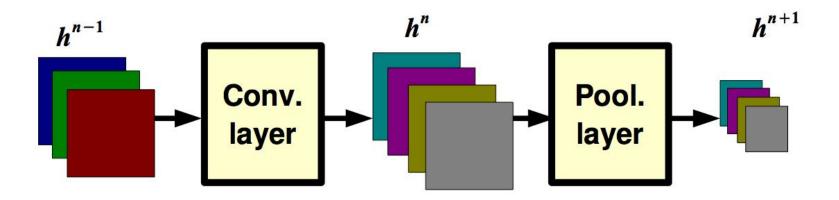


If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:

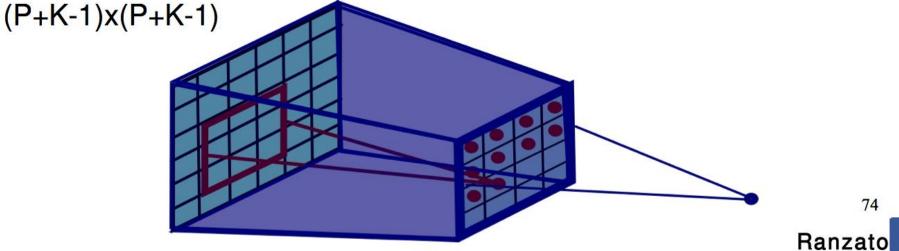




## **Pooling Layer: Receptive Field Size**



If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:



## **Local Contrast Normalization**

$$h^{i+1}(x, y) = \frac{h^{i}(x, y) - m^{i}(N(x, y))}{max(\epsilon, \sigma^{i}(N(x, y)))}$$

Performed also across features and in the higher layers..

Effects:

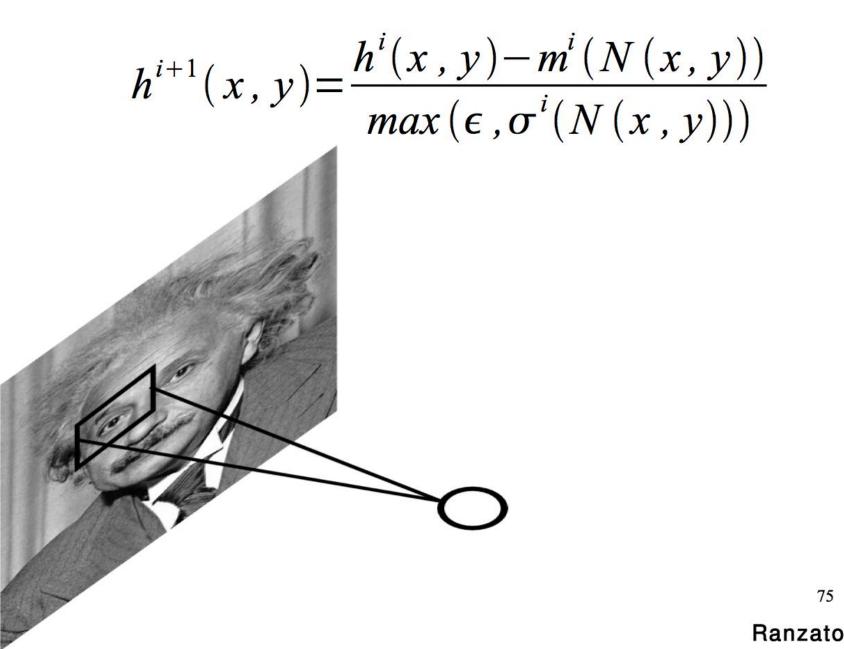
- improves invariance
- improves optimization
- increases sparsity

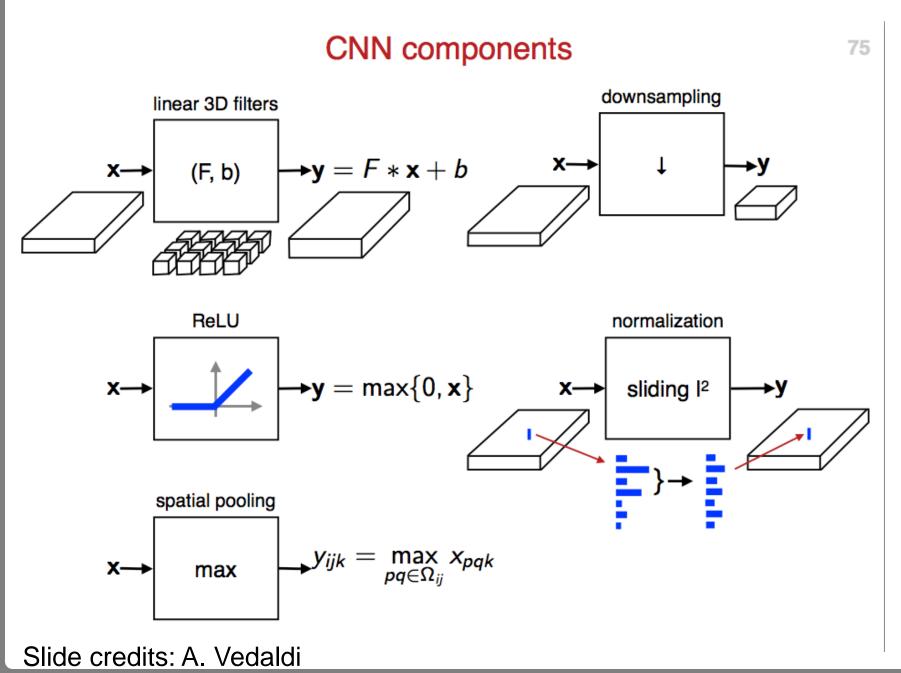
Note: computational cost is negligible w.r.t. conv. layer.

77

Ranzato

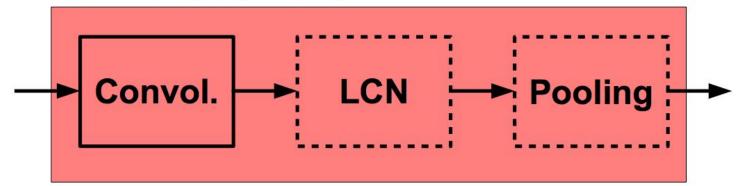
## Local Contrast Normalization

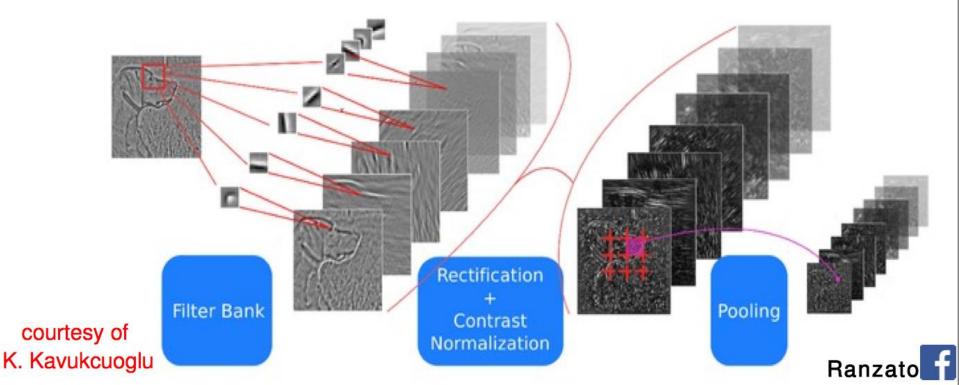




## **ConvNets: Typical Stage**

#### One stage (zoom)

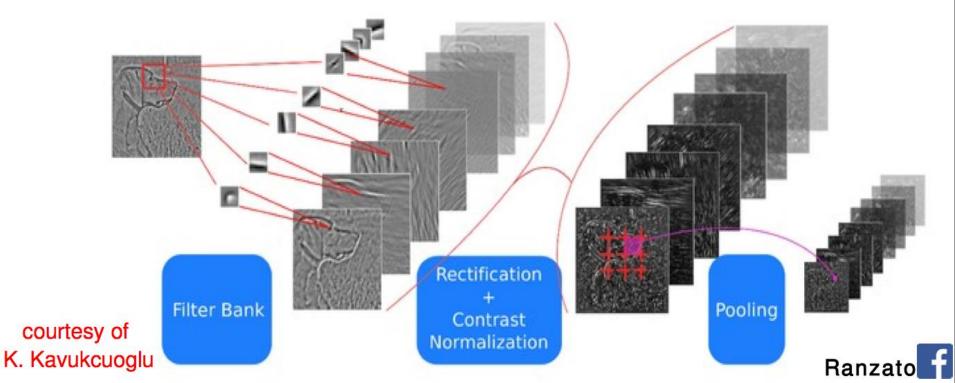


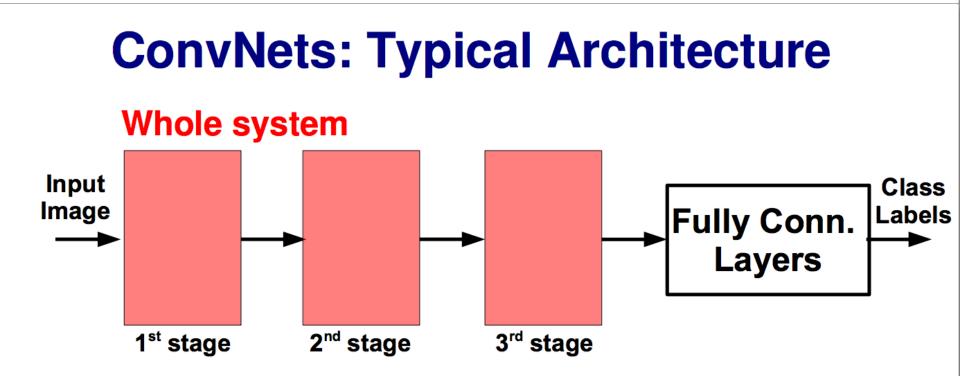


**Note:** after one stage the number of feature maps is usually increased (conv. layer) and the spatial resolution is usually decreased (stride in conv. and pooling layers). Receptive field gets bigger.

Reasons:

- gain invariance to spatial translation (pooling layer)
- increase specificity of features (approaching object specific units)





Conceptually similar to:

SIFT  $\rightarrow$  K-Means  $\rightarrow$  Pyramid Pooling  $\rightarrow$  SVM Lazebnik et al. "...Spatial Pyramid Matching..." CVPR 2006 SIFT  $\rightarrow$  Fisher Vect.  $\rightarrow$  Pooling  $\rightarrow$  SVM

Sanchez et al. "Image classifcation with F.V.: Theory and practice" IJCV 2012

Slide: M-A Ranzatto

