Why Do GPUs Work So Well for Acceleration of CT?

SPIE Electronic Imaging '07

Keynote, Computational Imaging V

Klaus Mueller Fang Xu

Computer Science Center for Visual Computing Stony Brook University

First: A Big Word of Thanks!

... to the millions of computer game enthusiasts worldwide

- Who demand an utmost of performance and realism of their game engines
- And who create a market force for high performance computing that beats any federal-funded effort (NSF, DOE, NASA, etc.)

High Performance Computing on the Desktop

PC graphics boards featuring GPUs:

- NVidia FX, ATI Radeon
- available at every computer store for less than \$500
- set up your PC in less than an hour and play

the latest board: Nvidia GeForce 8800 GTX (G80)

Incredible Growth

Performance doubles every 6 months!

triple of Moore's law

Performance gap GPU / CPU is growing

 currently 1-2 orders of magnitude is achievable (given appropriate programming and problem decomposition)

The Graphics Pipeline

Old-style, non-programmable:

The Graphics Pipeline

Modern, programmable:

The Graphics Pipeline

From a computational view:

GPU Vital Specs

	GeForce 7900 GTX	GeForce 8800 GTX
Codename	G71	<i>G</i> 80
Release date	3/2006	11/2006
Transistors	278 M (90nm)	681 M (90nm)
Clock speed	650 MHz	1350 MHz
Processors	24+8 (pixel/vertex)	128 (unified)
Peak pixel fill rate	10.4 Gigapixels/s	36.8 Gigapixels/s
Pk memory bandwidth	51.2 GB/s (256 bit)	86.4 GB/s (384 bit)
Memory	512 MB	768 MB
Peak performance	250 Gigaflops	520 Gigaflops

GPU Block Diagram

high chip real estate for computing (compare 6.5% in Iridium CPU)

128 processors arranged into 8 blocks

local cache

shared memory

Stream Processing

GPUs are stream processors [Kapasi '03] (with some restrictions) [Venkatasubramanian '03]

Reconstruction Algorithms: Decomposition into Kernels

$$P \cdot p_{i} = \sum_{j=0}^{N^{3}-1} (v_{j} \cdot w_{ij})$$

$$P \cdot p_{i} = \sum_{j=0}^{N^{3}-1} (v_{j} \cdot w_{ij})$$

$$P \cdot p_{i} = \sum_{p_{i} \in P_{set}} p_{i} w_{ij} = \sum_{p_{i} \in P_{set}} B(S)$$

$$P \cdot p_{i} = \sum_{p_{i} \in P_{set}} p_{i} w_{ij} = \sum_{p_{i} \in P_{set}} B(S)$$

$$P \cdot p_{i} = v_{i} + \sum_{p_{i} \in P_{g}} \left(\frac{\lambda \left(p_{i} - \sum_{l=0}^{N^{3}-1} v_{l} \cdot w_{ll} \right) \right)}{\sum_{l=0}^{N^{3}-1} w_{il}} w_{ij}$$

$$P \cdot p_{i} = v_{i} + \frac{\sum_{p_{i} \in P_{g}} \left(\frac{\lambda \left(p_{i} - \sum_{l=0}^{N^{3}-1} v_{i} \cdot w_{ll} \right) \right)}{\sum_{p_{i} \in P_{g}} w_{ij}} \right)}{\sum_{p_{i} \in P_{g}} w_{ij}} = v_{i} + \frac{B(\lambda \frac{S - P(V)}{P(I)})}{B(I)}$$

$$P \cdot p_{i} = \frac{v_{j}}{\sum_{p_{i} \in P_{g}} w_{ij}} \left(\sum_{p_{i} \in P_{g}} \left(\frac{p_{i}}{\sum_{l=0}^{N^{3}-1} v_{l} \cdot w_{ll}} \right) w_{ij} \right) = \frac{v_{j}}{\sum_{p_{i} \in P_{set}} B(S)}$$

Kernel-Centric Reconstruction

Algebraic EM **FBP** P P B С С U P Projection B В B **Backprojection** C Correction U U U Update kernel

Kernel-Centric Reconstruction

Back-Projection Mapping Via Transformation Matrix

$$\begin{bmatrix} \frac{w}{2} & 0 & 0 & 0 \\ 0 & \frac{h}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1.0 \\ 0 & 1 & 0 & 1.0 \\ 0 & 0 & 1 & 1.0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 & 0 \\ 0 & 0 & \frac{f+n}{n-f} & \frac{2fn}{n-f} \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} u_x & u_y & u_z & -\vec{u} \cdot \vec{s} \\ v_x & v_y & v_z & -\vec{v} \cdot \vec{s} \\ n_x & n_y & n_z & -\vec{n} \cdot \vec{s} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_v \\ y_v \\ z_v \\ 1 \end{bmatrix}$$

Implementation Via Parallel Fragment Processing

Graphics Pipeline Revisited

Pipeline 1: The GPU as a Programmable Multi-Processor (MP-GPU)

Fragments contain the (x,y,z) voxel coordinates

Implementation Via Parallel Fragment Processing

Pipeline 2: The GPU as a Programmable Graphics Processor (AG-GPU)

Fragments contain the (u,v) detector space coordinates

Graphics Pipeline Benefits

Graphics-aware pipeline (AG-GPU) is considerably faster (~3×) than MP-GPU

- graphics facilities are hardwired!
- There are further features that have their origins in graphics and come with GPUs:
 - early fragment kill \rightarrow eliminate fragments based on some condition before they even enter the fragment processor
 - hardwired 32-bit floating-point precision linear interpolations, matrix and vector arithmetic (+, -, *), frame-buffer blending and compositing
 - RGBA parallelism

see Xu/Mueller, Physics Medicine & Biology, vol. 52, pp. 3405–3419, 2007

RGBA Parallelism

Exploit geometric mapping parallelism

Volume packing

adjacent 4 volume slices → RGBA

Projection packing

- symmetry in projection layout
- requires all projections beforehand

Example: Feldkamp Cone-Beam Reconstruction

360 projections (1024², general position), 512³ volume

Expressed in Projections/Sec.

360 projections, 512³ volume

Original

GPU Enables Streaming CT

Real-time reconstruction at clinical rates

 reconstruct (consume) incoming (produced) projections without buffering

GPU Enables Visual CT

High reconstruction frame rate enables injection of occasional volume rendering step

Also enables D²VR: real-time volume visualization directly from projection data

see Xu/Mueller, Proc. Volume Graphics Workshop, pp. 23-30, 2006

Extensions

GPUs can not only be used to accelerate straight projection and back projection

They also allow more complex effects to be modeled

- can use relatively simple fragment programs for scatter and attenuation modeling
- but we have recently also implemented more complex scattering models using lattice-based Monte-Carlo techniques

Qiu et al, Trans. Vis. Comp. Graph, 2007

RapidCT Reconstruction Cockpit

Edit/tune on the fly:

- parameters
- projection sets
- algorithms

Couple with 2D/3D visualizations

RapidCT Reconstruction Cockpit

One More Example: Algebraic Reconstruction of TEM Data

GPUs enable iterative reconstruction from large data in Transmission Electron Microscopy (TEM)

- 70 1024² parallel-beam projections, 130° tilt angle,
- reconstructed with SIRT at 50 iterations into a 1024³ volume
- uses RGBA parallelism and sinogram-centric fragment generation

Funding by NIH, NSF, Keck Foundation