MIC-GPU: High-Performance Computing for Medical Imaging on Programmable Graphics

Hardware (GPUs)

Closing Remarks

Klaus Mueller and Sungsoo Ha

Stony Brook University

Computer Science

Stony Brook, NY

OpenCL

KHR OS

OpenCL: Open Computing Language (based on C)

- support for heterogeneous devices (GPU, CPU, ...)
- pick the device best suited for the job
- potential parallelism is key for selection
- recall Amdahl's law

SPIE Medical Imaging 2016

OpenCL Mindset

SPIE Medical Imaging

Platform model:

- a host is connected to one or more OpenCL devices
- a device is divided into one or more compute units (cores)
- compute units are divided into one or more processing elements

OpenCL Mindset SPIE Medical Imaging **Execution Model** · host programs execute on the host kernels execute on one or more OpenCL devices each instance of a kernel is called a work item work items are organized as work groups work groups and work items are defined into an *index space* index space is created upon kernel submission work items can be identified by work group and local work item IDs → this is all quite similar to CUDA **CUDA** Terminology **OpenCL Terminology** Grid Index Space Work Group Block

Work Item

SPIE Medical Imaging 2016

Thread

Global and Local Dimensions

SPIE Medical Imaging

OpenCL Memory Model

Private memory

from: Khronos OpenCL Overview

SPIE Medical Imaging 2016

per work item
 Local memory (16kB)

 shared per work group

 Global/constant memory

 not synchronized

 Host memory

 on CPU
 computer Device

Execution Model SPIE Medical Imaging OpenCL CPU GPU Context Programs Kernels Memory Objects **Command Queues** dp_mul Buffers Images __kernel void dp_mul(global const float *a, global const float *b, global float *c) dp_mul CPU program b Out of In arg[0] value Order Order dp_mul GPU program bir Queue arg[1] value Queue int id = get_global_id(0); c[id] = a[id] * b[id]; arg[2] value GPU Create data & Compile code arguments

from: Khronos OpenCL Overview SPIE Medical Imaging 2016

from: Khronos OpenCL Overview

SPIE Medical Imaging 2016

SPIE Medical Imaging 2016

References

- S. Ha, K. Mueller, "An Algorithm to Compute Independent Sets of Voxels for Parallelization of ICD-based Statistical Iterative Reconstruction," (oral presentation), Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Newport, RI, June 2015.
- Z. Zheng, E. Papenhausen, K. Mueller, "DQS Advisor: A Visual Interface and Knowledge-Based System to Balance Dose, Quality, and Reconstruction Speed in Iterative CT Reconstruction with Application to NLM-Regularization," Physics in Medicine and Biology, 58(21):7857-73, 2013.
- S. Ha, S. Matej, M.Ispiryan, K. Mueller, "GPU-Accelerated Forward and Back-Projections with Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction," IEEE Transaction on Nuclear Science, 60(1):166-173, 2013.
- E. Papenhausen, Z. Zheng, K. Mueller, "Creating Optimal Code for GPU-Accelerated CT Reconstruction Using Ant Colony Optimization," Medical Physics, 3(40): 031110, 2013.
- E. Papenhausen, Z. Zheng, K. Mueller, "Cloud X: A Platform as a Service for CT Reconstruction Research and Development," (oral presentation), Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Lake Tahoe, CA, June 2013.
- E. Papenhausen, Z. Zheng, K. Mueller, "Rapid Rabbit: Highly Optimized GPU Accelerated Cone-Beam CT Reconstruction," IEEE Medical Imaging Conference, (poster), November, Seoul, Korea, 2013.
- E. Papenhausen, Z. Zheng, K. Mueller, "Coding Ants: Using Ant Cclony Optimization to Accelerate CT Reconstruction," Proc. 2nd International Conference on Image Formation in X-ray Computed Tomography, (Premium Poster), pp. 356-359, Salt Lake City, UT, July 2012.

References

- W. Xu, K. Mueller, "Using GPUs to Learn Effective Parameter Settings for GPU-Accelerated Iterative CT Reconstruction Algorithms," GPU Computing Gems Emerald Edition, ed. W. Hwu, pp. 693-708, 2011
- E. Papenhausen, Z. Zheng, K. Mueller, "GPU-Accelerated Back-Projection Revisited: Squeezing Performance by Careful Tuning," Workshop on High Performance Image Reconstruction (Fully 3D Image Reconstruction in Radiology and Nuclear Medicine), pp. 19-22, Potsdam, Germany, July 2011.
- Z. Zheng, W. Xu, K. Mueller, "Performance Tuning for CUDA-Accelerated Neighborhood Denoising Filters", Workshop on High Performance Image Reconstruction (Fully 3D Image Reconstruction in Radiology and Nuclear Medicine), pp. 52-55, Potsdam, Germany, July 2011.
- Z. Zheng, K. Mueller, "A Cache-Aware GPU Memory Scheduling Scheme for CT Reconstruction Back-Projection," IEEE Medical Imaging Conference, Knoxville, TN, October, 2010.
- W. Xu, F. Xu, M. Jones, B. Keszthelyi, J. Sedat, D. Agard, K. Mueller, "High-Performance Iterative Electron Tomography Reconstruction with Long-Object Compensation using Graphics Processing Units (GPUs)," Journal of Structural Biology, 171(2):142-153, 2010.
- F. Xu, W. Xu, M. Jones, B. Keszthelyi, J. Sedat, D. Agard, K. Mueller, "On the Efficiency of Iterative Ordered Subset Reconstruction Algorithms for Acceleration on GPUs," Computer Methods and Programs in Biomedicine, 98(3):261-270, 2010.
- W. Xu, K. Mueller, "A Performance-Driven Study of Regularization Methods for GPU-Accelerated Iterative CT," Workshop on High Performance Image Reconstruction (Fully 3D Image Reconstruction in Radiology and Nuclear Medicine), Beijing, China, September, 2009.

SPIE Medical Imaging 2016	MIC-GPU	9	 SPIE Medical Imaging 2016	SPIE Medical Imaging 2016 MIC-GPU
References		SPIE Medical Imaging		
W. Xu, K. Mueller, "Accelerating Regularize Hardware (GPU)," (invited paper), IEEE Boston, MA, July, 2009.	d Iterative CT Reconstruction on Commo International Symposium on Biomedical I			
	Attenuation and Scattering Compensation o on High Performance Image Reconstruc r Medicine), pp. 29-32, Lindau, Germany,	ction (Fully 3D Image		
N. Neophytou, F. Xu, and K. Mueller, " Hard processing beat complexity optimization 2007.	ware acceleration vs. algorithmic acceler: for CT?," SPIE Medical Imaging '07, San			
F. Xu and K. Mueller, "Real-Time 3D Compu- Hardware," Physics in Medicine and Bio		Commodity Graphics		
K. Mueller, F. Xu, and N. Neophytou, "Why Imaging '07 (Keynote, Computational Im	do GPUs work so well for acceleration of aging V), 64980N, San Jose, January 20			
K. Mueller and F. Xu, "Practical consideration Symposium on Biomedical Imaging (ISB	ns for GPU-accelerated CT, " IEEE 2006 I '06), pp. 1184-1187, Arlington, VA, April			
F. Xu and K. Mueller, "Accelerating popular graphics hardware," IEEE Transactions	tomographic reconstruction algorithms or on Nuclear Science, vol. 52, no. 3, pp. 65	a commodity PC 4-663, 2005.		
K. Mueller and R. Yagel, "Rapid 3D cone-be Technique (ART) by using texture mapp Medical Imaging, 2000.	am reconstruction with the Algebraic Rec ing hardware," 19(12):1227-1237, IEEE T			
SPIE Medical Imaging 2016	MIC-GPU	11		