
MIC-GPU: 
High-Performance Computing
for Medical Imaging
on Programmable Graphics 

Hardware (GPUs)

Parallelism in Medical Imaging

Stony Brook University

Computer Science

Stony Brook, NY

Klaus Mueller, Ziyi Zheng, Eric Papenhausen 

SPIE Medical Imaging 2010SPIE Medical Imaging 2011 MIC-GPU 2

Transmission CT: Data Generation

X-ray 
source

detector

attenuating 
object

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 3

CT Reconstruction

High-dose CT reconstruction usually uses FDK algorithm

• backprojection of filtered views

Low-dose CT reconstruction pipeline typically uses iterative 
3D reconstruction with regularization

• projection of volume into set’s views

• correction factor computation

• backprojection of correction factors (views)

• regularization

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 4

Filtered Backprojection
Reconstruction

Projection filtering
FFT                          

multiply by ramp 
inverse FFT            

pre-weighting Backprojections
Post-weighting

X-ray 
source

detectorattenuating 
object



SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 5

Iterative Reconstruction

Projections

Initialization

Correction factor 
computations

BackprojectionsRegularization

X-ray 
source

detectorattenuating 
object

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 6

Kernel-Centric Decomposition

IterativeFBP

P

C

B

R

B

P Projection

B Backprojection

C Correction

R Regularizationkernel

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 7

Kernel-Centric Decomposition

We can consider each of these steps to be a SIMT kernel

Iterative 3D reconstruction with regularization:

• backprojection of volume into set’s views � projection kernel

• correction factor computation � correction factor kernel

• backprojection of correction factors � backprojection kernel

• regularization � regularization kernel

vector operations

projector with interpolation

image processing filters

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 8

Kernel-Centric Decomposition

IterativeFBP

P

C

B

R

B

P Projection

B Backprojection

C Correction

R Regularizationcompute intensive kernel



SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 9

Kernel Scheduling

SIMT can only execute one kernel at a time

• this prohibits kernel overlap, even if mathematically correct

• we may merge kernels if targets are identical 

� this favors load balancing and the reduction of passes 

First decompose the reconstruction pipeline into components

• develop an optimized kernel for each component

• overlap (=hide) the loading of data (if needed) with execution of a 
prior kernel (or within kernel)

• optimize what platform to run the computations (CPU, GPU), but 
then consider transfer of data

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 10

Terminology

We shall discuss all material in terms of 3D reconstruction

• the reduction to 2D slice reconstruction is straightforward

Pixels: the basis elements (point samples) of the projection image               
(the photon measurements)

Voxels: the basis elements (point samples) of the reconstruction volume           
(the attenuation densities or the tracer photon emissions) 

reconstructed 
volume

interpolation                                
(nearest neighbor, bilinear)

voxelpixel

projection operator

projection 
image

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 11

1

k

i l il

l
ij

i il
k k l
j j

ij

i

p v w

w
w

v v
w

λ+

−

= +

�
� �

�

Projection (into pixel i)

Normalization

at pixel i

Normalization at voxel j

Backprojection

(into voxel j)

Scanned pixel

New (k+1) and previous (k) 

values of voxel j

Iterative CT Example: SART/SIRT

Correction value

SPIE Medical Imaging 2010 MIC-GPU 12

Kernel-Centric Decomposition

( ) ( )
3 11

0 0

:                 :  

MN

i j ij j i ij

j i

P p v w B v p w
ϕ −−

= =

= ⋅ = ⋅� �

3

3

1

0

1

0

( )
( )

( )

( )

i

i

N

i l il

l

ijN
p P

il

l

j j j

ij

p P

p v w

w

S P Vw B
P I

v v v
w B I

ϕ

ϕ

λ

λ

−

=

−
∈

=

∈

� �� �
− ⋅� �� �

� �� �
� �

−� �
� �
� �= + = +

�
�

�

�SART

S: scanner projections

I: identity projection/volume

_

i set i set

j i ij fdk

p P p P

v p w B S
∈ ∈

= = ⋅� �FBP



SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 13

Backprojection: Options

• voxel-driven: sample in projection space 

• one write per thread

source

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 14

Backprojection: Options

• voxel-driven: sample in projection space 

• one write per thread

source source

• pixel-driven, sample in volume space 

• multiple writes per thread (scatter)

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

CUDA Memory – Backprojection

MIC-GPU 15

Global Memory Texture Memory

Access Read/Write Read only

Cached No Yes

Subject to coalescing Yes No

Interpolation No support Hardwired

Dimension arbitrary 1D, 2D, 3D (supported 

after CUDA 2.0)

volume projections

SPIE Medical Imaging 2010

CUDA Configuration: 2D

thread

block

Y

XZ

MIC-GPU 16



SPIE Medical Imaging 2010 MIC-GPU 17

CUDA Configuration: 3D

thread

block

Y

XZ

SPIE Medical Imaging 2010 MIC-GPU 18

Transformation Matrix

A 3x4 matrix M transforms 3D voxel coordinates to 2D pixel 
coordinates on the detector

Perform perspective divide if necessary (cone-beam)

�
�
�

	




�
�
�

�



=

�
�
�
�

	




�
�
�
�

�



�
�
�

	




�
�
�

�



h

h

h

v

v

v

w

y

x

z

y

x

aaaa

aaaa

aaaa

1
23222120

13121110

03020100

),(),(
h

h

h

h

w

y

w

x
vuP =ϕ

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 19

CUDA Implementation

[Host]:

for all projections Pi, trigger kernel on device

[Device]: per thread

loop through each voxel in the thread

• obtain voxel coordinates in volume space

• compute projected coordinates on the detector using a 3x4 
transformation matrix M

• perform perspective-divide if needed

• depth weighting if needed

• interpolate pixel values on the detector (bilinear)

• accumulate sampled values on voxel

�
�
�

	




�
�
�

�



=

�
�
�
�

	




�
�
�
�

�



⋅×

h

h

h

v

v

v

w

y

x

z

y

x

M

1

43

),(),(
h

h

h

h

w

y

w

x
vuP =ϕ

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Incremental Computation

MIC-GPU 20

�
�
�
�

	




�
�
�
�

�



∆
⋅+

�
�
�
�

	




�
�
�
�

�



⋅=

�
�
�
�

	




�
�
�
�

�



∆+
⋅

0

0

0

11

z
M

z

y

x

M
zz

y

x

M
v

v

v

v

v

v

Y

XZ



SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 21

Example: 
Feldkamp Cone-Beam Reconstruction

360 projections (10242, general position), 5123 volume

CPU

tumor profiles

GPU

performance in seconds

135

8
0

20

40

60

80

100

120

140

160

CPU GPU

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 22

Expressed in Projections/Sec.

360 projections, 5123 volume

Original GPU-recon

performance in projections/s

2.6

45

0

5

10

15

20

25

30

35

40

45

50

CPU GPU

SPIE Medical Imaging 2010SPIE Medical Imaging 2010 MIC-GPU 23

FDK: Medical Datasets

Head Toes Abdominal Aorta

O
rig

in
a

l
R

e
c
o

n
s
tru

c
te

d

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 24

Forward Projection

Sample in volume space (pixel-driven / ray-driven)

source



SPIE Medical Imaging 2010SPIE Medical Imaging 2012

CUDA Memory – Forward Projection

MIC-GPU 25

Global Memory Texture Memory

Access Read/Write Read only

Cached No Yes

Subject to coalescing Yes No

Interpolation No support Hardwired

Dimension arbitrary 1D, 2D, 3D (supported 

after CUDA 2.0)

projections volume

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Forward Projection: Memory

Ray-driven: sampling in volume space (trilinear interpolation)

Volume can be represented as either

• a single 3D texture (supported after CUDA 2.0)

• stacks of 2D textures

• A 3rd interpolation between adjacent 2D slices

MIC-GPU 26

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 27

Projection Algorithm

Raycasting methods [Krueger’03]

• [Host]: 

- generate volume bounding box (aligned with axis X/Y/Z)

- generate threads for each pixel (ray), trigger kernel on device

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 28

Projection Algorithm

Raycasting methods [Krueger’03]

• [Host]: 

- generate volume bounding box (aligned with axis X/Y/Z)

- generate threads for each pixel (ray), trigger kernel on device

• [Device]: in each thread

- obtain ray entry & exit points using volume bounding box info

- get ray directions using entry & exit points 



SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 29

Projection Algorithm

Raycasting methods [Krueger’03]

• [Host]: 

- generate volume bounding box (aligned with axis X/Y/Z)

- generate threads for each pixel (ray), trigger kernel on device

• [Device]: in each thread

- obtain ray entry & exit points using volume bounding box info

- get ray directions using entry & exit points 

- cast rays, inside the loop:

• sample in volume space 

• accumulate values

• step forward equidistantly

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 30

Projection Accuracy

Volume 

space

Detector

slice-interpolated grid line Siddon RBF line area Siddon splat

Investigated various schemes in terms of accuracy:

It was shown that the convenient grid-interpolated (trilinear) scheme is 
qualitatively competitive to the more involved ones listed here.

• see Xu / Mueller, "A comparative study of popular interpolation and 
integration methods for use in computed tomography," IEEE 2006 
International Symposium on Biomedical Imaging (ISBI '06)

SPIE Medical Imaging 2010 MIC-GPU 31

Example: Iterative Algorithms

Kernel selection depends on algorithms

Projection/Backprojection

Correction

• pixel-wise operation

• subtraction

Regularization

• TVM or 

• bilateral filter or

• non-local mean filter

Sync

Projection

Correction

Backprojection

Regularization

Sync

SPIE Medical Imaging 2010

Sync

MIC-GPU 32

forward projection
(pixel-driven)

global memory (r/w) texture memory (r)



SPIE Medical Imaging 2010

Sync

MIC-GPU 33

forward projection
(pixel-driven)

global memory (r/w) texture memory (r)

backprojection
(voxel-driven)

SPIE Medical Imaging 2010

Sync

MIC-GPU 34

forward projection
(pixel-driven)

global memory (r/w) texture memory (r)

backprojection
(voxel-driven)

add

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Regularization

Overall goal: make the reconstruction conform to expectations

• reconstruction is not noisy

• reconstruction has sharp edges

Various techniques

• Total Variation Minimization (TVM)

• bilateral filter (BLF)

• non-local means filter (NLM)

TVM

• motivated by compressive sensing (sparseness) theory

BLF, NLM

• popular in image processing and computer vision 

MIC-GPU 35 SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Motivation

Want to remove low-dose CT artifacts:

20 projections SNR=10

CT with low dose data high-dose data CT



SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Motivation

What we want to achieve – ideally: 

20 projections SNR=10

CT + regularization high-dose CT

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Total Variation Minimization (TVM)

Goal is to minimize the overall energy:

Minimize using the steepest descent method

• for each voxel vi do iteratively:

MIC-GPU 38

2

0

1
| | ( )

2
TV

E I I I dxdyλ
Ω

= ∇ + −�

variation fidelity

1 0( )
k

k k ki

i i i ik

i

v
v v div v v

v
β λ+

� �� �∇� �� �= − ⋅ + −
� �� �∇� �� �

original voxel value

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Relaxation Parameters (TVM)

Gradient step size β:

• << 1, usually 0.2

Fidelity term λ:                        

• initially set to 0

• next iterations:

• assuming:

MIC-GPU 39

02

1
( )( )

| | | |

I
div I I dxdy

I
λ

σ Ω

∇
= −

Ω ∇�

2 2

0

1
min | |     subject to ( )

| |
I

I dxdy I I dxdy σ
Ω Ω

∇ − =
Ω� �

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Non-linear Neighborhood Filters

40

2 5 6

4 2 7

5 2 6

Input image
Window

13

Output image

Computation
Based on 

Neighborhood 
values

• Generalization of discrete convolution



SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Bilateral Filter (BLF)

• Edge-preserving non-linear filter:

41

original edge bilateral filter smoothed edge

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Bilateral Filter (BLF)

• Edge-preserving non-linear filter:

42

( ( ) ( )

(

( )( ) )

( )

)(( )) ) (

s f f xc

s f

f d

u

c dx

x

x f

xξξ

ξ ξ

ξ

ξ

ξ
∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

−

=

−

−

−

� �

� �

spatial closeness value closeness (similarity)

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Non-Local Means Filter

Replaces a pixel at x with the mean of the pixels y with similar 
Gaussian-weighted neighborhood:

(search) window W

Gaussian-weighted neighborhood 

patches with pixels y

(only highly-weighted shown)

patch with updated pixel x

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Non-Local Means Filter

Replaces a pixel at x with the mean of the pixels y with 
similar Gaussian-weighted neighborhood:

x, y, t: spatial variables                    W: window centered at x

N: neighborhood centered at x, y     Ga: Gaussian kernel

h: filtering weight controls the influence of dissimilar pixels 

2

2

2

2

( ) ( ) ( )

( ) ( ) ( )

( )

( )

at N

at N

G t im g x t im g y t

h
y W

G t im g x t im g y t

h
y W

e im g y

N LM x

e

∈

∈

+ − +
−

∈

+ − +
−

∈

=

�

�

�

�



SPIE Medical Imaging 2010SPIE Medical Imaging 2012

NLM vs. TVM: Quality

NLM is as good (often 
better) than TVM

input                   TVM, �=40 NLM, h=15  

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

NLM vs. TVM: Speed

NLM is typically faster than TVM because it is non-iterative

• all parameters were manually set to yield similar visual quality

• CUDA GPU implementations (NVIDIA GTX 480) 

• in seconds:

MIC-GPU 46

Image size TV NLM

2562 57 12

5122 80 42

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Bilateral vs. NLM

Faster than NLM, but quality is lower

47

NLM

h = 17

rp = 5 rw = 8

Bilateral

�x = �y = 30 

�r = 19 rw = 8

SPIE Medical Imaging 2010SPIE Medical Imaging 2012

Course Schedule

MIC-GPU 48

1:30 – 1:45: Introduction (Klaus)

1:45 – 2:00: Parallel programming primer (Klaus)

2:00 – 2:15: GPU hardware (Ziyi)

2:15 – 3:00: CUDA API, threads (Ziyi)

Coffee Break

3:30 – 4:00: CUDA memory optimization (Eric)

4:00 – 4:15: CUDA programming environment (Ziyi)

4:15 – 4:45: Parallelism in CT reconstruction (Klaus)

4:45 – 5:25: CT reconstruction examples (Eric)

5:25 – 5:30: Closing remarks (Klaus)


