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Transmission CT: Data Generation

X-ray 
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detector

attenuating 
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CT Reconstruction

High-dose CT reconstruction usually uses FDK algorithm

• backprojection of filtered views

Low-dose CT reconstruction pipeline typically uses iterative 
3D reconstruction with regularization

• projection of volume into set’s views

• correction factor computation

• backprojection of correction factors (views)

• regularization
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Filtered Backprojection
Reconstruction

Projection filtering
FFT                          

multiply by ramp 
inverse FFT            

pre-weighting Backprojections
Post-weighting

X-ray 
source

detectorattenuating 
object
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Iterative Reconstruction

Projections

Initialization

Correction factor 
computations

BackprojectionsRegularization
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Kernel-Centric Decomposition
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Kernel-Centric Decomposition

We can consider each of these steps to be a SIMT kernel

Iterative 3D reconstruction with regularization:

• backprojection of volume into set’s views � projection kernel

• correction factor computation � correction factor kernel

• backprojection of correction factors � backprojection kernel

• regularization � regularization kernel

vector operations

projector with interpolation

image processing filters
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Kernel-Centric Decomposition
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Kernel Scheduling

SIMT can only execute one kernel at a time

• this prohibits kernel overlap, even if mathematically correct

• we may merge kernels if targets are identical 

� this favors load balancing and the reduction of passes 

First decompose the reconstruction pipeline into components

• develop an optimized kernel for each component

• overlap (=hide) the loading of data (if needed) with execution of a 
prior kernel (or within kernel)

• optimize what platform to run the computations (CPU, GPU), but 
then consider transfer of data

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 10

Terminology

We shall discuss all material in terms of 3D reconstruction

• the reduction to 2D slice reconstruction is straightforward

Pixels: the basis elements (point samples) of the projection image               
(the photon measurements)

Voxels: the basis elements (point samples) of the reconstruction volume           
(the attenuation densities or the tracer photon emissions) 

reconstructed 
volume

interpolation                                
(nearest neighbor, bilinear)

voxelpixel

projection operator

projection 
image
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Kernel-Centric Decomposition
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Backprojection: Options

• voxel-driven: sample in projection space 

• one write per thread

source
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Backprojection: Options

• voxel-driven: sample in projection space 

• one write per thread

source source

• pixel-driven, sample in volume space 

• multiple writes per thread (scatter)
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CUDA Memory – Backprojection
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Global Memory Texture Memory

Access Read/Write Read only

Cached No Yes

Subject to coalescing Yes No

Interpolation No support Hardwired

Dimension arbitrary 1D, 2D, 3D (supported 

after CUDA 2.0)

volume projections
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CUDA Configuration: 2D

thread

block

Y

XZ
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CUDA Configuration: 3D

thread

block

Y

XZ
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Transformation Matrix

A 3x4 matrix M transforms 3D voxel coordinates to 2D pixel 
coordinates on the detector

Perform perspective divide if necessary (cone-beam)
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CUDA Implementation

[Host]:

for all projections Pi, trigger kernel on device

[Device]: per thread

loop through each voxel in the thread

• obtain voxel coordinates in volume space

• compute projected coordinates on the detector using a 3x4 
transformation matrix M

• perform perspective-divide if needed

• depth weighting if needed

• interpolate pixel values on the detector (bilinear)

• accumulate sampled values on voxel
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Incremental Computation
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Example: 
Feldkamp Cone-Beam Reconstruction

360 projections (10242, general position), 5123 volume
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tumor profiles
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performance in seconds

135

8
0

20

40

60

80

100

120

140

160

CPU GPU

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 22

Expressed in Projections/Sec.

360 projections, 5123 volume

Original GPU-recon

performance in projections/s
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FDK: Medical Datasets

Head Toes Abdominal Aorta
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Forward Projection

Sample in volume space (pixel-driven / ray-driven)

source
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CUDA Memory – Forward Projection
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Global Memory Texture Memory

Access Read/Write Read only

Cached No Yes

Subject to coalescing Yes No

Interpolation No support Hardwired

Dimension arbitrary 1D, 2D, 3D (supported 

after CUDA 2.0)

projections volume
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Forward Projection: Memory

Ray-driven: sampling in volume space (trilinear interpolation)

Volume can be represented as either

• a single 3D texture (supported after CUDA 2.0)

• stacks of 2D textures

• A 3rd interpolation between adjacent 2D slices
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Projection Algorithm

Raycasting methods [Krueger’03]

• [Host]: 

- generate volume bounding box (aligned with axis X/Y/Z)

- generate threads for each pixel (ray), trigger kernel on device
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Projection Algorithm

Raycasting methods [Krueger’03]

• [Host]: 

- generate volume bounding box (aligned with axis X/Y/Z)

- generate threads for each pixel (ray), trigger kernel on device

• [Device]: in each thread

- obtain ray entry & exit points using volume bounding box info

- get ray directions using entry & exit points 
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Projection Algorithm

Raycasting methods [Krueger’03]

• [Host]: 

- generate volume bounding box (aligned with axis X/Y/Z)

- generate threads for each pixel (ray), trigger kernel on device

• [Device]: in each thread

- obtain ray entry & exit points using volume bounding box info

- get ray directions using entry & exit points 

- cast rays, inside the loop:

• sample in volume space 

• accumulate values

• step forward equidistantly

SPIE Medical Imaging 2010SPIE Medical Imaging 2012 MIC-GPU 30

Projection Accuracy

Volume 

space

Detector

slice-interpolated grid line Siddon RBF line area Siddon splat

Investigated various schemes in terms of accuracy:

It was shown that the convenient grid-interpolated (trilinear) scheme is 
qualitatively competitive to the more involved ones listed here.

• see Xu / Mueller, "A comparative study of popular interpolation and 
integration methods for use in computed tomography," IEEE 2006 
International Symposium on Biomedical Imaging (ISBI '06)
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Example: Iterative Algorithms

Kernel selection depends on algorithms

Projection/Backprojection

Correction

• pixel-wise operation

• subtraction

Regularization

• TVM or 

• bilateral filter or

• non-local mean filter

Sync

Projection

Correction

Backprojection

Regularization

Sync
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Sync
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forward projection
(pixel-driven)

global memory (r/w) texture memory (r)
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Sync
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forward projection
(pixel-driven)

global memory (r/w) texture memory (r)

backprojection
(voxel-driven)
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Sync
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forward projection
(pixel-driven)

global memory (r/w) texture memory (r)

backprojection
(voxel-driven)

add
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Regularization

Overall goal: make the reconstruction conform to expectations

• reconstruction is not noisy

• reconstruction has sharp edges

Various techniques

• Total Variation Minimization (TVM)

• bilateral filter (BLF)

• non-local means filter (NLM)

TVM

• motivated by compressive sensing (sparseness) theory

BLF, NLM

• popular in image processing and computer vision 
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Motivation

Want to remove low-dose CT artifacts:

20 projections SNR=10

CT with low dose data high-dose data CT
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Motivation

What we want to achieve – ideally: 

20 projections SNR=10

CT + regularization high-dose CT
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Total Variation Minimization (TVM)

Goal is to minimize the overall energy:

Minimize using the steepest descent method

• for each voxel vi do iteratively:
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Relaxation Parameters (TVM)

Gradient step size β:

• << 1, usually 0.2

Fidelity term λ:                        

• initially set to 0

• next iterations:

• assuming:
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Non-linear Neighborhood Filters

40

2 5 6

4 2 7

5 2 6

Input image
Window

13

Output image

Computation
Based on 

Neighborhood 
values

• Generalization of discrete convolution
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Bilateral Filter (BLF)

• Edge-preserving non-linear filter:

41

original edge bilateral filter smoothed edge
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Bilateral Filter (BLF)

• Edge-preserving non-linear filter:
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Non-Local Means Filter

Replaces a pixel at x with the mean of the pixels y with similar 
Gaussian-weighted neighborhood:

(search) window W

Gaussian-weighted neighborhood 

patches with pixels y

(only highly-weighted shown)

patch with updated pixel x
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Non-Local Means Filter

Replaces a pixel at x with the mean of the pixels y with 
similar Gaussian-weighted neighborhood:

x, y, t: spatial variables                    W: window centered at x

N: neighborhood centered at x, y     Ga: Gaussian kernel

h: filtering weight controls the influence of dissimilar pixels 
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NLM vs. TVM: Quality

NLM is as good (often 
better) than TVM

input                   TVM, �=40 NLM, h=15  
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NLM vs. TVM: Speed

NLM is typically faster than TVM because it is non-iterative

• all parameters were manually set to yield similar visual quality

• CUDA GPU implementations (NVIDIA GTX 480) 

• in seconds:
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Image size TV NLM

2562 57 12

5122 80 42
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Bilateral vs. NLM

Faster than NLM, but quality is lower

47

NLM

h = 17

rp = 5 rw = 8

Bilateral

�x = �y = 30 

�r = 19 rw = 8
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Course Schedule
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1:30 – 1:45: Introduction (Klaus)

1:45 – 2:00: Parallel programming primer (Klaus)

2:00 – 2:15: GPU hardware (Ziyi)

2:15 – 3:00: CUDA API, threads (Ziyi)

Coffee Break

3:30 – 4:00: CUDA memory optimization (Eric)

4:00 – 4:15: CUDA programming environment (Ziyi)

4:15 – 4:45: Parallelism in CT reconstruction (Klaus)

4:45 – 5:25: CT reconstruction examples (Eric)

5:25 – 5:30: Closing remarks (Klaus)


