MIC-GPU: High-Performance Computing for Medical Imaging on Programmable Graphics

Hardware (GPUs)

Code Optimization Case Study and Demo

Klaus Mueller and Sungsoo Ha

Stony Brook University

Computer Science

Stony Brook, NY

Optimization Case Study

Goal:

- test various optimization strategies and tweak to maximize impact
- using Filtered Backprojection for this case study

Optimization #1: minimize shared memory usage

- update a block of voxels per thread (optimum was 16 × 16 × 4)
- orientation-neutral block minimizes "shadow" on projections

SPIE Medical Imaging 2016

MIC-GPU

2

Optimization Case Study

SPIE Medical Imagino

Optimization #2: exploit special GPU (ASIC) hardware

- we store projection data in texture memory
- allows fast bilinear interpolation
- frees up registers without penalty since texture is cached

Optimization #3: exploit constant memory

- we store projection (system) matrix in constant memory
- frees up shared memory and reduces global memory accesses

Optimization #4: increase thread granularity

- backproject multiple projections in one thread (optimum was 4)
- reduces global memory accesses and number of kernel invocations

Optimization Case Study

SPIE Medical Imagir

Optimization #5: Pre-fetching

- pre-fetch data while computing on previous data
- incurs some shared memory overhead but worked out OK

Optimization #6: Page-locked memory

- page-lock the result array
- forces OS to store this data on one contiguous page of memory
- eliminates the need for page swaps

Other optimization strategies: loop unrolling, fast math

· we tried these but they did not yield much benefits in this specific case

3

Case Study – Rabbit CT

Benchmarking framework:

- developed by Rohkohl et al.
- FDK backprojection algorithm
- 496 projections of a rabbit
- 1,248 X 960 pixels each

Advantages:

- enables true comparisons
- embeds the system matrix already
- 'just' accelerate the backprojection
- measures timings
- measures reconstruction errors

Leaderboard

SPIE Medical Imaging 2016

- benchmark new code
- 256³, 512³, 1024³ volume reconstructions

SPIE

Medical Imagino

SPIE

Setup

Approach:

each thread computes an array of voxels

Thread Block Dimension: 16 x 16 x 4

SPIE Medical Imaging 2016

Winning Implementation #1

Medical Imagino texture<float, 2> tRef, tRef2, tRef3, tRef4 __constant__ float A[48] row = blockIdx.y * blockDim.y + threadIdx.y col = blockldx.x * blockDim.x + threadldx.x FOR k = 0 to L result = $f_L[k * L^2 + row * L + col]$ // mapping voxel (x,y,z) to projection 1 and backproject w = A[2] * x + A[5] * y + A[8] * z + A[11]u = (A[0] * x + A[3] * y + A[6] * z + A[9]) / wv = (A[1] * x + A[4] * y + A[7] * z + A[10]) / vresult += tex2D (tRef, (u + 0.5), (v + 0.5)) / w² + page-lock memory + pre-fetch data //repeat for projection 2 with A[12-23] and tRef2 //repeat for projection 3 with A[24-35] and tRef3 // repeat for projection 4 with A[36-47] and tRef4 $f_L[k * L^2 + row * L + col] = result$ E. Papenhausen, Z. Zheng, K. Mueller, "GPU-END

Winning Implementation #2

SPIE Medical Imaging

RapidRabbit strikes back

- re-order projection and voxel loop (improves locality)
- faster perspective divide and depth weighting using fast inverse square root

 $W = a_2 X + a_5 Y + a_8 Z + a_{11}$

w' = rsqrt(w * w)

 $u = (a_0 x + a_3 y + a_6 z + a_9) * w'$

$$v = (a_1x + a_4y + a_7z + a_{10}) * w'$$

- result += tex2D(tRef, (u+0.5), (v+0.5)*w' * w'
- accumulation via atomic adds
- staged page-locks
- transpose volume at 45°

- E. Papenhausen, Z. Zheng, K. Mueller, "Rapid Rabbit: Highly Optimized GPU ASCHEMACCICabheageing 2011 Reconstruction," IEEE Medical Imaging Conference,

Accelerated Back-Projection Revisited: Squeezing Performance by Careful Tuning,"

Demo		SPIE Maging
handing over to Sungsoo		
SPIE Medical Imaging 2016	MIC-GPU	9