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NVIDIA Fermi Architecture

GeForce 500 series  � consumer graphics board

• 1.5 GB DRAM

Tesla 2000 series � general computing board

• 6 GB DRAM

• 2 x double precision performance 

• ECC (Error Correcting Code) memory

Quadro 6000 series � professional graphics board

• Similar as Tesla but with video output
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NVIDIA Fermi

SM (Streaming 

Multiprocessor) 

On chip:

SMs: up 16

CUDA cores: 32/SM � up to 512/chip

CUDA Core
has 32 Streaming 

Processors (SP) = CUDA core
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NVIDIA Fermi

4 special function units (sin, cosine, 

reciprocal, and square root) 

full cross-bar interface

32 CUDA Cores
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Host and Device

Host � CPU

• controls program flow

• manages threads

• loads GPU programs (kernels)

• has host memory

Device � GPU 

• loads data

• performs computations

• has device memory

Heterogeneous programming model
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Thread Hierarchy : Coarse Grain 

Parallelism is exposed as threads

• all threads run the same code

• a thread runs on one core

The threads divide into blocks

• each block has a unique ID � block 
ID

• each thread has a unique ID within a 
block � thread ID

• block ID and thread ID can be used 
to compute a global ID

The blocks form a grid

Block/grid size can be set in program
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Thread Hierarchy: Fine Grain 

Threads within a block are 
organized into warps

• execute the same instruction 
simultaneously with different data

A warp is 32 threads (fixed)

One SM can maintain 48 warps 
simultaneously

• keep one warp active while 47 wait 
for memory � latency hiding

• 32 threads × 48 warps ×16 SMs              
� 24,576 threads !
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CUDA Hardware Implementation

Upon invoking a CUDA program from the host:

Block-level

• blocks are serially distributed to SMs 

• threads of a block execute on one SM 

• as thread blocks terminate, new blocks are launched on vacated SMs

Thread-level

• each SM launches warps of threads

• SM schedules and executes warps that are ready to run

• as warps and thread blocks complete, resources are freed
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Mapping the Architecture to 
Parallel Programs

Mapping of blocks to 
SMs

• depends on device 
hardware

• transparent 
scalability

Thread management

• very lightweight 
thread creation, 
scheduling

• in contrast, on the 
CPU thread 
management is very 
heavy

9MIC-GPU SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Block Scheduling: Example

Threads are assigned to SMs in block granularity

• up to 8 blocks to each SM as resource allows

An SM can take up to 1,536 threads

• could be 512 (threads/block) * 3 blocks 

• or 256 (threads/block) * 6 blocks, etc.

The optimal block size depends on:

• how much latency needs to be hidden (larger blocks)

• how much memory is needed per thread (smaller blocks)
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Memory Hierarchy
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CUDA threads may access data 
from multiple memory spaces:

Thread-level

• registers (fast)

• local memory to handle register 
spills (slow)

Block-level 

• shared memory

Grid-level 

• global memory

• constant memory (read-only)

• texture memory (read-only)
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Memory Hierarchy

Memory On-chip Cached Access

Local N Y RW

Shared Y Y RW

Global N 1D RW

Constant N Y R

Texture N 1-3D R
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Code development strategy

• start by using just global memory 

• then optimize

• more about this later
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No Thread Communication
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…

float x = 

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x = 

input[offsset+threadID];

float y = func(x);

output[offsset+threadID] 

= y;

…

Thread Block 1

…

float x = 

input[offset+threadID];

float y = func(x);

output[offset+threadID]

= y;

…

Thread Block N - 1

76543210 76543210 76543210
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Thread Communication

Thread communication

• threads within a block cooperate via 

- atomic operations on global memory or shared memory,

- shared memory + barrier synchronization
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…

float x = 

input[threadID];

float y = func(x);

output[0] += y;

…

threadID

Thread Block 0

76543210
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Course Schedule

1:30 – 1:45: Introduction

1:45 – 2:00: Parallel programming primer

2:00 – 2:15: GPU hardware

2:15 – 3:00: CUDA API, threads level optimization (Ziyi)

Coffee Break

3:30 – 4:00: CUDA memory optimization (Eric)

4:00 – 4:15: CUDA programming environment (Ziyi)

4:15 – 4:45: Parallelism in medical image (Klaus)

4:45 – 5:25: CT reconstruction examples (Eric + Ziyi)

5:25 – 5:30: Closing remarks (Klaus)


