
Stony Brook University

Computer Science

Stony Brook, NY

MIC-GPU:
High-Performance Computing
for Medical Imaging
on Programmable Graphics

Hardware (GPUs)

GPU Hardware

Klaus Mueller, Ziyi Zheng, Eric Papenhausen

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

NVIDIA Fermi Architecture

GeForce 500 series � consumer graphics board

• 1.5 GB DRAM

Tesla 2000 series � general computing board

• 6 GB DRAM

• 2 x double precision performance

• ECC (Error Correcting Code) memory

Quadro 6000 series � professional graphics board

• Similar as Tesla but with video output

2MIC-GPU

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

NVIDIA Fermi

SM (Streaming

Multiprocessor)

On chip:

SMs: up 16

CUDA cores: 32/SM � up to 512/chip

CUDA Core
has 32 Streaming

Processors (SP) = CUDA core

3MIC-GPU SPIE Medical Imaging 2012SPIE Medical Imaging 2012

NVIDIA Fermi

4 special function units (sin, cosine,

reciprocal, and square root)

full cross-bar interface

32 CUDA Cores

4MIC-GPU

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Host and Device

Host � CPU

• controls program flow

• manages threads

• loads GPU programs (kernels)

• has host memory

Device � GPU

• loads data

• performs computations

• has device memory

Heterogeneous programming model

5MIC-GPU SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Thread Hierarchy : Coarse Grain

Parallelism is exposed as threads

• all threads run the same code

• a thread runs on one core

The threads divide into blocks

• each block has a unique ID � block
ID

• each thread has a unique ID within a
block � thread ID

• block ID and thread ID can be used
to compute a global ID

The blocks form a grid

Block/grid size can be set in program

6MIC-GPU

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Thread Hierarchy: Fine Grain

Threads within a block are
organized into warps

• execute the same instruction
simultaneously with different data

A warp is 32 threads (fixed)

One SM can maintain 48 warps
simultaneously

• keep one warp active while 47 wait
for memory � latency hiding

• 32 threads × 48 warps ×16 SMs
� 24,576 threads !

7MIC-GPU SPIE Medical Imaging 2012SPIE Medical Imaging 2012

CUDA Hardware Implementation

Upon invoking a CUDA program from the host:

Block-level

• blocks are serially distributed to SMs

• threads of a block execute on one SM

• as thread blocks terminate, new blocks are launched on vacated SMs

Thread-level

• each SM launches warps of threads

• SM schedules and executes warps that are ready to run

• as warps and thread blocks complete, resources are freed

8MIC-GPU

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Mapping the Architecture to
Parallel Programs

Mapping of blocks to
SMs

• depends on device
hardware

• transparent
scalability

Thread management

• very lightweight
thread creation,
scheduling

• in contrast, on the
CPU thread
management is very
heavy

9MIC-GPU SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Block Scheduling: Example

Threads are assigned to SMs in block granularity

• up to 8 blocks to each SM as resource allows

An SM can take up to 1,536 threads

• could be 512 (threads/block) * 3 blocks

• or 256 (threads/block) * 6 blocks, etc.

The optimal block size depends on:

• how much latency needs to be hidden (larger blocks)

• how much memory is needed per thread (smaller blocks)

10MIC-GPU

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Memory Hierarchy

MIC-GPU 11

Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

CUDA threads may access data
from multiple memory spaces:

Thread-level

• registers (fast)

• local memory to handle register
spills (slow)

Block-level

• shared memory

Grid-level

• global memory

• constant memory (read-only)

• texture memory (read-only)

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Memory Hierarchy

Memory On-chip Cached Access

Local N Y RW

Shared Y Y RW

Global N 1D RW

Constant N Y R

Texture N 1-3D R

MIC-GPU 12

GridGrid

Constant

Memory

Constant

Memory

Texture

Memory

Texture

Memory

Global

Memory

Global

Memory

Block (0, 0)Block (0, 0)

Shared MemoryShared Memory

Local

Memory

Local

Memory

Thread (0, 0)Thread (0, 0)

RegistersRegisters

Local

Memory

Local

Memory

Thread (1, 0)Thread (1, 0)

RegistersRegisters

Block (1, 0)Block (1, 0)

Shared MemoryShared Memory

Local

Memory

Local

Memory

Thread (0, 0)Thread (0, 0)

RegistersRegisters

Local

Memory

Local

Memory

Thread (1, 0)Thread (1, 0)

RegistersRegisters

Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Code development strategy

• start by using just global memory

• then optimize

• more about this later

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

No Thread Communication

MIC-GPU 13

…

float x =

input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Thread Block 0

…
…

float x =

input[offsset+threadID];

float y = func(x);

output[offsset+threadID]

= y;

…

Thread Block 1

…

float x =

input[offset+threadID];

float y = func(x);

output[offset+threadID]

= y;

…

Thread Block N - 1

76543210 76543210 76543210

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Thread Communication

Thread communication

• threads within a block cooperate via

- atomic operations on global memory or shared memory,

- shared memory + barrier synchronization

MIC-GPU 14

…

float x =

input[threadID];

float y = func(x);

output[0] += y;

…

threadID

Thread Block 0

76543210

SPIE Medical Imaging 2012SPIE Medical Imaging 2012

Course Schedule

1:30 – 1:45: Introduction

1:45 – 2:00: Parallel programming primer

2:00 – 2:15: GPU hardware

2:15 – 3:00: CUDA API, threads level optimization (Ziyi)

Coffee Break

3:30 – 4:00: CUDA memory optimization (Eric)

4:00 – 4:15: CUDA programming environment (Ziyi)

4:15 – 4:45: Parallelism in medical image (Klaus)

4:45 – 5:25: CT reconstruction examples (Eric + Ziyi)

5:25 – 5:30: Closing remarks (Klaus)

