MIC-GPU: High-Performance Computing for Medical Imaging on Programmable Graphics Hardware (GPUs)

Parallel Programming Primer
Klaus Mueller, Ziyi Zheng, Eric Papenhausen
Stony Brook University
Computer Science
Stony Brook, NY

Recommended Literature
- Text book
- Reference book
- Programming guides available from nvidia.com

Speedup Curves

but wait, there is more to this.....
Amdahl’s Law

Governs theoretical speedup

\[S = \frac{1}{(1-P) + \frac{P}{S_{parallel}}} = \frac{1}{(1-P) + \frac{P}{N}} \]

P: parallelizable portion of the program
S: speedup
N: number of parallel processors

\[P \text{ determines theoretically achievable speedup} \]

• example (assuming infinite N):
 - P=90% \(\rightarrow\) S=10
 - P=99% \(\rightarrow\) S=100

Focus Efforts on Most Beneficial

Optimize program portion with most ‘bang for the buck’

• look at each program component
• don’t be ambitious in the wrong place
Focus Efforts on Most Beneficial

Optimize program portion with most ‘bang for the buck’
- look at each program component
- don’t be ambitious in the wrong place

Example:
- program with 2 independent parts: A, B (execution time shown)

```
    A           B
    Original program

    B sped up 5×

    A sped up 2×
```

- sometimes one gains more with less

Beyond Theory....

Limits from mismatch of parallel program and parallel platform
- man-made ‘laws’ subject to change with new architectures

Memory access patterns
- data access locality and strides vs. memory banks

Beyond Theory....

Limits from mismatch of parallel program and parallel platform
- man-made ‘laws’ subject to change with new architectures

Memory access patterns
- data access locality and strides vs. memory banks

Memory access efficiency
- arithmetic intensity vs. cache sizes and hierarchies
Beyond Theory....

Limits from mismatch of parallel program and parallel platform
• man-made ‘laws’ subject to change with new architectures

Memory access patterns
• data access locality and strides vs. memory banks

Memory access efficiency
• arithmetic intensity vs. cache sizes and hierarchies

Enabled granularity of program parallelism
• MIMD vs. SIMD

Hardware support for specific tasks → on-chip ASICS

Support for hardware access → drivers, APIs

Device Transfer Costs

Transferring the data to the device is also important
• computational benefit of a transfer plays a large role
• transfer costs are (or can be) significant
Device Transfer Costs

Transferring the data to the device is also important
- computational benefit of a transfer plays a large role
- transfer costs are (or can be) significant

Adding two \((N \times N)\) matrices:
- transfer back and from device: \(3 N^2\) elements
- number of additions: \(N^2\)
\[\Rightarrow\text{operations-transfer ratio} = 1/3 \text{ or } O(1)\]

Programming Strategy

Use GPU to complement CPU execution
- recognize parallel program segments and only parallelize these
- leave the sequential (serial) portions on the CPU

parallel portions (enjoy)

sequential portions (do not bite)

PPP (Peach of Parallel Programming – Kirk/Hwu)

Course Schedule

1:30 – 1:45: Introduction (Klaus)
1:45 – 2:00: Parallel programming primer (Klaus)
2:00 – 2:15: GPU hardware (Ziyi)
2:15 – 3:00: CUDA API, threads (Ziyi)

Coffee Break
3:30 – 4:00: CUDA memory optimization (Eric)
4:00 – 4:15: CUDA programming environment (Ziyi)
4:15 – 4:45: Parallelism in CT reconstruction (Klaus)
4:45 – 5:25: CT reconstruction examples (Eric)
5:25 – 5:30: Closing remarks (Klaus)
1:30 – 1:45: Introduction
1:45 – 2:15: Introductory code examples
2:15 – 2:30: Parallel programming primer
2:30 – 3:00: Parallelism in CT reconstruction

Coffee Break

3:30 – 3:45: GPU hardware
3:45 – 4:30: CUDA API, threads, memory, performance optimization
4:30 – 4:45: CUDA programming environment
4:45 – 5:25: CT reconstruction examples
5:25 – 5:30: Closing remarks