

but wait, there is more to this.....

10/31/06

8800 GTX

7900 GTX

7800 GTX

6/18/05

6800 Ult

5950 Ultra

2/4/04

-Intel CPU

Intel Xeon Quad-core 3 GHz

3/14/08

SPIE Medical Imaging 2012

600

400

200

0

9/22/02

5800

SPIE Medical Imaging 2012

Amdahl's Law

SPIE

SPIE

Medical Imaging

Medical Imaging

Governs theoretical speedup

$$S = \frac{1}{(1-P) + \frac{P}{S_{parallel}}} = \frac{1}{(1-P) + \frac{P}{N}}$$

MIC-GPU

P: parallelizable portion of the program

S: speedup

SPIE Medical Imaging 2012

Amdahl's Law

N: number of parallel processors

Amdahl's Law

Governs theoretical speedup

$$S = \frac{1}{(1-P) + \frac{P}{S_{parallel}}} = \frac{1}{(1-P) + \frac{P}{N}}$$

P: parallelizable portion of the program S: speedup

N: number of parallel processors

P determines theoretically achievable speedup

• example (assuming infinite N): $P=90\% \rightarrow S=10$ P=99% → S=100

SPIE Medical Imaging 2012

MIC-GPU

Medical Imaging

6

SPIE

Medical Imagino

How many processors to use

- when P is small \rightarrow a small number of processors will do
- when P is large (embarrassingly parallel) \rightarrow high N is useful

- look at each program component
- don't be ambitious in the wrong place

5

Focus Efforts on Most Beneficial

Optimize program portion with most 'bang for the buck'

- look at each program component
- don't be ambitious in the wrong place

Example:

• program with 2 independent parts: A, B (execution time shown)

SPIE

SPIE

Medical Imaging

Medical Imaging

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made 'laws' subject to change with new architectures

Memory access patterns

· data access locality and strides vs. memory banks

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made 'laws' subject to change with new architectures

SPIE Medical Imaging 2012

MIC-GPU

10

SPIE

SPIE

Medical Imagir

Medical Imaging

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made 'laws' subject to change with new architectures

Memory access patterns

· data access locality and strides vs. memory banks

Memory access efficiency

· arithmetic intensity vs. cache sizes and hierarchies

9

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

• man-made 'laws' subject to change with new architectures

Memory access patterns

• data access locality and strides vs. memory banks

Memory access efficiency

• arithmetic intensity vs. cache sizes and hierarchies

Enabled granularity of program parallelism

• MIMD vs. SIMD

Beyond Theory....

Limits from mismatch of parallel program and parallel platform

Medical Imagi

• man-made 'laws' subject to change with new architectures

Memory access patterns

- data access locality and strides vs. memory banks
- Memory access efficiency
 - arithmetic intensity vs. cache sizes and hierarchies

Enabled granularity of program parallelism

MIMD vs. SIMD

Hardware support for specific tasks \rightarrow on-chip ASICS

SPIE Medical Imaging 2012	MIC-GPU	13	SPIE Medical Imaging 2012 MIC-GPU	14
Beyond Theory		SPIE Medical Imaging	Device Transfer Costs	SPIE Medical Imaging
Limits from mismatch of parallel program and parallel platform man-made 'laws' subject to change with new architectures Memory access patterns data access locality and strides vs. memory banks 			 Transferring the data to the device is also important computational benefit of a transfer plays a large role transfer costs are (or can be) significant 	
Memory access efficien	-			
Enabled granularity of p MIMD vs. SIMD 	orogram parallelism			
Hardware support for sp	becific tasks \rightarrow on-chip	ASICS		
Support for hardware a	ccess \rightarrow drivers, APIs			
SPIE Medical Imaging 2012	MIC-GPU	15	SPIE Medical Imaging 2012	

Device Transfer Costs

Transferring the data to the device is also important

- computational benefit of a transfer plays a large role
- transfer costs are (or can be) significant

Adding two (*N*×*N*) matrices:

- transfer back and from device: 3 N² elements
- number of additions: N²
- \rightarrow operations-transfer ratio = 1/3 or O(1)

Device Transfer Costs

Transferring the data to the device is also important

SPIE

SPIE

Medical Imaging

Medical Imagino

- computational benefit of a transfer plays a large role
- transfer costs are (or can be) significant

Adding two (N×N) matrices:

- transfer back and from device: 3 N² elements
- number of additions: N²
- \rightarrow operations-transfer ratio = 1/3 or O(1)

Multiplying two $(N \times N)$ matrices:

SPIE Medical Imaging 2012

1:30 - 1:45:

1:45 - 2:00:

2:00 - 2:15:

2:15 - 3:00:

3:30 - 4:00:

4:00 – 4:15: 4:15 – 4:45:

4:45 – 5:25:

5:25 - 5:30:

Course Schedule

- transfer back and from device: 3 N² elements
- number of multiplications and additions: N³

Introduction (Klaus)

GPU hardware (Ziyi)

CUDA API, threads (Ziyi)

Closing remarks (Klaus)

Parallel programming primer (Klaus)

CUDA memory optimization (Eric)

CT reconstruction examples (Eric)

CUDA programming environment (Ziyi)

Parallelism in CT reconstruction (Klaus)

 \rightarrow operations-transfer ratio = O(N) grows with N

SPIE Medical Imaging 2012

Programming Strategy

SPIE Medical Imaging

Use GPU to complement CPU execution

- recognize parallel program segments and only parallelize these
- · leave the sequential (serial) portions on the CPU

parallel portions (enjoy)

sequential portions (do not bite)

PPP (Peach of Parallel Programming - Kirk/Hwu)

SPIE Medical Imaging 2012

Coffee Break

Course Schedule

1:30 – 1:45:	Introduction		
1:45 – 2:15:	Introductory code examples		
2:15 – 2:30:	Parallel programming primer		
2:30 – 3:00:	Parallelism in CT reconstruction		
	Coffee Break		
3:30 – 3:45:	GPU hardware		
3:45 – 4:30:	CUDA API, threads, memory, performance optimization		
4:30 – 4:45:	CUDA programming environment		
4:45 – 5:25:	CT reconstruction examples		
5:25 - 5:30:	Closing remarks		
SPIE Medical Imaging 2012 MIC-GPU			

SPIE Medical Imaging

21