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but wait, there is more to this…..



Amdahl’s LawAmdahl’s Law

Governs theoretical speedupp p

PPPP
S







)1(

1

)1(

1

P: parallelizable portion of the program

N
P

S
P

parallel

 )1()1(

P: parallelizable portion of the program
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N: number of parallel processors
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P: parallelizable portion of the program
S: speedup
N: number of parallel processors

P d t i th ti ll hi bl dP determines theoretically achievable speedup
• example (assuming infinite N): P=90%  S=10

P=99%  S=100
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Amdahl’s LawAmdahl’s Law

How many processors to usey p
• when P is small  a small number of processors will do
• when P is large (embarrassingly parallel)  high N is useful 
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Focus Efforts on Most BeneficialFocus Efforts on Most Beneficial

Optimize program portion with most ‘bang for the buck’p p g p g
• look at each program component 
• don’t be ambitious in the wrong place
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Focus Efforts on Most BeneficialFocus Efforts on Most Beneficial

Optimize program portion with most ‘bang for the buck’p p g p g
• look at each program component 
• don’t be ambitious in the wrong place

E lExample:
• program with 2 independent parts: A, B (execution time shown)

A BA B

Original program

B sped up 5×B sped up 5×

A sped up 2×

SPIE Medical Imaging 2010SPIE Medical Imaging 2011

• sometimes one gains more with less
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Beyond Theory....Beyond Theory....

Limits from mismatch of parallel program and parallel platformp p g p p
• man-made ‘laws’ subject to change with new architectures
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Beyond Theory....Beyond Theory....

Limits from mismatch of parallel program and parallel platformp p g p p
• man-made ‘laws’ subject to change with new architectures

Memory access patterns 
• data access locality and strides vs. memory banks

Memory access efficiency
ith ti i t it h i d hi hi• arithmetic intensity vs. cache sizes and hierarchies  

Enabled granularity of program parallelism  
• MIMD vs SIMDMIMD vs. SIMD

Hardware support for specific tasks  on-chip ASICS

Support for hardware access drivers APIs
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Support for hardware access  drivers, APIs
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Device Transfer Costs Device Transfer Costs 

Transferring the data to the device is also importantg p
• computational benefit of a transfer plays a large role
• transfer costs are (or can be ) significant
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• number of additions: N2

 operations-transfer ratio = 1/3 or O(1)
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Device Transfer Costs Device Transfer Costs 

Transferring the data to the device is also importantg p
• computational benefit of a transfer plays a large role
• transfer costs are (or can be ) significant

Addi t (N N) t iAdding two (N×N) matrices:
• transfer back and from device: 3 N2 elements
• number of additions: N2

 operations-transfer ratio = 1/3 or O(1)

Multiplying two (N×N) matrices:
f b k d f d i 3 N2 l• transfer back and from device: 3 N2 elements

• number of multiplications and additions: N3

 operations-transfer ratio = O(N) grows with N
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Programming StrategyProgramming Strategy

Use GPU to complement CPU executionp
• recognize parallel program segments and only parallelize these
• leave the sequential (serial) portions on the CPU

sequential portions (do not bite)

parallel portions (enjoy)

sequential portions (do not bite)
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PPP (Peach of Parallel Programming – Kirk/Hwu)

Course ScheduleCourse Schedule

1:30 – 1:45: Introduction (KM)

1:45 – 2:15: Introductory code examples (KM)

2:15 – 2:30: Parallel programming primer (KM)

2:30 – 3:00: Parallelism in  CT reconstruction  (FX)

Coffee Break

3:30 – 3:45: GPU hardware (KM)

3:45 – 4:30: CUDA API, threads, memory, performance optimization (KM)

4:30 – 4:45: CUDA programming environment (FX)

4:45 – 5:25: CT reconstruction examples (FX, KM)
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5:25 – 5:30: Closing remarks (KM, FX)


