Improving the Fidelity of Contextual Data Layouts Using a Generalized Barycentric Coordinates Framework

Shenghui Cheng and Klaus Mueller

Visual Analytics and Imaging Lab,
Computer Science Department,
Stony Brook University and SUNY Korea
My God!
• Attributes (Variables) to Attributes Relation (e.g. Horsepower and weight? Positive or negative?)

How to get the context, Data to Attributes Relation? (which cars have high Horsepower?)

• Data to Data Relation (which cars are similar? Cluster? Outliers?)
Contextual layouts

Radviz

Star Coordinates

Gravi++

Dust & Magnet

Generalized Barycentric Coordinates
Generalized Barycentric Coordinates (GBC)

GBC interpolation
the interpolation weight w_i of vertex v_i for P is

$$w_i = \frac{\cot(\alpha) + \cot(\beta)}{\|P - v_i\|^2}$$

The interpolated value Pv at P is

$$Pv = \sum_{i=1}^{n} w_i v_i$$

where $a_i = w_i / \sum_{k=1}^{n} w_k$ and $\sum_{i=1}^{n} a_i = 1$
Error

- Data to Data Error
- Data to Variables Error
- Variables to Variables Error

\[stress(L, C) = \sqrt{\frac{\sum_{ij} (L_{ij} - C_{ij})^2}{\sum_{ij} C_{ij}^2}} \]

- Variables to Variables Error
- Data to Variables Error
- Data to Data Error
Variables to Variables Error - distance spaced layout

- Linear ordering of the vertices
 - Correlation matrix
 - Approximate Traveling Salesman Problem (TSP) for ordering
- Circle layout
 - Arrange on the circle, spaced with correlation

<table>
<thead>
<tr>
<th>Car</th>
<th>Sales Campaign</th>
<th>Bike</th>
</tr>
</thead>
<tbody>
<tr>
<td>49%</td>
<td>85%</td>
<td>44%</td>
</tr>
</tbody>
</table>
Data to Variables Error - iterative error reduction

- Construct the iso-contours.
- Compute the error of each dimension
- Construct the error polygon
- Move to the center of polygon iteratively

Car Sales Campaign Bike

25% 2% 29%
Data to Data Error - force directed adjustment

- Construct the Network
 vertices: data points
 edges: springs
 force: error \textit{real distance} – \textit{mapped distance}

- Drag or push the points in turn.

Car | Sales Campaign | Bike

\begin{tabular}{ccc}
\text{28\%} & \text{62\%} & \text{5\%} \\
\end{tabular}
Finally – Combine together

Variables to Variables: Distance spaced layout
Data to Variables: Iterative error reduction
Data to Data: Force directed adjustment

Error distribution
More Error ? – Data Overlap

[0.1, 0.2, 0.3], [0.2, 0.4, 0.6] – same location ??

GBC Error Explorer - combining different visualization methods into a interface

Distance heatmap Configuration Control Panel Layout Display Error Vis Panel

Parallel Coordinates Display
Conclusion

• We unified the different contextual layouts.
• We proposed three algorithms – distance spaced layout, iterative error reduction and force directed adjustment – to reduce the error.
• We developed an interface by which users can explore the error by combining the different visualization schemes with interactions.

Future Work

• Attributes (variables) are arranged at the periphery of the data points. Better optimizations might be achievable by allowing the attribute points to mingle with the data points.
Reference

Questions?

This research was partially supported by NSF grant IIS 1117132 and the MSIP, Korea, under the "IT Consilience Creative Program (ITCCP)" (NIPA-2013-H0203-13-1001) supervised by NIPA.
Interactions

- Verification coloring:
 Distance color and Error color
- Linked displays
- Local layout refinement
- Data-centric refinement and Variable-centric refinement
Unified Definition

Table 1. The features of different layout methods

<table>
<thead>
<tr>
<th>Method</th>
<th>VF</th>
<th>MF ([p_i])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radviz</td>
<td>[v_i = \left(r \cdot \cos \frac{i}{2\pi}, r \cdot \sin \frac{i}{2\pi}\right)]</td>
<td>[\sum_{j=1}^{n} \frac{x_{ij}}{\sum_{k=1}^{n} x_{ik}} \cdot v_j]</td>
</tr>
<tr>
<td>Star Coordinates</td>
<td>[v_i = \left(r \cdot \cos \frac{\theta_i}{2\pi}, r \cdot \sin \frac{\theta_i}{2\pi}\right)]</td>
<td>[\sum_{j=1}^{n} x_{yj} v_j]</td>
</tr>
<tr>
<td></td>
<td>Or other</td>
<td></td>
</tr>
<tr>
<td>Gravi++</td>
<td>[v_i = \left(r \cdot \cos \frac{\theta_i}{2\pi}, r \cdot \sin \frac{\theta_i}{2\pi}\right)]</td>
<td>[\sum_{j=1}^{n} \sum_{k=1}^{n} s_{ij} x_{ik} \cdot v_j]</td>
</tr>
<tr>
<td></td>
<td>Or other free layout</td>
<td></td>
</tr>
<tr>
<td>Dust & Magnet</td>
<td>[v_i = \left(r \cdot \cos \frac{\theta_i}{2\pi}, r \cdot \sin \frac{\theta_i}{2\pi}\right)]</td>
<td>[\sum_{j=1}^{n} a_{ij} x_{ij} \cdot v_j]</td>
</tr>
<tr>
<td></td>
<td>Or other free layout</td>
<td></td>
</tr>
<tr>
<td>GBC</td>
<td>[v_i = \left(r \cdot \cos \frac{\theta_i}{2\pi}, r \cdot \sin \frac{\theta_i}{2\pi}\right)]</td>
<td>[\sum_{j=1}^{n} \frac{x_{ij}}{\sum_{k=1}^{n} x_{ik}} \cdot v_j]</td>
</tr>
<tr>
<td>Remarks</td>
<td>[\theta_1 + \sum_{j=2}^{n} (\theta_j - \theta_{j-1}) = 2\pi] (s_j) stands for the strength multiplicator of (v_j). (a_{ij}) is the attraction between dust (i) and magnet (j). (r) is the circle radius.</td>
<td></td>
</tr>
</tbody>
</table>