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Abstract— Torus networks are widely used in supercomputing. 

However, due to their complex topology and their large number 

of nodes, it is difficult for analysts to perceive the messages flow 

in these networks. We propose a visualization framework called 

TorusVisND that uses modern information visualization 

techniques to allow analysts to see the network and its 

communication patterns in a single display and control the 

amount of information shown via filtering in the temporal and 

the topology domains. For this purpose we provide three 

cooperating visual interfaces. The main interface is the network 

display. It uses two alternate graph numbering schemes – a 

sequential curve and a Hilbert curve – to unravel the 5D torus 

network into a single string of nodes. We then arrange these 

nodes onto a circle and add the communication links as line 

bundles in the circle interior. A node selector based on parallel 

coordinates and a time slicer based on ThemeRiver help users 

focus on certain processor groups and time slices in the network 

display. We demonstrate our approach via a small use case. 

Keywords—Torus network; visualization; topology 

I. INTRODUCTION  

High performance computing has become an indispensable 
tool for the simulation of phenomena infeasible to enact in real 
physical experiments, ranging from climate to nuclear to 

astrophysics and even economics. The size and complexity of 
these problems has been steadily increasing, and so has the size 
and complexity of the computational hardware. 
Supercomputers can now have tens and even hundreds of 
thousands of highly interconnected compute nodes and this 
trend has no end in sight. Given these complex and massive 
network topologies, recognizing and trouble-shooting 
irregularities in inter-processor communications and data 
traffic can be exceedingly challenging. One of the most basic 
such challenges is how to overview and browse all nodes and 
their interconnections in an effective way. While this is simple 
for a 2D or even 3D mesh configuration, it becomes quite 
involved with a 3D torus network, and is currently unthinkable 
for the new state-of-the-art 5D torus networks, such as the IBM 
Blue Gene/Q. In this paper, we present a fledgling framework 
that is designed to fulfill these imperative needs. 

A torus network is a type of interconnect network in which 
nodes can connect to their neighbor nodes in form of a mesh. 
The last node in each dimension can connect to the first node 
as well. In this case, the torus network becomes symmetric. 
The torus network has high dimensionality – 3D, 5D or even 
6D – and a topology which is difficult for users to understand. 
Moreover, because of the high dimensionality, it usually 
consists of a large number of nodes and the complex 

Figure 1: Our visualization framework TorusVisND and its three components: (a) network display (b) node selector and (c) time slicer. The network display 

currently shows the traffic across the nodes chosen in the node selector when time=25 as selected in the time slicer. The time slicer shows the message flow across 

the nodes chosen in the red rectangle.  

(a) 

(b) 

(c) 
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communication patterns among the nodes can easily lead to 
confusion. To allow users to better understand the torus 
network for the purpose of real-time monitoring, timing 
analysis, or debugging, an effective visual interface can be of 
great help. 

For this visual interface, our principle design goal was to 
provide a single 2D view onto the network (as opposed to a 
small multiples visualization composed of many projections) 
and allow users to manage the visualization of the possibly 
massive number of nodes, links, and time slices via a set of 
complementary interactive widgets. In network traffic analysis 
the proximity of nodes is a major determinant of the emerging 
patterns in processor inter-communication. Hence  we seek a 
2D mapping that can (1) emphasize local node neighborhoods 
connected in the high-dimensional torus topology, and (2) 
provide sufficient room to visualize the node interconnections.   

A 2D space embedding via techniques like 
Multidimensional Scaling (MDS) [14] fulfills the first goal but 
leaves the display too crowded to meet the second goal. A 
better solution is to create a 1D embedding of the network and 
draw the links into the second dimension. Further, for 
understandability of the embedding it is desirable to devise a 
systematic traversal of the node space. Non-linear MDS is an 
optimization technique which makes heavy use of 
randomization and will not fulfill this goal. A sequential scan-
line ordering along hyper-rows leads to a systematic ordering 
but has severe discontinuities at the end of the hyper-rows. 
These discontinuities could be prevented by incrementing the 
node indices in appropriate ways, but essentially such a scheme 
results in the first stage of the recursive fractal-like pattern 
generated by a space-filling curve, such as Hilbert or Peano.  

Our paper studies the use of linear embedding techniques 
as a way to visualize high-dimensional torus networks. 
Specifically we consider sequential and space filling curves. 
Our complete design augments these 1D embeddings with the 
node-connective links and provides various interaction widgets 
to select interesting node neighborhoods, communication paths, 
and time slices. We describe the details of our system in 
Sections 3, and 4 after presenting some related work in Section 
2. Conclusions and future work end the paper in Section 5. 

II. RELATED WORK 

A recent STAR report [13] provides a general survey of the 
techniques proposed to visualize various aspects associated 
with high performance computing systems, such as profiles, 
traces, call graphs, I/O, software, memory, and others. Our 
technique makes use of a radial organization of the linear node 
embedding. Radial layouts have been used before in 
performance visualization, but to the best of our knowledge not 
for the visualization of the torus network itself. Choudhury and 
Rosen [2] use a radial layout for the display of memory 
hierarchies, where the outer ring represented the main memory, 
and inner arcs coded various levels of cache with the processor 
at the center. Cornelissen et al. [4] use radial layouts to 
visualize serial traces. They organize the methods on the outer 
circle and connected them with edges cutting across the inner 
area. Similar to our framework, they also make use of edge 
bundling [9] to prevent clutter in the interior region. A general 
overview on radial layouts is provided by Draper et al. [5].  

Closest to our mission – network traffic visualization – is 
the work by Landge et al. [12] which uses the Boxfish system 
[11] to visualize a 3D torus network by a set of occlusion-free 
2D projections. These projections are easy to read once the 
concept of the visual encoding is understood, but the 
underlying projection method does not scale well to torus 
networks of higher dimensionality, such as the 5D torus 
network our technique can visualize. Likewise, the torus 
visualization method described by Bjørnstad [1] is also limited 
to the 3D graph projection.    

A torus network is a high-dimensional structure. There are 

numerous visualization methods to deal with high-dimensional 

data. In parallel coordinates [10] the attributes define the 

vertical axes while the samples form patterns of polylines. 

Likewise, in Radviz [8] and in the Generalized Barycentric 

Coordinate plot [15] the attributes constitute the vertices of a 

regular sided polygon and the samples form patterns in its 

interior. In all of these modalities the axes or vertices, 

respectively, are placed in regular and predefined ways and do 

not create diagnostic patterns on their own. A biplot [6] or a 

dynamic scatterplot [17], on the other hand, is more 

descriptive since the attribute axes projecting into the sample 

distribution’s PCA basis do provide some insight about their 

similarity in terms of the data distribution. We have already 

mentioned general low-dimensional space embedding 

techniques, such as MDS [14], linear discriminant analysis 

(LDA) used by Choo et al. [3], and others. These types of 

visualization methods, however, lose the topology information, 

that is, one can no longer see which points are direct 

connective neighbors and which ones are not. Conversely, our 

framework maps the nodes onto a line first, and then folds 

them into a circle to facilitate the torus connectivity.   

III. OVERVIEW 

Our TorusVis
ND

 framework consists of three linked 
components: the network display, the node selector and the 
time slicer. These three components are shown in Figure 1.  

The network display (Figure 1a) shows the network’s 
topology by arranging all processor nodes onto a circle in an 
order determined by the linear embedding strategy (sequential 
or space-filling curve). The links between the nodes are 
visualized as edge bundles to prevent clutter. The figure here 
only shows the processor links active in a certain time slice.  

The node selector (Figure 1b) is a parallel coordinate 
display with each axis mapped to a torus network dimension 
(here 5). It allows users to select and filter certain processor 
address ranges for display in the other two interfaces, or to 
visualize the active processors as polylines.  

The time slicer (Figure 1c) is a standard ThemeRiver 
display where each stream is mapped to one processor (as 
selected with the node selector). It can show any node property 
over time – we currently display the number of messages sent 
and/or received by each processor within a certain time 
interval. Selecting a certain time slice updates the link 
visualization in the network display correspondingly.   

   



3 

 

Figure 2: The weight function used to compute the locality metric. 

IV. THE NETWORK DISPLAY 

The network display is the core component of our framework. 
In the following we first present some relevant theory and then 
describe our implementation. 

A. Nodes and Channels 

A network typically consists of nodes and channels. The 
topology of such a network can be described by an undirected 
graph. G = (V, E) in which the vertices V are the nodes of the 
network and the edges E are the links or channels. The torus 
network is a type of network, but it has specific conditions for 
V and E. In the definitions given below we follow the 
descriptions of Nesson et al. [18]. 

Nodes: Suppose the n-dimensional torus network consists 
of 𝐾𝑖  nodes in each dimension, where 𝐾𝑖 ≥ 2, 1≤ 𝑖 ≤ 𝑛 . In 
total, there are then 𝑁 = ∏ 𝐾𝑖

𝑛
𝑖=1  nodes. Each node in the torus 

has unique coordinates – the node offset  (𝑥1, 𝑥2, … , 𝑥𝑛), where 
0 ≤ 𝑥𝑖 ≤ 𝐾𝑖 − 1, 1≤ 𝑖 ≤ 𝑛. The offsets of all nodes can be 
expressed in the node coordinate matrix C: 

 𝐶 = [

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑁1 ⋯ 𝑥𝑁𝑛

] 

In a practical application, one typically chooses 𝐾𝑖 = 2𝑝 (𝑖 =
1,2, … , 𝑛) where p is an integer. In this paper we only deal 
with these cases. Our test example is the 5-D torus network 
with 4 nodes in each dimension, yielding 1,024 nodes in total. 

Channels: In dimension 𝑗, 1 ≤ 𝑗 ≤ 𝑛, the connectivity for 
node 𝑋(𝑥1, … , 𝑥𝑗 , … , 𝑥𝑛) is 

𝑋 → {
(𝑥1, … , (𝑥𝑗 − 1)𝑚𝑜𝑑 𝐾𝑗 , … , 𝑥𝑛),

(𝑥1, … , (𝑥𝑗 + 1)𝑚𝑜𝑑 𝐾𝑗 , … , 𝑥𝑛).
 

We can find a node and its neighbors by means of connectivity. 
Each node has 2 neighbor nodes in each dimension and 2n 
neighbor nodes in total. In other words, the degree of a node in 
the n-dimensional torus is 2n. Since the last node can connect 
to the first node when they are in the same dimension, it is easy 
to define the distance between two nodes. Let Dist(*) be the 
distance between node X (𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛)  and node Y 
(𝑦1, … , 𝑦𝑖 , … , 𝑦𝑛) in the torus network, then: 

𝐷𝑖𝑠𝑡(𝑋, 𝑌) =  ∑ 𝑚𝑖𝑛 (|𝑦𝑖 − 𝑥𝑖|, 𝐾𝑖 − |𝑦𝑖 − 𝑥𝑖|)
𝑛
𝑖=1 .  

B. Torus Network Linearization via Node Ordering 

High-dimensional spaces are naturally difficult to comprehend. 
This is true for general data spaces and also for the network 
torus when n>2. Our aim is therefore to obtain a mapping that 
embeds the torus network into a lower-dimensional 
representation that can be easily displayed and appreciated. 
One such mapping is an arrangement in which the torus nodes 
are ordered along a line. When such an operation is executed 
on a graph, it is called a vertex numbering or indexing [16].     

Our framework extends the technique of node ordering 
from graphs to torus networks which poses some special 
challenges. Since the torus network is symmetric, if we layout 
the nodes along a line, the start and end nodes will break the 
symmetry rule. A solution to the problem is to simply tie the 
two ends of the line together and form the circle shown in 

Figure 1a. As an added benefit, this also makes the 
arrangement more compact and allows the links to be drawn in 
the circle’s interior (see below).     

An important metric for these types of numberings is 
locality. Specifically for our application, we desire that nodes 
that are close in the ordering are also close in the torus network. 
But can we wish for the converse as well, that is, can we ensure 
that nodes that are closely connected in the torus network are 
also mapped to nearby locations in the optimal numbering? It 
turns out that only the former can be fulfilled (see [16] and also 
others). This is not surprising because such a numbering is 
essentially a dimension reduction which is often a lossy 
undertaking. A direct implication of this finding is that there 
will be pairs of nodes that might be far apart in the ordering but 
closely connected in the torus network.  

The amount of locality that can be achieved depends on the 
type of node ordering, or curve across the high-dimensional 
domain. The locality can be quantified as follows. Suppose the 
index curve is C, and d(*) is the distance function according to 
the curve index. Then the locality L can be measured as:    

                          𝐿 = ∑ 𝑤𝑑(𝐶(𝑖),𝐶(𝑗))𝐷𝑖𝑠𝑡(𝑉𝑖 , 𝑉𝑗)𝑁
𝑖=1        (1)          

where {𝑗 ∈ [1, 𝑁]; 𝑑(𝐶(𝑖), 𝐶(𝑗)) ≤ k} and smaller values for L 

mean better locality. Essentially, we choose the k nodes nearest 
to the indexed node and then calculate their connective 
distances in the torus network. Typically, we set k=6. In 
addition, we also assign different weights w according to the 
index distance of these k points. As users pay more attention to 
the nearest points and less to points further apart, their weight 
of perceptual influence decreases. The weight function is 
defined as follows and plotted in Figure 2.  

𝑓(𝑥) = 𝑒−(
𝑥
2

)2
 

C. Node Ordering via Sequential Torus Nework Traversal  

The simplest curve for traversing the torus network is to go by 
offset. In this ordering there is a jump from the last point of one 
dimension to the first point of the next dimension. This means 
that two points adjacent in the sequence index might be far 
away in torus network space which breaks the locality. Using 
equation (1) the locality of this sequence layout is 1,822, which 
is relatively poor, as we will see shortly. 

D. Node ordering via Traversal with Space Filling Curves 

Superior locality can be achieved with curves that have a 
fractal character, such as the Hilbert space-filling curve 
[19][21]. A 2D Hilbert curve is shown in Figure 3. We can 



4 

 

                   (a)                                                                  (b) 

Figure 4: Our two node ordering schemes compared: (a) sequential (b) 

Hilbert curve. The color of a node shows the average torus-space distance 

between it and its neighbors. The line charts in the center plot the CL 
changes (gradients) between two neighbor points on the circle. 

 

Figure 3: Hilbert curve in 2D 

clearly see the self-similar (fractal) and hierarchical character 
of the curve. There are 4 main quadrant blocks, each composed 
into 4 similar blocks again, and so on.     

To traverse a 5D torus network we require a 5-dimensional 
Hilbert curve. Given 2

p
 nodes per dimension, p binary digits 

are needed to encode it. The index along the Hilbert curve can 
then be represented by an np-bit integer which can be 
decomposed into n bits of p binary digits each.  

Using equation (1) we compute the locality of the Hilbert 
curve node ordering as 1414 – and improvement of 22.4% over 
the sequential ordering. As mentioned, the locality metric does 
not cover how many neighboring torus nodes may map to 
distant locations from a focus node. This is better assessed with 
the converse metric: 

                     𝐶𝐿𝑖 =
∑ 𝑑(𝑉𝑖,𝑉𝑗)2𝑛

𝑗=1

2𝑛
((𝑉𝑖 , 𝑉𝑗) ∈ 𝐸)                   (2) 

Here, 𝐶𝐿𝑖  is the average distance of a node i and its direct 

neighbor nodes. Figure 4 colors the nodes according to 𝐶𝐿𝑖, 

both for  the sequential curve and for the Hilbert curve (darker 

reds denote higher CL). The difference is not overly drastic, 

but we observe that the distribution around the circle seems 

smoother for the Hilbert curve. The inserts in each circle 

presents graphs that plot the local CL gradients and we 

observe that the Hilbert curve’s CL transitions are indeed 

smoother, while the sequential curve has several large spikes.     

D. Adding the node interconnections to the network layout  

Having laid out the nodes optimally, in order to visualize the 

network traffic we need to show their direct interconnections. 

The radial layout is perfectly suited to depict interconnections 

of entities, as has been recognized also in other works in the 

area of performance visualization [4]. Essentially, we draw a 

line for each directly connected torus node. Figure 5 shows the 

outcome for both types of curves we have studied – sequential 

(a) and Hilbert (b). The visual clutter due to the massive 

number of direct connections (2n) is obvious. 
But before we address the visual clutter we make another 

important observation. It appears that the sequential indexing 
leads to much empty space in the center, essentially wrapping 
around the circle’s annulus. The Hilbert curve, on the other 
hand, makes better use of the circle interior. This may prove 
advantageous when it comes to readability, although the 
sequential scheme may be easier to understand conceptually. 
Testing these two hypotheses, as well as others, will be part of 
a set of user studies to be conducted in the future.   

  

                             (a)                                                          (b) 

Figure 5: Showing the direct node interconnections by interior lines (blue): (a) 
sequential curve indexing and (b) Hilbert curve indexing.  

In order to reduce the visual clutter resulting from the 
crossing of many straight lines, we apply the popular edge 
bundling technique of Holten at al. [8]. It warps straight edges 
that both originate and end in similar areas into splines and 
bundles them together like cable trees. Edge bundling typically 
greatly reduces visual clutter, but as we observe in Figure 6, it 
has only little effect on the sequential curve layout (a) while it 
provides much better readability for the Hilbert curve (b).   

  

                                   (a)                                                       (b) 

Figure 6: The effect of edge bundling: (a) sequential curve indexing and (b) 

Hilbert curve indexing.  
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                          (a)                                                            (b) 

Figure 7: Visualizing the connections of a small group of (root) processors 

with their directly connected neighborhoods: (a) the sequential indexing 
scheme and (b) the Hilbert curve indexing scheme. For each panel, the 

bottom figure shows the overall distribution and the top figure shows the 

zoomed-in area around the root processors.    

 

 

Figure 8: the parallel coordinate-based node selction interface 

 

E. Contrasting the visual signatures of the ordering schemes  

Zooming into a small neighborhood of nodes on the circular 
layout gives insight into the visual signatures of the two 
ordering techniques we studied. This is shown in Figure 7 
where we examine the first connections of a set of 6 processors 
for a 5D torus network. Here, Figure 7a shows the pattern of 
the sequential curve indexing scheme and Figure 7b shows the 
patterns of the Hilbert curve indexing scheme. In each figure, 
the bottom shows the overall distribution and the top shows the 
zoomed-in area around the root processors.  

The sequential scheme clearly expresses the torus 
coordinate distances in the indexing distances. In the zoom-in 
we can see the communications within the primary coordinate 
as two short bundles of lines going in the two opposite 
directions, and we can also see the communications with 
processors that vary in the 2

nd
 and 3

rd
 most significant 

coordinate. These visualize as four line bundles reaching out a 
bit further. The final two, least significant coordinates give rise 
to the line bundles reaching far out.   

The Hilbert curve scheme exhibits a rather different pattern. 
The first observation we make is that the connections occur, at 
least on average, on a more local level. There is only one line 
bundle that goes to the opposite of the circle since these 
processors happen to reside in a different hyper-cube at the top 
level of the fractal hierarchy. The other bundles are due to 
processors also residing in different hyper-cubes than the root 
processors but at decreasing levels in the fractal hierarchy.  

For the remainder of this paper we will focus on node 
orderings generated with the Hilbert curve numbering scheme. 
While is too early to pass judgment on which of the two 
schemes (or even another) is more intuitive to domain users – 
we would require a user study and real data for this – we 
believe, at least for now, that the locality behavior of the 
Hilbert scheme, and the fact that it makes better use of the 
circle interior space, makes it the preferable method.    

V. THE NODE SELECTION INTERFACE 

A realistic torus network can have tens and even hundreds of 
thousands of highly interconnected compute nodes. This will 
amount to an extremely crowded network display, as has been 
already demonstrated in Figure 6. In the presence of large data 
and attributes, selection, filtering and brushing are effective 
techniques to control the deluge. And so, we also require an 
effective interface that allows analysts to focus on interesting 
subsets of torus network processors for the purpose of studying 
their communication patterns in the network display.  

The coordinates of the processors constitute a familiar 
organizational encoding for a large parallel computer such as 
the torus network, and so it is meaningful to build a selection 
interface around this organizational structure. With this in mind, 
we have implemented a parallel coordinate interface [10] 
which assigns each node coordinate (dimension) to one of the 
parallel axes, in increasing order from left to right. Thus, a 5D 
torus network gives rise to a parallel coordinate display with 
five parallel axes. In this visualization, a specific processor is 
expressed as a single polyline – a piecewise linear spline which 
connects the processor’s coordinate positions (locations) on 
each of the parallel axes.  

The parallel coordinate visualization of the 5D torus 
network is shown in Figure 8, plotting all processors and their 
respective polylines. The careful reader will notice that in this 
figure, the individual polylines appear slightly displaced and 
form narrow bands. This occurs because we assigned to each 
polyline a small random offset in each dimension. Had we not 
done this, it would have been difficult to visually trace 
individual polylines since they all would meet at a few discrete 
positions along a coordinate axis, as implied by their discrete 
integer coordinate values, such as 1, 2, 3, … The small offset 
does not change the coordinate values significantly, and the 
locations of the intersection points are still around the true 
coordinate values, but the overlap is reduced and the density of 
lines with a specific coordinate value can be easily discerned.   

A. Node selection  

We can now easily select a processor by simply clicking on a 
polyline and see it and its communication links highlighted in 
the network display, with the other links shown as background 
to provide context. This is shown in Figure 9 where the red line 
is the selected processor with coordinate (0, 1, 2, 2, 0). Vice 
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Figure 9: Selecting a node with the 

parallel coordinate display: (a) the 
selected processor highlighted as a red 

polyline, (b) the coupled network 

display with the selected node and its 
direct communication inks highlighted 

– the other torus links are shown in the 

background for context. 

(b) 

(a) 

Figure 10: Filtering and bracketing with 
the node selector. (a) Only nodes with  

specific values in the third and fifth 

coordinates are selected (b) The 
corresponding nodes in and their 

communication links in the network 

display. 

 

(a) 

(b) 

Figure 11: Highlighting important links by higher opacity. 

  

Figure 13: Tracking a single message across the network. The color tone of 

the path indicates time – lighter means older and darker means more recent.    

versa we can also pick a node or communication link in the 
network display and see these processors highlighted in the 
node selector.  

B. Node filtering and bracketing  

It can also often be useful to select a group of processors and 
see their intercommunication patters. We did this in our earlier 
example depicted in Figure 7. This can be achieved by filtering 
and bracketing operations in the node selector’s parallel 
coordinate interface. Figure 10 shows an example where we 
selected processors with specific coordinate values in the 3

rd
 

and 5
th
 dimensions. Their links are then highlighted in the 

associated node display.   

There might be communication links that have more weight 
than others. The weight could be due to many factors, such as 
importance, number of messages in a certain time interval, or 
the number of processors in the selected set using it (one or 
two when only directly connected processors are considered – 
more when also processors are considered that have used the 
link in a wider-range path). A relatively straightforward way to 
show this weight is by using different line strength or opacity.  
Figure 11 presents an example.  

VI. USE CASE – TRAFFIC VISUALIZATION 

To show a first use case of our framework, we simulated a 
simple network traffic scenario. In this simulation, we assume 
that (1) all nodes can execute the code correctly and without 
fail, and (2) the bandwidth of the channels is sufficient to allow 
all messages to pass through without jam.  

Pseudo code of our simulation algorithm is presented 
Figure 12. The time generation is similar to a wake up – the 
processor starts to become active and sends/receives messages. 
We generate the wakeup time 𝑡𝑖 for a node i at random after 
which it sends a message to one randomly selected neighbor. 
All nodes are set to wake up before half of the full simulation 
time T has expired (T=30 minutes). When node i sends a 
message at time 𝑡𝑖 its neighbor receives it at 𝑡𝑖 + 1, and sends 
it to its randomly chosen neighbor who receives it at 𝑡𝑖 + 2, 
and so on. The process continues until T has been reached. 

Algorithm 1: Traffic Simulation Algorithm 

1. Initialization 
     For i=1:N 

        For j=1:T 

          Node[i][j]={time: i, msg:0 }; 
2. Wake up time generation: 

          For i=1:N 

            T[i]=(random()*N/2).floor(); 
3. Message generation: 

          For i=1:N 

             Node[i][T[i]].msg++; 

                 oC=i;      //old choice 

                 nC=i;      //new choice 

                   For i=T(i)+1:T 
                      nC=Node[oC].neighbor[(random()*2n).floor()]; 

                      Node[nC][i].msg++; 

                      oC=nC;    

Figure 12: Our network traffic simulation algorithm 

A. Track a message across the network 

We first use the network display to track a certain message 
across a series of nodes. In Figure 13, the color tone of the path 
indicates time – lighter mean older and darker is more recent.     
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Figure 14: Network traffic state at 

various time slices. Heavier colored 

edges mean more traffic. We can 
observe the change in network 

traffic over time, and we use the 

node selection interface to focus on 

a certain set of processors. 

                      (a) t = 5                                                      (a) t = 10 

 

                      (c) t = 15                          (d) t = 10 filtered with selection below 

  

Figure 15: Our time slicer uses the ThemeRiver paradigm to visualize the 
messages flow across a set of selected nodes. The black line at the bottom is 

the time axis. The vertical pink line is a user-selected time slice. The labels 
of the different layers are the node IDs. Upon moving the mouse overs a 

specific layer, the system displays the node ID, current time and the number 

of messages of the corresponding node. 

 

                              (a)                                                             (b) 

Figure 16: Network traffic analysis. Upon selecting a time slice and a set of 
processor nodes the network display can show (a) the set of nodes that are 

involved in the messages (links colored blue) and (b) which one are not (links 

colored green).  

    

B. Visualize overall network traffic 

Our next example visualizes overall network traffic. Figures 
14a-c show three snapshots along time, each of a certain time 
slice. In these visualizations, edges are only shown when there 
exists a transmission and edge opacity is mapped to the number 
of messages sent through the link within this time slice. We 
can clearly see that as time goes on there are more messages in 
the network (since more nodes have woken up). But we can 
also observe that at t=10 (Figure 14b) the link pointed to with 
red arrow seems rather busy, but is less busy at t-15 (Figure 
14c). Finally, Figure 14d shows the network when only a 
subset of processors are considered – those with a the second 
coordinate set to 1 and fourth set to 2. We can clearly observe 
that one particular links is much busier than the others which 
can point to possible future link contentions.    

 

C. Select and visualize network activity for a time slice 

Next we show how our system allows analysts to examine a 
certain time period, and optionally a specific processor or 
processor group as specified with the node selector.Our system 
uses ThemeRiver [7] to visualize the time-series data of the 
nodes and/or links and empowers users to make comparisons 
among them. ThemeRiver creates an axis-centered, stacked 
stream graph of the set of time series data where the height of 
an individual stream is proportional to the data value. 

Figure 15 shows a ThemeRiver display for the number of 
messages going through the nodes directly connected to the 
root node marked in Figure 7. We have colored the layers of 
ThemeRiver with different colors and have used the node index 
to order them. We can make a number of interesting 
observations. First, every node has periods in which it does not 
receive or send a message. For example, node 260 for example 
sends no message when t=1, 2, 16, 17, 19, 20, 21, 27 and 28. It 
was waiting for the message at these time periods. Second, we 
can also tell when a node has a high number of messages and 
seems to be busy. For node 260, this occurs when t= 9, 28, etc. 
Finally, we can also observe the overall message flow across 
these nodes by gauging the entire width of the stream. Here we 
observe that when t=12, the number of messages from all 
nodes are smallest and when t=24, they are largest.  

In our last example we utilize the time slicer to pick a 
specific time slice (t=24), and we use the node selector to pick 
a set of root nodes (those that were already used in the previous 
example). The slice at t=24 (see Figure 15) is the busiest and so 
analysts might be interested in seeing where the traffic comes 
from. Upon these selections the network display shows the 
(busy) links involved in these messages in blue (Figure 16a). 
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Since it is insightful to also see the links not involved in these 
communications, our system provides the option to color these 
(silent) links in green (Figure 16b).      

VII. CONCLUSIONS 

The main premise that guided our development of TorusVis
ND

 
was to give torus network performance analysts a framework 
that can provide a single view onto the network, as opposed to 
an array of projective views. We believe that such an approach 
scales better with the increasing dimensionality and magnitude 
of these networks, as they seek to grow performance, 
bandwidth, and communication speed.  

In our effort we made use of the concept of graph 
numbering. We experimented with two such schemes – 
sequential curve indexing and Hilbert curve indexing – and 
studied them via a set of simple use cases, tasks, and scenarios. 
We found that each method has advantages and disadvantages, 
as pertaining to readability and locality. Exposing the system to 
real network analysis and running it with real performance data 
will probably bring more clarity to these issues.   

Our framework follows one of the classic paradigms of 
information visualization – overview, filter, and detail on 
demand. Known as the “Visual Information Seeking Mantra” 
[20] it puts forward a mindset where users are in the loop, 
steering the data exploration process via operations like 
selection, filtering, and brushing. We achieve these operations 
via our node selector interface based on the method of parallel 
coordinates and with our time slicer based on the ThemeRiver 
paradigm. Both can be used for selection and filtering, but also 
for the visualization of network performance. 

Filtering and selection help users manage large and 
complex data and configurations, and we hope to have 
demonstrated that this has also great potential for torus network 
performance analysis. Future work will aim to make our 
interface more scalable. In particular we would like to 
introduce multi-resolution capabilities into the network display 
to allow it to handle larger numbers of network nodes, and we 
would also like to introduce multi-perspective lenses to the 
network display interior to allow users to zoom into multiple 
areas of interest. Finally, we would like to work with domain 
experts and real data to truly optimize our framework and 
system.   
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