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Subspace Shapes: Enhancing
High-Dimensional Subspace Structures via
Ambient Occlusion Shading

Bing Wang and Klaus Mueller, Senior Member, IEEE

Abstract—We test the hypothesis whether transforming a data matrix into a 3D shaded surface or even a volumetric display can be
more appealing to humans than a scatterplot since it makes direct use of the innate 3D scene understanding capabilities of the human
visual system. We also test whether 3D shaded displays can add a significant amount of information to the visualization of
high-dimensional data, especially when enhanced with proper tools to navigate the various 3D subspaces. Our experiments suggest
that mainstream users prefer shaded displays over scatterplots for visual cluster analysis tasks after receiving training for both. Our
experiments also provide evidence that 3D displays can better communicate spatial relationships, size, and shape of clusters.

Index Terms—high-dimensional data, multivariate data, visualization, shape from shading, interaction

1 INTRODUCTION

N the age of big data, high-dimensional data have become
Icommonplace in almost any application domain, and an
abundance of methods and paradigms to explore such data
have been devised. One of these is a framework we recently
proposed, called the Subspace Voyager [35]. The Subspace
Voyager aids in the exploration of a high-D data space
by decomposing it into a continuum of generalized 3D
subspaces which are visualized as scatterplot projections.
Analysts can then explore these 3D subspaces individually
via the familiar trackball interface while using additional
facilities to smoothly transition to adjacent subspaces for
expanded space comprehension. To make the selection of
subspaces easier, the framework provides a set of data-
driven subspace selection and navigation tools which guide
users to interesting subspaces and views. The fluidity of the
interface does not require users to ever think of data in their
native high-D context. Rather, they can just go from one
generalized 3D subspace to the next in a goal-directed man-
ner, playfully using the interface elements designed for this
purpose. The paper [35] describes all of these interactions in
great detail and a video is also available on |YouTube

In our user studies, when testing the utility and effec-
tiveness of the Subspace Voyager, we observed that users
frequently had trouble in visually distinguishing different
clusters and also in locating outliers. While the study partic-
ipants were generally content with the dynamic interface,
some said that the data presentation in form of points,
eventually colored by cluster ID, diminished their ability to
get a sense of cluster overlap and their inter-relationships.
While the motion parallax afforded by the trackball interface
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helped a great deal, it was nevertheless a transient effect
which required continuous interaction for replay. This moti-
vated us to develop the extension to the Subspace Voyager
framework that is subject of this paper.

The method we propose seeks to recreate the transient
experience with a reconstruction of a static shape from the
point cloud. It abstracts cluster objects into geometric shapes
and makes use of shading and occlusion effects to commu-
nicate the relationships previously only discernable via the
dynamic display. All facilities of the Subspace Voyager are
still supported in the enhanced framework, but now the
trackball is used to inspect a set of 3D subspace shapes from
different viewpoints and to transition to shapes located in
adjacent 3D subspaces. Alternately, users can also use the
point display as usual and only switch to the shape display
occasionally to clarify certain relationships, using what we
call a “clarify” button.

Motivating our work is the fact that humans are highly
adept at recognizing even subtle variations in shape and are
able to do so at pre-attentive rates [18]. The framework we
propose aims to take full advantage of these capabilities, in
order to aid analysts in gaining a better understanding of
their high-D datasets.

Interesting to our mission is also a recent study con-
ducted in the Smithsonian Museum in Washington DC E]
where visitors were asked to rate certain abstract 3D shapes
for aesthetics. The study suggested that curved 3D shapes
are more attractive to humans, as opposed to non-curved
ones, offering them more aesthetic pleasure. In fact, the 3D
shapes our renderer produces are strikingly similar to these
curved museum pieces, although they are shaped by data
and not by artists.

Our paper is structured as follows. Section 2 provides a
discussion on the proper use of 3D graphics in the display of

1. https:/ /www.smithsonianmag.com/science-nature/do-our-
brains-find-certain-shapes-more-attractive-than-others-180947692 /


https://www.youtube.com/watch?v=c-yKtajfGQE&t=65s
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Fig. 1: High-dimensional point cloud projected into a generalized 3D subspace and visualized with the Subspace Voyager
at an orientation selected using the trackball. The points have been divided into five clusters tagged by color. (a) Simple
scatterplot projection; (b) with opacity depth cueing — points further back are rendered more transparent; (c) shaded
display after converting the point cloud clusters into a set of solid models using the framework described in this paper.

non-spatial data. Section 3 presents related work. Section 4
provides theoretical background on the perception of shape
and it also discusses the existing Subspace Voyager upon
which this work is built. Section 5 describes our shape
generation and rendering framework. Section 6 presents a
set of case studies. Section 7 describes a user study and its
results. Finally, Section 8 offers conclusions.

2 UsING 3D GRAPHICS IN NON-SPATIAL INFOR-
MATION DISPLAYS: A DISCUSSION

Adding the third dimension for the display of data that do
not have a direct geospatial reference is not inherently new.
In fact, it has been a somewhat controversial topic over the
past two decades. Robertson and Card, in collaboration with
various co-authors, published numerous papers in the 1990s
on this subject, extending planar trees to cone-trees [23],
compiling web pages into 3D web books [2], and develop-
ing a 3D version of the 2D Data Mountain — a collection
of possibly overlapping document thumbnails [22]. These
representations were soon diligently evaluated by Cockburn
and McKenzie in the early 2000s [4], [5], [6], [7]. Their
essential findings were that while the 3D representations
were often found more attractive than their 2D counterparts,
they did not increase reader performance, and sometimes
even reduced it.

Similar is true for 3D bar and pie charts. They are
part of the repertoire of almost any plotting program and
have been used in countless business graphics. Siegrist
showed that especially the perspective angle of the popular
3D pie chart has a significant effect on the accuracy at
which viewers can estimate the graphed quantities. The
same author also found that 3D bar charts require more time
for evaluation, especially smaller bars.

Tory and colleagues [32], confirmed these observa-
tions when testing a specific class of data spatializations [9]
—the 3D landscape. The 3D landscape is a continuous terrain

plot created from a 2D scatterplot, mapping height to either
point density, a special attribute, or a classification tag [3],
[B7]. They found that landscape representations neither
supported better memorability nor did they lead to better
estimation speed or accuracy.

Many of the application mentioned above, such as cone-
trees and 3D Data Mountains, used the third dimension as a
handy way for resolving overdraw — by spreading items into
the depth dimension. An additional aim was to make the
displays more appealing to users, without any true purpose.
This is especially the case for 3D bar and pie charts. The 3D
landscape displays, on the other hand, in particular those
tested by Tory and colleagues, used the third dimension for
redundant attribute encoding but in a way that was not
overly helpful or successful.

Our application of extending an information display to
3D is fundamentally different from the above. We use it
to better communicate cluster extent and shape, relations
among clusters, and the significance of outliers. In that
regard our display is more closely related to 3D modeling
and CAD displays where the third dimension provides an
additional level of object understanding, often supporting
a triad of orthographic projections. Relevant are also the
positive findings by Ware and Franck who studied
the added impact afforded by 3D renderings for distance
estimation tasks, e.g., to assess paths in a complex network.

To illustrate our contribution, we provide Figure[T} Here.
panel (a) shows an ordinary scatterplot projection of a gen-
eralized 3D subspace obtained using the Subspace Voyager.
Panel (b) shows the same scatterplot projection but with
points further away rendered less opaquely, mimicking fog
in the scene. This allows for a slightly better appreciation of
depth relationships. Finally, panel (c) shows a 3D rendering
of the same set of points generated using the framework
described in this paper. The cluster relationships are now
clearly conveyed and could be clarified further by rotating
it via the trackball or transitioning to an adjacent subspace.
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Fig. 2: Pipeline to construct a subspace shape from a 3D point cloud

3 RELATED WORK

One of the most widely used information visualization tech-
niques for high-D or multivariate data is the scatterplot. The
scatterplot projects the data onto two orthonormal vectors
which gives clear insight into the trend of the data and the
relation between the data dimensions associated with these
vectors. The scatterplot matrix (SPLOM) [10] groups all axis
aligned scatterplots arising from the multivariate data into
a display matrix which enables users to inspect all pairwise
relations at the same time. A caveat that both bivariate scat-
terplots and SPLOMs share is that they are all based on axis-
aligned views. However, sometimes important phenomena
may only be spotted in non-axis aligned projections. The
Subspace Voyager (SV) [35] allows users to observe these
non-axis aligned configurations.

Other methods that have exploited dynamic transition-
ing of scatterplots include ScatterDice [8] which restricts the
transitions to motions between two SPLOM tiles, giving rise
to a dynamic 3D point cloud projection display. Similar to
our SV, the GGobi system [30] also employs trackball con-
trols but it does not have the advanced subspace exploration
facilities the SV’s trackball interface provides. For example,
with GGobi users cannot explicitly travel between adjacent
subspaces and navigate the space via a map. Noteworthy
in that context is also the work by Piringer et al. [19] who
added 2D and 3D histograms on the bounding cube surfaces
of a 3D scatterplot display to better convey point densities.

Sedlmair et al. [25] investigated the relationship of di-
mension reduction and visualization paradigm (2D and 3D
scatterplots and SPLOMs) with regards to the ability of
users to discern cluster separability. While they find that
3D scatterplots do not provide additional benefits for the
particular task they studied, they also argue that 3D displays
might be a good choice if the intent was to recognize cluster
shapes. The original SV and also our present work both
have this intent — their 3D displays do not only allow users
to visualize static 3D scatterplots, but rather they let users
interact with them to mentally reconstruct shape relations,
first via dynamic points clouds and now as explicit shapes.

Several studies [13]], [34] have shown that subspace anal-
ysis can decompose fairly high-dimensional datasets into a

manageable set of subspaces of much lower dimensionality.
The significant reduction that can be obtained is quite im-
pressive — often these subspaces have less than five principal
(non-axis aligned) dimensions. And so, while it might be
infeasible to explore a native high-dimensional space with
sequential 3D tools like the SV, once the space has been
decomposed into a set of smaller independent subspaces
such tools can be very powerful and meaningful to use.

The idea of representing high-D data with a surface-
based representation has been pursued before. Sprenger et
al. [27] and Rohrer et al. [24] both use implicit surfaces.
The two approaches, however, differ in how the surface
is constructed. The H-BLOB algorithm by Sprenger et al.
first conducts a hierarchical cluster analysis and then fits an
ellipsoid to each cluster’s first three principal components.
To construct the shape they tessellate the ellipsoid using
Marching Cubes [14]. The framework by Rohrer et al., on
the other hand, creates a star-shaped coordinate system in
3D space to represent the 14 most dominant principal com-
ponents of the data space and constructs a blobby model [1f
from it. Both methods provide visualizations of hierarchies
using semi-transparent renderings of encapsulating hulls. A
more recent contribution is that of Poco et al. [20] who first
create an optimized point embedding of the high-D data
into 3D and then construct a surface for each cluster using
a variety of techniques — convex hull, blobs, and several
surfaces derived from a 3D discrete Voronoi diagram. The
implicit surfaces that arise from blobs and elliptical fits give
rise to fairly roundish shapes without much surface detail
while convex hulls create surfaces that have a rough faceted
look. In contrast, our shapes are directly derived from the
point cloud’s density field yielding intricate surfaces that are
a tight yet smooth ”shrink-wrap”around the point cloud.

Finally, Mayorga and Gleicher presented Splatter-
plots [15] which are not shaded 3D surfaces in a technical
sense but share some of their visual appearance character-
istics. They are essentially colored overlapping regions of
abstracted projected clusters that refine detail upon zoom.
As zooming continues more points appear, but the density
of points does not change.
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Fig. 3: Subspace shapes at different levels of opacity. (a-c): opacity = 1.0, 0.7, and 0.5.

4 SHADING FOR 3D SHAPE PERCEPTION

The shape-based paradigm we propose capitalizes on the
human visual system’s capability to rapidly derive 3D shape
information of an object by assessing the variation of image
intensities on the object’s surfaces [21]]. The intensity varia-
tions originate in the local differences of the amount of light
reflected from the surfaces toward the observer’s eyes. In the
literature, these illumination-based appearance variations
are referred to as shading and the ability to extract shape
information from them is known as Shape from Shading [11]).
The visual recovery of shape is synonymous to cog-
nitively estimating a depth map. When it comes to the
effectiveness of shading for enabling such estimations it has
been shown that basing a local surface’s luminance on
its normal is inferior to basing it on the amount of light
impending on it. Essentially, the former applies to the sunny
day scenario, while the latter refers to a cloudy day [12].
The cloudy day scenario embodies a much greater amount
of diffuse lighting in which light can reach a surface element
after bouncing off of one more intermediate reflectors.
Ambient occlusion shading (AOS) [16], is an effective
method to estimate this diffuse lighting. While it is substan-
tially less accurate than the far more computationally com-
plex global illumination paradigm, it can effectively darken
small crevices in surfaces and so greatly improve their 3D
appearance. AOS works by omnidirectionally probing the
vicinity of a surface point on how much of it is occluded.
As such, it elucidates the local geometries that are found
in its visibility field, defined as the free space above the
surface. AOS has become very popular for the visualization
of molecular models, where it is able to clarify important
features of biomolecular complexes, like pores, pockets, and
cavities, which direct lighting cannot convey [29], [31].

5 SHAPE CONSTRUCTION AND RENDERING

Figure [2] outlines the shape construction process. Since we
mostly deal with non-spatial data, these 3D points are
irregularly sampled and are not perfectly aligned with
the vertices of a volumetric grid. We solve this problem

by splatting the points into a regular grid using reversed
trilinear interpolation. After this step, we apply a 3D box
filter on the grid to smooth out the points since otherwise
the final shapes typically appear jagged. We use several
rounds of smoothing. A slider allows users to balance the
grid resolution and filter size as well as the number of
iterations to obtain a shape that is sufficiently smooth but
still preserves detail (see Figure ).

The shapes themselves are represented as closed meshes
of polygons. We use the Marching Cubes algorithms
to convert the density values stored in the 3D grid to the
polygon meshes — the last step of the pipeline shown in Fig-
ure 2] We can then set the opacities of the polygonal shapes
to different values to better express overlap relationships.
Figure B) presents examples for different opacity levels.

Often clusters have dense cores with less dense (skewed)
regions around them and outliers in the periphery. By using
3D iso-contouring and assigning smaller opacities to the
outer contour polygon meshes we can produce displays like
those shown in Figure[d). The transparency and the number
of layers of the shapes can be controlled by adjusting the
Opacity and Layers sliders in the control panel. Likewise,
users have also the option to display detected outliers along
with these semi-transparent shapes (see Figure [db)

(@ (b)

Fig. 4: : Multi-layer rendering mode (a) without and (b)
with outliers
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Fig. 5: Comparisons between scatterplots and our shaded shape representation (SSR) using the Iris dataset and different
combinations of the attributes sepal length, sepal width, petal length, petal width, class label (a) The green and purple
clusters are not separable in the scatterplot but our SSR suggests the possibility to use a plane parallel to the screen to
separate them. (b)(c) From the scatterplots, only the 2D distribution of the data can be seen but our SSR allows users to
observe the trend along the third dimension. (d) Outlier detection. Our SSR is able to detect outliers that are far away from
the majority of points along the third dimension (red circle). (e)(f) Brushing and linking. A portion of the green cluster is
painted yellow in (e), all points belonging to that portion form a new cluster for shape generation in (f).

Users can freely rotate and transition to adjacent sub-
space shapes within the trackball interface. While a new
shape needs be generated upon subspace transitions, given
reasonable data complexity this takes just a few seconds.
We cache the previous subspace shape and so users can
fluidly return to the previous shape and assess the high-
dimensional structure of the multivariate point cloud.

6 THE CLARIFY BUTTON - EVALUATION

The shaded shape representation (call it SSR) has the unique
capability to reveal cluster overlaps, proximity of outliers,
and etc. which may be hard to see in the 2D scatterplots. For
this purpose we have invented the magic “Clarify” button
which, when hit, adds a third data (or other orthogonal)
dimension to the view and renders a 3D shaded shape.

We use Fisher’s Iris Flower data set El as an example
to illustrate this feature. The Iris Flower data set has three
classes with 50 instances each. Each class belongs to a differ-
ent type of iris. The dataset has five attributes sepal length,
sepal width, petal length, petal width, and the class label.
Data analysts often use a scatterplot matrix (SPLOM) [10]
to explore multivariate datasets of this nature. We use the
first four attributes to generate half of the scatterplots in
the SPLOM and place their corresponding SSRs to their
left (see Figure E[) Essentially, each view on the left could
be the 3D rendering that would result upon hitting the
aforementioned Clarify button hen only the 2D scatterplot
on the right is seen.

2. https:/ /archive.ics.uci.edu/ml/datasets/iris



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, XX 2018 6

sWidth sWidth

e

TR Ll \ / \ \
-] w: i | & |
s .
" A . s | slen, I'. | sLen

(@)

(b)

© (d)

Fig. 6: Displays generated in the Subspace Voyager trackball for our user study. (a) standard multivariate scatterplot
display for the Iris dataset; (b) shaded shape representation (SSR) for the same configuration as in (a); (c)(d) same paring

as (a)(b) now for the Sales Campaign dataset.

6.1 Clarify separability

Let us assume a plant biologist, Tim, views the scatterplot
display in Figure [5p on the right which is a rather complex
one. While he can easily discern that the blue cluster of
flowers is separate, he cannot tell for sure for the green
and purple clusters. So he hits the Clarify button which
produces the 3D view to the left in Figure [Fp. He can now
clearly see that the green cluster is in front of the purple
one and a plane parallel to the screen seems to be able to
separate them. This gives Tim good guidance on how to
find a proper view where all three clusters can be separated.
Since the current view is Sepal width over Sepal length, he
now knows that the other attributes, Petal width and Petal
length, or both, are also involved in the classification.

6.2 Clarify outliers

Tim moves on and inspects a 2D scatterplot of Sepal width
and Petal length (Figure [Bd, right). Looking at this display
he suspects that there might be some flowers that are dif-
ferent from the main stream — outliers. To get more insight
he hits the magic Clarify button and the system produces
the 3D display on the left. Now he clearly sees that the
points he suspected to be outliers (circled in green and
blue) are indeed outliers. But he also discovers an outlier
he did not suspect — the one circled in red. This point
is indistinguishable from the others in the 2D scatterplot,
but pops out easily in the associated 3D SSR. While Tim
could have possible found this rare flower in a different 2D
scatterplot, the 3D SSR is more direct and does not require
a context switch to a different set of dimensions. Rather, it
uses the same dimensions than the 2D scatterplot, just using
shading to disambiguate it.

6.3 Engage and explore further

Next, Tim calls up the 2D scatterplot that visualizes Petal
length vs. Petal width ((Figure , right). He sees three
lean shapes that spread along the diagonal, suggesting a
strong correlation for the green and purple classes. The
blue class, on the other hand, does not seem to have a
trend. Tim thinks that this is interesting but he is not certain
what 2D scatterplot to look at next. He presses the Clarify

button (producing the view on the left) and sees that all
three classes seems to protrude into the depth direction,
almost inviting him to follow to see what this trend is all
about. He knows that this third dimension has to be one of
the remaining ones, or a combination of them. So he gets
curious again and exchanges Petal with by Sepal length (see
(Figure ) to learn more about his data, and so on.

6.4 Brushing and linking in 3D

Brushing and linking are important activities in interactive
cluster analysis. Tim decides that he would like to break part
of the green class into a separate class since he thinks that
it an important subset of flowers. Tim prefers to do this in
3D since he used to painting 3D objects. He picks the yellow
color and brushes on a portion of the green surface. Our
system automatically assigns the tagged surface points, as
well as points underneath, to a different cluster. This pro-
duces Figure , left. Next, Tim uses the trackball interface
to go to a different 3D subspace (Figure [Bf, left) where new
shapes are generated according to the new axis dimensions.
Tim observes that the tagged yellow cluster is now rotated
to the back. This gives Tim an overall idea of the dynamics
of what he thinks are the interesting parts of the data.

7 USER STUDY

To evaluate the pros and cons of the SSR we conducted
a user study with nine graduate students - eight males
and one female of diverse cultural background (two North
American, one European and six Asians). We presented the
same data in both the 2D scatterplot representation and the
3D SSR within our Subspace Voyager framework and asked
the participants to accomplish various data analytics tasks.

We began with individual training sessions where each
participant heard the following message: “Hi, we have pre-
viously built a 2D scatterplot-based visual analytics frame-
work where the 2D data points are displayed inside a virtual
trackball, like the trackball often used in video games. It acts
on a model of the 3D world and has an imaginary third axis
going into the plane. Now, in a new version of this interface
we have added a 3D shape display to this virtual trackball
and we would ask you to test the pros and cons for both of
these data representations”.
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Next, we showed the 2D view and the 3D view for one
projection of the Iris dataset side by side (Figure [6p,b). We
said, “This is an example, the Iris Flower dataset. There are
three different kinds of iris flowers and they are represented
in three different colors. These data capture the different
petal length, petal width, sepal length and sepal width for
these irises. Our trackball displays the dimensions along a
virtual circle. The font size and the opacity of a particular
dimension indicates the influence of this dimension for the
projection shown. For example, in this projection, sepal
width sepal length are the dominant dimensions. The green
iris type has longer sepals than the other two.” We gave the
participants time for questions and asked for consent for
video recording. None of the participants was color blind.

7.1 Tasks and procedure

The three tasks were designed to compare the two rep-
resentations from both static and dynamic perspectives.
We used the sales campaign dataset for all of them and
gave all participants a brief introduction of it. This dataset
consists of 900 data points (one per sales person) and
10 attributes: %Completed, #Leads, Leads Won, #Oppor-
tunities, Pipeline Revenue, Expected ROI, Actual Cost,
Cost/WonLead, Planned Revenue, and Planned ROI. There
are three pre-clustered sales teams.

For the first task, we wanted to test if the participants
could reach similar conclusions from both a fixed 2D scat-
terplot display and a fixed 3D SSR display. We showed the
participants two screenshots of the same projection of the
dataset, one in 2D scatterplot representation, one in SSR
(Figure [6fc,d). We showed odd numbered participants the
2D representation first while even numbered participants
saw the SSD first to minimize learning effects. We asked all
participants the same question — “What can you conclude
from this fixed projection?” — for both representations.

For the second task we wanted to test if the participants
could interact with both representations and if they had
any preference. We loaded our Subspace Voyager and told
them: "The trackball in our system supports many different
interactions. One of which is 3D rotation. Pressing the left
mouse down while moving the mouse will rotate both the
2D and the 3D representations. By checking and unchecking
the Shape checkbox, you can switch between those two
representations. ﬁ’ We let the participants play with the
system for as long as they wanted to and then asked them
the following question: “How do you like the 2D scatter-
plot representation / 3D shaded shape representation when
combined with rotation?”

The third task was to let the participants analyze the
sales campaign dataset freely. Specifically, we asked them
to uncover the different sales strategies the three different
teams chose. For this task, we wanted to analyze the time
the participants spent on each representation. After the
three tasks, we asked all participants for their opinions with
respect the two different representations.

In the end, we showed the participants the campaign
data in the transparent shaded shape representation with
embedded points (Figure @ip) and solicited their thoughts.

3. We had relabeled this button from “Clarify” to “Shape” as to not
bias the subjects toward the goal of our study.

7.2 Results
7.2.1 Task 1: fixed projection

For this task, most participants came to very similar conclu-
sions for both the 2D and the 3D representations. They said,
e.g.: "The green team is very different from the other two”,
“Leads Won, Expected ROI and Cost are well expressed in
this view”, “The green team has higher Cost” and ”"The blue
team generates more Leads and wins more Leads”.

Five participants noticed the depth cue that is only
expressed in the 3D representation: “The green team seems
to be sticking out” and “In the points view, I noticed that
that blue and purple is overlapping in one surface, but in
3D I actually can tell that blue is in front of purple”.

7.2.2 Task 2: trackball rotation interaction

All participants mastered the rotation interaction for both
representations easily and could effortlessly switch between
them. When asked about their opinions on the two repre-
sentations when combined with rotation, eight out of nine
participants expressed that they preferred the SSR when
rotating. The most dominant reasons were: ”"Rotating a
shape is more natural while rotating points is a bit messy.”,
”Shapes are better at defining boundaries and show clusters
separations much more clearly.” and “Shapes get rid of
outliers and allow me to focus on the main structure.”

7.2.3 Task 3: Data analysis

All participants managed to come to some conclusions
about the different sales strategies the three sales teams
used. Since the default representation is the Subspace Voy-
ager in the 2D scatterplot view, all participants started
the analysis from there. After a while, eight participants
switched to 3D. Six of nine participants spent significantly
more time using SSR when analyzing the data. Two par-
ticipants spent more time using 2D scatterplots while one
participant only used 2D scatterplot. One of the two partic-
ipants who relied mostly on 2D scatterplot mentioned later
that he just went with the default 2D view and he would
have used the 3D view more if it had been the default.

7.2.4 Conclusions and insights

The dominant feedbacks we received on both representa-
tions were: “I like 3D with rotation a lot.”, ”3D provides
better separability for clusters and gives a much clearer
overall understanding of the data.” and 3D hides outliers
and let users focus on the main data.” One participant
mentioned that he would use 3D as an aid to 2D in the sense
that “for analyzing overall relationships, 3D is better but for
individual points, 2D is better.” Another person mentioned
that he liked both and "its easiest to see everything in
3D but seeing all data is also important.” However, some
participants also expressed a concern: “3D hides outliers
and I think 2D is still better for point level analysis.”

Then we showed the participants the combined rep-
resentation with transparent shaded shapes enclosing all
the points (Figure @b). Six participants really liked it and
said things such as ”“This is perfect”, “This allows me to
see the overall information with all points”, “It allows me
to see inside the shapes”, “The outliers are so clear now”
and “it helps me to understand how the shapes are built.”
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Three participants said it was a useful view but had too
much information and they still preferred to have the two
representations separately.

We can conclude from the user study that participants
prefer SSD for an overall understanding of data, consider it
a much clearer presentation with better separability than
scatterplot, and see it as a less distractive representation
which allows users to focus on the main data. The biggest
concern is that SSR hides information such as outliers which
can be eliminated using the combo representation.

8 CONCLUSION

The use of 3D rendering in information visualization has
been a controversial topic. We believe we have presented a
compelling use for it, namely its ability to convey the shape
of multivariate point clouds. Shape recognition is an innate
quality of the human visual system and we found that users
find our 3D displays appealing and insightful. In our user
study, many chose to spend more time with the 3D shape
display then with the matching dynamic scatter plot display.
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