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Abstract
The recent emergence of various types of flat-panel x-ray detectors and
C-arm gantries now enables the construction of novel imaging platforms for
a wide variety of clinical applications. Many of these applications require
interactive 3D image generation, which cannot be satisfied with inexpensive
PC-based solutions using the CPU. We present a solution based on commodity
graphics hardware (GPUs) to provide these capabilities. While GPUs have
been employed for CT reconstruction before, our approach provides significant
speedups by exploiting the various built-in hardwired graphics pipeline
components for the most expensive CT reconstruction task, backprojection.
We show that the timings so achieved are superior to those obtained when using
the GPU merely as a multi-processor, without a drop in reconstruction quality.
In addition, we also show how the data flow across the graphics pipeline can be
optimized, by balancing the load among the pipeline components. The result is
a novel streaming CT framework that conceptualizes the reconstruction process
as a steady flow of data across a computing pipeline, updating the reconstruction
result immediately after the projections have been acquired. Using a single
PC equipped with a single high-end commodity graphics board (the Nvidia
8800 GTX), our system is able to process clinically-sized projection data at
speeds meeting and exceeding the typical flat-panel detector data production
rates, enabling throughput rates of 40–50 projections s−1 for the reconstruction
of 5123 volumes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent years have seen a great commoditization of x-ray computed tomography (CT). Several
companies now offer technologically advanced and extensible flat-panel 2D x-ray detectors.
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At the same time, a variety of stable gantries with fast source–detector orbiting capabilities are
also becoming commercially available. Efforts to combine these two crucial components are
now well underway, in a wide spread of medical applications, such as planning or monitoring
systems employed in radiotherapy (Jaffray et al 2002), image-guided surgery and probing
(Liu et al 2001), trauma units with mobile scanners (Verlaan et al 2005), angiography (Fahrig
et al 1997), 4D imaging for cardiac and other CT (Kondo et al 2005, Taguchi 2003, Mori
et al 2004), as well as for patient positioning, instrument navigation tasks, dental applications
and others. However, while this equipment offers fast acquisition of the imagery needed for
CT reconstruction, the calculations required for this task have traditionally not been able to
keep up with this speed, unless proprietary, inflexible and expensive special hardware was
used. Fortunately, with the emergence of programmable graphics hardware (GPU), high-
performance computing has also become a commodity, and this paper describes a GPU-based
solution for commodity CT that pushes the envelope in this domain to a great extent.

Common to many commodity CT applications is the expectation to achieve 3D
reconstructions in an expedient manner, or, when used within interventional or calibration
applications, in real time. The traditional platform for flat-panel detectors is the C-arm
gantry, which typically provides a spin range of 270–360◦ at 30–50◦ s−1. However, image
acquisition speed and resolution are both dictated by the flat-panel detector in use, where 30–
50 projections s−1 are typically acquired, at a matrix size of up to 10242.

To enable real-time CT reconstruction, the speed of the data processing must match
that of the data acquisition. More concretely, assuming an image acquisition rate of 50
2D projections s−1, the reconstruction must proceed at the same bandwidth, that is, at a rate
of 50 projection s−1. The result will be a pipeline in which projection data are produced by
the acquisition process (the detector) and are immediately consumed by the reconstruction
process (the computer), giving rise to what we call streaming CT. In this mode of operation,
the delay incurred for a full 3D reconstruction is only constrained by the speed of the gantry
(assuming properly dimensioned network interconnects for data transmission).

Even highly optimized CPU-based reconstruction engines cannot achieve this degree
of computational bandwidth. Typically, reconstructing a 5123 volume from 360 5122

projections still consumes 60–100 s on a dual Pentium PC, while streaming CT would
require reconstruction speeds an order of magnitude higher. The usual resort to bridge
this performance gap is to employ either high-performance, specialized proprietary hardware
(Application Specific Integrated Circuits (ASIC) or Field Programmable Gate Arrays (FPGA))
or a multi-node cluster, as for example the CPU/FPGA inline reconstruction architecture by
Brasse et al (2005). However, all of these implementations are expensive to develop and can be
difficult to modify. The GPU-based solution we outline here is able to fulfil the computational
requirements of streaming CT, on a graphics board available at a price of less than $500.

A great advantage of using GPUs is that their programs are easily modified and updated,
their programming model is well understood and supported by a large user base, and their
existence is immensely boosted by the commercial power of interactive entertainment. These
factors have resulted in a doubling of GPU performance every 6 months (triple of Moore’s
law governing the growth of the performance of CPUs). On the other hand, GPU on-board
memory has also substantially increased (currently 768 MB to 1 GB), enabling reconstructions
of realistically-sized volume datasets (5123 and more) at full floating point precision on-chip.
Therefore a GPU-based platform is much better prepared to scale with growing gantry speeds,
projection sizes and volume dimensions.

The use of graphics hardware for CT was first attempted by Cabral et al (1994) for cone-
beam CT with filtered backprojection (FBP) and Mueller and Yagel (2000) for iterative CT with
the simultaneous algebraic reconstruction technique (SART) (Andersen and Kak 1984), both
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on fixed point precision non-programmable high-end SGI workstations. Chidlow and Möller
(2003) implemented emission tomography with ordered subsets expectation maximization
(OS-EM) (Hudson and Larkin 1994) on a consumer-grade Nvidia GeForce 4 GPU card,
which, however, had similar limitations to the SGI solutions before. Xu and Mueller (2005,
2006) were the first to use the newly emerging programmable GPUs. They were able to achieve
reconstruction qualities comparable to CPU-based methods, for SART, OS-EM and FBP, also
with larger datasets. Following these more fundamental works were a number of papers
targeting specific CT applications, all with impressive speedup factors. Kole and Beekman
(2006) accelerated the ordered subset convex reconstruction algorithm, Xue et al (2006)
accelerated fluoro-based CT for mobile C-arm units and Schwietz et al (2006) accelerated the
backprojection and FFT operations employed for MR k-space transforms. However, while the
latter two papers describe filtered backprojection algorithms, the reported data are restricted
to parallel-beam reconstructions and are therefore not directly comparable to our cone-beam
results.

Besides these GPU-based efforts, there have also been recent works that exploited other
high performance computing platforms for CT, in particular the Cell BE processor (Kachelrieß
2006). While the performance is quite good, the Cell BE does not fit (at least not currently) the
profile of a commodity platform. Furthermore, it turns out that GPUs are in fact an excellent
match for CT reconstruction, as the (back-) projection operations of CT have much in common
with traditional graphics operations, which receive super-fast hardwired acceleration support
in GPUs. We will show that exploiting this fact represents a major source of speedups, resulting
in overall superior performance of our approach. Further, given the time-critical interaction
of the various GPU pipeline components within our graphics-oriented framework, a careful
load-balancing among these components is also needed to maximize the performance. Both
of these topics represent the major contributions of this paper, which have not been reported in
previous works. They also enable the desired streaming CT scenario, utilizing all-commodity
hardware.

An important trend is also the recent move of GPU manufacturer Nvidia (AMD/ATI
pursues a similar effort) to cast its latest line of GPUs also as a highly parallel processor
for general purpose computing (GPGPU), releasing the CUDA (Compute Unified Device
Architecture) programming environment for this purpose. While this is a laudable effort,
it de-emphasizes the powerful graphics facilities that, as we show, work so well for the
acceleration of CT, and experimental results to that effect will also be presented.

2. Overview of the GPU architecture

Figure 1 shows a schematic representation of the data flow in a standard graphics pipeline,
all consisting of highly parallelized hardwired components. The input is typically a set of
polygons, each defined by at least three vertex points (which are assigned one or more 4D
vectors) plus connectivity information. The vertex transformation unit multiplies the incoming
vertex coordinates by a 4 × 4 matrix. The rasterizer then reconnects the transformed vertices
into polygons and overlays each such polygon onto a grid raster (the screen), assigning each
raster point a fragment whose value is the result of a linear interpolation of the polygon’s
vertex vectors. This can be an RGBA colour, an index into a texture (a 1–3D array—in our
case the 2D projection data), or any other 4D vector. This information is then used in the
fragment processing stage, for shading and texture mapping, to colour the pixel the fragment
is assigned to. Since this basic graphics pipeline has no loop dependencies, the objects simply
stream across the pipeline, starting as a list of vertices, which generate fragments, which in turn
form the basis for computing the visual attributes assigned to the corresponding screen pixels.
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Figure 1. The data flow in the graphics pipeline. The streaming architecture converts graphics
primitives into pixels on the display via a series of transformations. Programmable shaders are
shown in red boxes in italic text.

GPUs are hence a streaming architecture, processing massive sets of graphics primitives, i.e.,
polygons and textures, in a highly parallelized fashion. In modern GPUs both the vertex units
and the fragment units are programmable, via vertex and fragment shader programs. This
greatly extends the gamut of possible operations on vertices and fragments. The rasterizer, on
the other hand, remains non-programmable, but is implemented in very fast parallel hardware.

With recent GPUs, this pipeline distinction is no longer made explicit in the hardware
itself. For example, the NVidia 8800 GTX features 128 uniform SIMD (Same Instruction
Multiple Data) processors. These can then be viewed either as a 128-way parallel processor, in
the spirit of GPGPU and in association with the CUDA (Compute Unified Device Architecture)
programming interface, or as a traditional graphics pipeline, in which case the processors are
dynamically assigned to vertex and fragment operations in the manner described above. We
therefore have two choices: implement backprojection (i) as a multi-processing task using
the 128-way parallel configuration (MP-GPU), or (ii) as a graphics task by ways of the
Accelerated Graphics pipeline shown above (AG-GPU). Most previous GPU-accelerated CT
reconstruction solutions, as the one of Xue et al (2006) mentioned before, have relied on the
MP-GPU configuration, but as our comparison will show, the AP-GPU configuration is by far
preferable.

3. Our streaming CT framework

We perform 3D reconstruction using the widely popular Feldkamp (FDK) cone-beam
reconstruction algorithm (Feldkamp et al 1984). The FDK algorithm has two stages:
(2D projection-space) filtering and (3D volume-space) depth-weighted backprojection. Our
framework seeks to create a computational pipeline in which all PC-resident computing
facilities (CPU and GPU) are utilized in an overall balanced manner. Thus, once a projection
has been acquired on the scanner, our application performs the filtering on the CPU, using
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Figure 2. Geometry defined in the Feldkamp filtered back-projection algorithm. VCS (xv, yv, zv):
volume coordinate system; DCSφ (xφ, yφ, zφ) : source–detector coordinate system; r: voxel to be
reconstructed; O: rotation centre (origin); S: source; w/h: detector width/height in pixel counts;
dφ : source–origin distance; Dφ : source–detector distance.

FFTW (Frigo and Johnson 2005), and then streams the filtered 32-bit floating point data into
the GPU to complete the backprojection. Using the Pixel Buffer Object (PBO) and Vertex
Buffer Object (VBO) software interface, in conjunction with the PCI-Express memory bus,
this streaming can be well overlapped with ongoing backprojections and thus does not cause
significant pipeline delays. We have observed that this strategy works well in practice. It is also
theoretically justifiable, considering that the complexity ratio of a projection filtering versus
its backprojection (O(N2 log N) versus O(N3)) is in good correspondence to the performance
ratio of CPU versus GPU (one to two orders of magnitude). Another reason to perform the
filtering on the CPU is also that 1D FFTs generally do not accelerate well on GPUs, unless N
is rather large (greater than 1k) (Govindaraju et al 2006, Sumanaweera and Liu 2005).

3.1. Backprojection viewing geometry

We use the (reconstruction) volume coordinate system (VCS) described by axis vectors
(xv,yv,zv) as the reference coordinate system, with the volume centre at location (0,0,0)
(see figure 2). In this VCS, a given detector image Pφ has been acquired in a source–detector
pair coordinate system (DCSφ) described by axis vectors (xφ,yφ,zφ). Here zφ is orthogonal
to the (flat) detector plane, the source is located at s = −dφzφ and the detector centre is
located at (Dφ − dφ)zφ . A backprojection is the mapping of a voxel with VCS coordinates
r = (rx, ry, rz) onto the detector plane, yielding coordinates Pφ(X(r), Y (r)). Here, X(r) and
Y (r) are scaling functions from VCS coordinates into detector pixel coordinates. After the
mapping, an interpolation operator Int( ) yields the backprojected voxel update vφ(r), which
is then depth-weighted according to the FDK equation:

vφ(r) = d2
φ

(dφ + r · zφ)2
· Int(Pφ(Xφ(r), Yφ(r))),

X(r) = r · xφ

dφ + r · zφ

Dφ, Y (r) = r · yφ

dφ + r · zφ

Dφ.

(1)
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This mapping can be conveniently expressed as a series of matrix operations. Since the
mapping is perspective, we must use 4D (homogeneous) vectors and 4 × 4 matrices:
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Here, θ is the cone-angle and d/c indicates terms that are not needed, since we do not require
zh. The model-view matrix M transforms a voxel coordinate r from the VCS into the DCS.
Another 4 × 4 matrix, P , determined by Dφ , and detector dimensions w and h implements
the subsequent perspective projection. M and P map r into a canonical viewing space,
which is essentially a volume whose Cartesian coordinates are in [−1, 1]. The following two
transformations, translation matrix T and scaling matrix S, are determined by the detector
size (w and h) in pixels. Next comes the perspective divide, using the wh term of the resulting
4D vector. This produces the (floating point) coordinates Pφ(X(r), Y (r)) in detector pixel
space. After interpolating the detector image the FDK weighting is performed, re-using the
wh term. This weight is essentially computed as |zϕ · r − zϕ · s| representing the voxel’s depth
with respect to the source.

We note that this matrix only accommodates the case illustrated in figure 2, that is, the
source–detector pair can rotate in any (non-circular) orbit and orientation, but the centre ray
must pass through the rotation centre (here the volume origin) and it must be orthogonal to the
detector plane. However, generalizations of this can be easily incorporated into the P matrix
by implementing a general viewing frustum (for more details of this mapping see Foley et al
(1990) and Segal et al (1992)). This can accommodate any type of instable gantry situation,
which often occur in practice.

3.2. Accelerating backprojection on the GPU

As mentioned above, there are two alternative approaches, AG-GPU and MP-GPU, with which
CT reconstruction on the GPU can be performed. For both, we represent the target volume as
an axis-aligned stack of 2D textures (single 3D textures currently do not support an efficient
update mechanism). We first create a series of quadrilaterals Pi (called proxy polygons) which
define the location and spatial extent of each volume slice, and associate these with a set of 2D
textures Ti that are used to store the voxel values to be reconstructed (initialized to zero). Then,
as figure 3 illustrates, for each such slice Ti, we view its host polygon Pi face-on in orthographic
viewing mode at slice resolution, which produces the fragments that are contained inside the
quadrilateral and correspond to each slice voxel to be reconstructed. These are then processed
in different ways in the two available configurations, MP-GPU and AG-GPU, to produce the
detector plane mappings and the subsequent backprojected values. However, before we detail
these two configurations, we first rewrite figure 1 in the form of a block diagram, in figure 4
(disregard the callouts for now). Here, both geometry and fragment stages have the capability
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Figure 3. Backprojection of a volume slice on the GPU. An orthographic view (screen) onto the
volume slice generates voxel fragments, each of which will then sample the detector (one fragment
is shown here).
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Figure 4. The GPU pipeline in block diagrams. Geometry, rasterization and fragment stages
consist of primary engines that process three different data streams (vertex, fragment and texture).
Four stages that might affect load-balancing and cause pipeline stall are marked as callouts.

of processing the graphics primitives streamed into the GPU pipeline, such as vertex, fragment
and texture data. The following two sections detailing the two alternative configurations will
then insert their specific shader tasks for backprojection into these blocks.

3.2.1. Using the accelerated graphics pipeline (AG-GPU). In the AG-GPU configuration
both vertex and fragment shaders are used (see figure 5(a)). First the matrix Tr = S ·T ·P ·M
for the specific projection is compiled and loaded into the vertex shader. Then, for each
slice, the vertices of its proxy polygon are passed into the vertex shader, and the subsequent
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Figure 5. Two options for GPU-based accelerated CT reconstruction: (a) AG-GPU: accelerated
graphics pipeline using both vertex and fragment engines; (b) MP-GPU: multi-processor
configurations using fragment engine only.

transformation produces the mappings of the slice vertices into the detector plane (the 4D
coordinate vector in equation (2)). The rasterizer, in turn, produces bilinear interpolations
of these coordinates, one for each slice voxel (mapped to its fragment). These interpolated
4D coordinates are the correct mappings for the slice voxels, since the matrix Tr originates
in linear algebra and linear transformations. With each such fragment containing the vector
[xh, yh, zh, wh] for its slice voxel r, the fragment program then performs the final perspective
division. This produces the detector coordinates needed for the sampling of the (filtered)
projection image, which is streamed in as a texture from the CPU. The sampling position
usually does not coincide with the detector pixels and a sampling kernel needs to be applied
to produce final values. Here, the method employed for this sampling is important. We
use bilinear interpolation, which in fact runs nearly at the same speed as nearest-neighbour
interpolation on the Nvidia 8800 GTX, but produces superior results, especially in cases
where the projection resolution is close to the volume resolution. The last portion of the
fragment program is the computation of the FDK depth-weighting factor (dφ/wh)

2 and the
result is then written to the texture accumulating the backprojections. Thus, the overall length
of the fragment program is quite short: two divisions, two multiplications, one (hardwired)
interpolation and one addition.

3.2.2. Using the multi-processor configuration (MP-GPU). In MP-GPU the generated
fragments are processed in one uniform SIMD multi-processor of the GPU, most appropriately
called the fragment shader (the vertex shader is not implemented). This mode is shown in
figure 5(b). Here, the processors, and not the built-in hardware, must perform the matrix–
vector multiplication for each slice voxel (represented by a fragment), in addition to the
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other operations also performed in the AG-GPU configuration. These additional calculations
amount to 12 multiplications and 9 additions, which requires nearly twice as many clock
cycles than the shader program of the AG-GPU configuration.

3.3. Additional acceleration strategies

A source for additional speedups is a GPU facility known as early fragment-kill (EFK), which
can be exploited when the density range or the spatial extent of the target object is known
a priori. In EFK a fragment is culled from the pipeline before it enters the fragment shader,
thus causing near-zero computational overhead.

If the spatial extent of the object is known or the reconstruction can be limited to a region
of interest, then the GPU stencil buffer can be set to a bit mask, which is tested in hardware
by a corresponding stencil threshold during rendering. The outcome of the test then decides
if the fragment is culled. Since the stencil buffer has 32 bits, we divide the volume slice stack
into 32 sub-stacks, find the 2D stencil for each and store it in one of the 32 bits. This stencil
mask is then loaded into the GPU at run-time.

In addition, if the desired density range of the object is known then the current density of
a reconstructed slice voxel (normalized to the number of backprojections applied so far) can
be used to determine if a subsequent fragment is passed into the fragment shader or not. If a
voxel’s value is outside the density range of interest (plus a reasonable margin), then this slice
fragment (corresponding to a voxel) is guaranteed to fall outside the structure of interest (that
is, it is outside the shadow of the previously applied projections) and can be safely rejected
from the pipeline using EFK. This is a conservative rejection criterion, with 100% sensitivity,
and the specificity increases (that is, more fragments end up rejected) as more projections
are being applied, since these lead to a better object definition. EKF can be controlled by
copying the current density volume into either the depth- or stencil buffer, and then setting
the appropriate depth- or stencil thresholds according to the desired density range (for more
details see, e.g., Neophytou and Mueller (2005)).

3.4. Load-balancing the pipeline

For CPU-based programs, the use and scheduling of the cache as well as other lower-level
memories plays a very important role in overall performance. Every cache (and memory) fault
leads to a delay within the ongoing computation, and much work has been done to optimize
memory access patterns for an abundance of diverse application scenarios. This situation is
considerably more complex on GPUs since they consist of several components: (1) the cache
and the main memory interface, but also (2) the active units embodied by the rasterizer and the
two programmable, SIMD-parallel shaders. Thus, while CPU-based programs only need to
minimize the waits for memory access and data delivery, GPUs must, in addition, also balance
the data flow across its several active units.

In figure 4 we have marked with callout flags those GPU pipeline locations where the
data flow may become compromised, that is, when the data production rate of the previous
stage does not match the consumption rate of the upcoming stage. If it is greater, then data
accumulation will occur, while if it is less, the upcoming stage stalls.

Our discussions so far were focused on updating one volume slice with one projection.
This represents one rendering cycle (pass) on the GPU. A straightforward extension of this
concept would then initialize and execute individual passes until every volume slice is updated,
from every projection angle. However, we have found that instruction execution and texture
sampling (callouts 3 and 4) cannot produce enough workload on each fragment generated from
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the rasterization engine. Thus, fragments, streaming out of the rasterization engine, are being
pooled into the multiple pixel pipelines, waiting to be processed in a shader (callouts 2, 3).
Eliminating this bottleneck means we must produce more work per fragment, which can be
facilitated by processing more than one projection per pass. This also reduces the number of
passes which is beneficial since each pass requires time for setup, polygon rendering, fragment
production, and texture writes (the slice updates).

To enable this scheme, we created a projection buffer on the GPU to temporarily store
the acquired and filtered but not yet backprojected projections streamed in from the CPU.
Here, the number of projections held in the buffer is controlled by a window, which we can
dynamically adjust via the CPU-resident control process in order to optimize the load. When
using this projection buffer, the first cycle must wait until the buffer has been filled, but for the
remaining cycles the filling of the buffer with the next batch occurs while the previous batch
is being processed, thus there will be no wait thereafter. In practice, when passing a batch of
projection textures into the shader, we also transmit their acquisition geometry information in
order to perform multiple backprojection samplings for a given slice. This multiplicity has
already been indicated in figure 5 (by the multiple arrows). While the MP-GPU approach
(figure 5(b)) can cope with arbitrary window sizes, the AG-GPU approach is limited by the
number of floating point texture coordinate registers a rasterized fragment has available. These
are needed to pass the interpolated texture coordinates and weights for each projection. The
current hardware has a maximum of eight such registers, which, however, did not pose a
limit for our application. More detailed experimental and benchmark data with regard to
load-balancing our framework is available at our website (www.rapidCT.com).

Finally, larger target volumes exceeding the on-board memory are broken into blocks
and the streaming pipeline is repeated for each such block. This is possible since voxels are
completely independent during reconstruction. Immediately after reconstruction a block is
then read out and stitched onto the adjoining blocks to assemble the complete volume. Also
note that there is no space concern for large projections, since projections are deleted from
GPU memory immediately after they have been applied (consumed) for reconstruction.

4. Results

We employed a 3D version of the Shepp–Logan phantom as well as a variety of medical CT
datasets (a human head, human toes and a stented abdominal aorta) to test our framework. All
experiments were performed on a 2.2 GHz dual-core Athlon PC with 1 GB RAM, equipped
with a Nvidia Geforce 8800 GTX card with 768 MB on-board memory. The phantom
projections were calculated analytically, while the medical projection data were obtained by
performing high-quality x-ray simulations on existing CT volume datasets. All projections
were acquired on a full circular orbit at a 15◦ cone angle. All projections assume a flat
detector. The work (and the simulations) reported here has focused only on accelerating the
backprojection operations—other adverse effects, such as noise and the data blurring caused
by the revolving detector gantry have not been modelled or accounted for.

4.1. Reconstruction quality

For the following experiments, we used 360 projections of size 5122 each to reconstruct a
5123 volume. Figure 6 shows slices from the reconstructed 3D Shepp–Logan phantom (at
the original 0.5% contrast), obtained with our GPU framework as well as a traditional high-
quality CPU implementation. Both used bilinear interpolation in the projection mapping, and
a Shepp–Logan filter was employed for pre-filtering. We also show the intensity profile across

http://www.rapidCT.com
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Figure 6. A slice of the 3D Shepp–Logan phantom, reconstructed with our streaming CT GPU-
based framework (first column) and with a traditional CPU-based implementation (middle column).
A windowed density range of [1.0, 1.04] is shown. The right column shows the line profiles across
the three tumours near the bottom of the phantom (dashed lines: ground truth; solid grey lines: CPU
results; solid black lines: GPU results). We observe that the GPU reconstructions are essentially
identical to those computed on the CPU and that they represent the original phantom well.

Head Toes Abdominal Aorta 

O
ri

gi
na

l
R

ec
on

st
ru

ct
ed

Figure 7. Slices of streaming CT reconstructions from simulated projection data of three
representative medical volume datasets (left to right): a human head, human toes and a stented
abdominal aorta. The slight blurring stems from the (minimal) low-passing induced by the
resampling during simulation.

the small tumours near the bottom. Here, the slight shift comes from the non-exact FDK
reconstruction of the off-centre slices (Kak and Slaney 1988, Turbell 2001). We observe that
the CPU and GPU reconstructions are virtually identical (both for AP-GPU and MP-GPU).

Figure 7 compares slices reconstructed from the simulated projection data (top row) with
the corresponding slices from the original volume dataset (bottom row). We observe that the
quality of the reconstruction and the original is nearly identical. The very slight blurring most
likely stems from the inherent low-passing in the resampling during the projection simulation.
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Figure 8. Streaming CT performance for a Feldkamp cone-beam reconstruction (5123 volume,
360 projections, direct method, 32-bit floating point precision, bilinear sampling) using different
buffer (window) sizes.

Table 1. Reconstruction speeds of various high-performance CT solutions. Timings have been
normalized for a Feldkamp cone-beam CT reconstruction with 360 projections onto a volume grid
of 5123 resolution (note not all implementations employ 32-bit floating point precision, bilinear
interpolation and generalized source–detector positioning, which are all used for our streaming CT
application).

Hardware platform Mechanism Time (s) Projections s−1

Brasse et al 1 dual-core Xeon CPU 2.6 GHz 3705 0.1
12 dual-core Xeon CPU 2.6 GHz 236 1.6

Goddard and Trepanier, FPGA 40.2–46.4 8–9
Leeser et al, Li et al

Kachelrieß et al CPU Hybrid 135 2.6
Cell BE Direct (hybrid) 19.1 (9.6) 19 (37)

Streaming CT GPU Nvidia MP-GPU 24.8 14.5
(this paper) 8800 GTX AG-GPU 8.9 40.4

AG-GPU with EFK 6.8 52.5

4.2. Reconstruction performance

Table 1 compares the overall performance of our streaming CT framework with a selection
of other current high-performance FDK-based CT reconstruction solutions reported in the
literature. To enable a comparison, we scaled all of these to a currently common problem
size, which we have also used for our own experiments: the reconstruction of a 5123 volume
from 360 projections (the size of the projections is irrelevant, except for filtering, since
the backprojection is mostly determined by the volume size). We also use the metric
projections s−1 to indicate the potential for real-time (streaming) reconstruction, currently
requiring processing rates of 30–50 projections s−1.

In table 1, the methods labelled ‘direct’ employ the full 3D projection matrix (equation (2))
when mapping a voxel onto the detector plane, allowing practical scanning situations in which
the detector–source pair need not be confined to an aligned, perfectly circular orbit. In contrast,
the method labelled ‘hybrid’ uses data that stem from resampling the acquired projections into
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a virtual detector, which conforms to this ideal circular orbit. The backprojection is then
performed into this arrangement, which reduces and simplifies the backprojection matrix and
thus allows for faster voxel-projection mapping. All of our GPU solutions use the general,
direct projection scheme.

We first observe that neither FPGA nor CPU-based solutions have reported processing
rates of greater than 10 projections s−1. On the other hand, our AG-GPU solution achieves
the desired real-time projection throughput rate (40 projections s−1)—however, the MP-GPU
solution does not. Further, while the Cell BE hybrid solution is quite competitive to our
standard AG-GPU method, the Cell BE direct method is only comparable to the MP-GPU
solution. This match is understandable since the Cell BE is a multi-processor architecture, but
without specific graphics hardware support.

Next, we show results using the EFK GPU-facility. Since this is clearly data-dependent,
we only show the performance for the most frequent case, that is, when the reconstruction
focus falls into the maximal spherical region covered by all projections. We observe that
this can achieve a further speed-up of factor 1.3, which enables data acquisition rates of over
50 projections s−1 or reconstructions of larger volumes at 30 projections s−1.

Since it is difficult to fairly compare the (less complex) parallel-beam results of the
previous GPU-accelerated implementations (mentioned in section 1) with those obtained in
our direct cone-beam setting, we have not done this here. However, since all of these works
have employed the less efficient MP-GPU paradigm, our results may also indicate less optimal
performance for these application settings.

Finally, figure 8 graphs the effect of window size on reconstruction performance for the
AG-GPU solution. We found that a window size of 8 yields the best results for our specific
experiment setting, but it can be easily adjusted to fit others. We also see that load-balancing
can have a dramatic positive effect, here a speedup of 4 (comparing the no-buffer case with
the case when the projection buffer size is 8).

5. Conclusions

We have described the first continuous and buffer-free commodity-computing reconstruction
pipeline for cone-beam CT. In our system, the projection data stream from the acquisition
platform through a CPU-based filtering stage into a load-balanced GPU-accelerated
backprojection framework. Our streaming CT can reconstruct a 5123 volume at a rate of 40
to over 50 5122 and 10242 projections s−1, which is the current production rate of commodity
flat-panel detectors, and beyond. Larger volumes could be easily accommodated by using
the now available single-platform dual- and quad-GPU setups, which provide up to 4GB of
memory. Our pipeline provides a throughput rate and reconstruction speed of one to two
orders of magnitude higher than existing systems based on commodity (PC) hardware. It is
also faster than less readily available, but more costly PC-resident high-performance platforms
based on the Cell BE processor and FPGA technologies. We achieve this by (i) exploiting
many of the GPU-resident graphics facilities and (ii) careful load-balancing of the various GPU
pipeline components in light of the specific computing task of CT reconstruction. Our rapid
real-time reconstruction pipeline enables interactive use of commodity detectors and gantries,
allowing, for example, interactive monitoring of musculoskeletal systems for positioning in
interventional procedures as well as applications in image-guided surgery or radiotherapy. In
fact, since the projection throughput is higher than their production rate on common detector
hardware, it would even be possible to interject a 3D visualization rendering cycle into the
reconstruction computation.
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Our results indicate that for the reconstruction settings tested here, a window size of
8 produced the best speedups, and along with it, the most optimal memory bandwidth and
instruction execution patterns. This may change with different reconstruction scenarios, and
this could be easily corrected for by adjusting the window size dynamically in an automatic
binary-search optimization scheme, taking into account reconstructions just acquired. For the
EFK scheme the optimal window size may also exhibit a more dynamic behaviour. Here one
could start with smaller windows when all fragments still get rendered and then increase the
window size for later (sparser) active projection fragments sets.

Acknowledgments

This work was partially funded by NIH grant R21 EB004099-01 and the Keck Advanced
Microscopy Laboratory, University of California at San Francisco.

References

Andersen A and Kak A 1984 Simultaneous algebraic reconstruction technique (SART): a superior implementation of
the ART algorithm Ultrason. Imaging 6 81–94

Brasse D, Humbert B, Mathelin C, Rio M and Guyonnet J 2005 Towards an inline reconstruction architecture for
micro-CT systems Phys. Med. Biol. 50 5799–811

Cabral B, Cam N and Foran J 1994 Accelerated volume rendering and tomographic reconstruction using texture
mapping hardware VVS ‘94: Proc. 1994 Symp. on Volume Visualization (Tysons Corner, VA) (New York: ACM
Press) pp 91–8
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