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Purpose: We present an iterative framework for CT reconstruction from transmission ultrasound
data which accurately and efficiently models the strong refraction effects that occur in our target
application: Imaging the female breast.

Methods: Our refractive ray tracing framework has its foundation in the fast marching method
(FNMM) and it allows an accurate as well as efficient modeling of curved rays. We also describe a
novel regularization scheme that yields further significant reconstruction quality improvements. A
final contribution is the development of a realistic anthropomorphic digital breast phantom based on
the NIH Visible Female data set.

Results: Our system is able to resolve very fine details even in the presence of significant noise, and
it reconstructs both sound speed and attenuation data. Excellent correspondence with a traditional,
but significantly more computationally expensive wave equation solver is achieved.

Conclusions: Apart from the accurate modeling of curved rays, decisive factors have also been our
regularization scheme and the high-quality interpolation filter we have used. An added benefit of
our framework is that it accelerates well on GPUs where we have shown that clinical 3D recon-
struction speeds on the order of minutes are possible. © 2010 American Association of Physicists

in Medicine. [DOL: 10.1118/1.3360180]

I. INTRODUCTION

After lung cancer, breast cancer strikes more women in the
world than any other type of cancer (excluding cancers of the
skin). In 2007, according to the American Cancer Society
(ACS), an estimated 1.2 million women worldwide were di-
agnosed with breast cancer, and about 465 000 women died
from the disease. Early detection of breast cancer has repeat-
edly been shown to improve the chance of survival," and
x-ray mammography is currently the method of choice for
breast cancer screening. However, false positive x-ray mam-
mograms result in a large number of unnecessary biopsies.
The ACS reports that in the U.S. approximately 80% of the
million biopsies performed each year are benign. X-ray
mammography also subjects patients to significant ionizing
radiation, which renders short-term follow-up monitoring
prohibitive. Furthermore, mammography yields 2D whole-
breast projection images, which requires the breast to be
compressed in order to minimize the superposition of tissues
and therefore reduce structural noise. Apart from being in-
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convenient to the patient, this compression also makes the
localization of lesions difficult once the compression is re-
moved. While these shortcomings are addressed or at least
alleviated by tomo-synthesis and 3D cone-beam imaging,“’5
the radiation dose still remains. The use of MRI technology
can address this problem, but here the high cost is a limiting
factor. Several newer technologies are also emerging (that is,
acoustical holography, infrared, electrical, optical, and elas-
ticity methods) but none have yet proven to be of use in a
clinical setting.6

On the other hand, (low-cost) ultrasound echo imaging is
routinely employed as an adjunct to x-ray mammography for
the differentiation of simple cysts from solid masses. How-
ever, echo is often not effective enough at differentiating
malignant and benign masses to avoid the need for biopsy.
This shortcoming can be overcome by replacing (or aug-
menting) reflective by transmission ultrasound followed by
tomographic reconstruction. Beginning with the seminal
work of Greenleaf,’ several research groups have attempted
this>®* "% with promising results. Their methods can be dis-
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tinguished by the framework employed for modeling the
propagation of sound in the heterogeneous medium that
makes up the female breast.

The most accurate propagation framework for transmis-
sion ultrasound image reconstruction is based on the full
wave equation. Solving the full wave equation, however, is
computationally very expensive. To keep the computational
complexity reasonable, Born or Rytov approximations are
often used. These are first-order scattering approximations
and reasonable when multiple reflections can be ignored. The
Born approximation is generally seen to giving a better de-
scription of backscattering, while the Rytov approximation
yields better results for the forward propagation in particular
in the presence of objects which are large relative to the
wavelength of the propagating field. Born and Rytov ap-
proximations are frequently used in diffraction tomogra-
phy13_15 since they allow for the modeling of effects such as
interference, diffraction, and refraction. Geometrical acous-
tics, on the other hand, describes energy propagating along
rays and is a high-frequency approximation. As such, it does
not account for finite-frequency phenomena such as diffrac-
tion and interference. However, it does allow for a much
more efficient numerical solution while accurately modeling
refraction.

For the purpose of reconstruction, straight ray approxima-
tions are often used in geometrical acoustics in order to have
the simplest least computationally complex propagation
method. The general limit of any of the above approxima-
tions to the full wave equation is that the maximal resolution
obtainable is bounded by N/2, where A is the acoustic wave-
length in the medium. Thus, higher frequencies yield better
resolution but have an increased amount of small-scale scat-
tering which causes faster signal decay and less penetration
depth. While techniqu<3516’17 have been developed that can
resolve detail at resolution of A/3 and better, these are still in
an experimental stage and it is not clear if they can work in
practice at feasible overhead.

The decisive question when selecting the most appropri-
ate approximation to the wave equation is what effects domi-
nate in the target setting, here the female breast. Zhu and
Steinberg18 have shown in both in vivo and phantom studies
that it is refraction, rather than weak scattering, that domi-
nates the distortion of the ultrasonic wave front. The main
structures in the breast are the fat layers under the skin which
are highly refractive. Diffraction effects, on the other hand,
are less significant. Thus it appears advantageous to select a
framework rooted in geometrical acoustics, but with bent
(curved) rays to properly reproduce the strong refractions at
the fat-skin interface and elsewhere. As Andersen has
shown,'*? ray tracing can resolve refractions of up to 20%
which is well above the most refractive interfaces in the
breast where adjacent material refractive indices vary up to
8%.

In this paper we describe a high-fidelity transmission ul-
trasound CT (UCT) reconstruction method based on ray trac-
ing. Our method is iterative, which is essential to cope with
noise and a goal-directed solution space traversal in the pres-
ence of inconsistent data. Iterative methods require a physi-
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cally accurate projector to obtain the estimate for correction
computation, and proper regularization in the correction
stage is also needed to drive the estimate closer to an accu-
rate solution. Finally, since it is well known that these mea-
sures are computationally expensive they must be cast into
an efficient framework and implemented on an affordable
computational platform (we use the GPU) that provides fea-
sible computation times enabling deployment in a clinical
setting without compromising reconstruction fidelity. We de-
scribe a complete framework that fulfills all of these stated
design goals and tests it using realistic phantom data. A pre-
liminary version of our system has appeared in Ref. 21.

Il. BACKGROUND AND SIGNIFICANCE

Our approach is rooted in ray theory, popular in seismol-
ogy and seismic imaging. Ray theory allows refraction ef-
fects to be modeled accurately, assuming a high-frequency
(short wavelength) assumption is satisfied. With this assump-
tion, the length scale of the features of interest in the medium
cannot be lower than half the signal’s wavelength,
N/2=0.5-v/w, with v being the speed of sound in the me-
dium and o the signal frequency. We will show that for our
particular application of ultrasound CT breast imaging this
assumption is well satisfied.

Il.LA. Eikonal equation

A central mathematical driver in ray theory is the Eikonal
equation which derivation we sketch here. We start by for-
mulating the propagation of a compression wave in a hetero-
geneous medium,

Vb= ——. 1
v? o M

Here, ® is the wave’s scalar potential and V? is the Laplacian

operator. We then assume a harmonic solution of the form

b= A(x)e—iw(T(x)H)’ (2)

where A(x) is the wave’s amplitude at location x and T(x) is
a phase function that describes a surface of constant phase.
Substituting the above expression into the wave equation
yields
, 1 VA

VT T 3)

The aforementioned high frequency approximation as-
sumes that the normalized Laplacian of the amplitude is
much smaller than w?, forcing the right hand side of Eq. (3)
to zero. Using the high frequency approximation transforms
Eq. (3) to the Eikonal equation,

1
VIP= =07, @

where U is called the slowness (or reciprocal sound speed).
Using this equation we can define a wave front as those
points in space for which T=constant, and T(x,) defines the
time required by the wave front to reach a certain x (see Fig.
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FiG. 1. Propagating wave front with temporal isocontours.

1 for an illustration). This time is often called time of flight
(TOF), giving rise to a TOF-field spanning the domain. The
gradient of the wave front (the TOF-field at x) VT(x) then
yields the instantaneous vector of a ray passing across the
wave front. We will use this gradient to efficiently trace rays
across a refractive medium.

I.B. Projection simulator

It is well known for iterative CT reconstruction that the
fidelity of the forward projector, simulating the ray integrals
of the current reconstruction estimate, has a crucial effect on
reconstruction quality. The fidelity of the backprojector is
less crucial in this respect.22 In the projector, the more
closely the line integrals model the relevant aspects of the
physical energy propagation process, the more accurate the
grid corrections computed by comparing these integrals with
the acquired data will be. However, in contrast to transmis-
sion x-ray CT where rays are approximately linear, a major
difficulty in transmission ultrasound CT (using ray-based ap-
proaches) has been to efficiently determine the curved, non-
linear paths of the rays across the refractive media, from
source to receivers and back. Several investigators have ex-
plored the use of iterative ray tracing via ray linking, ray
rebinning, and others to accomplish this.”***** However,
none of these methods have been efficient enough to be de-
ployed in practice, and thus the more recent literature is
dominated by straight ray propagation methods. But as was
shown by Denis ef al.”” and more recently by Li et al.”
nonlinear ray tracing can achieve substantial qualitative im-
provements over straight ray casting, even for moderately
refracting fields. Yet that work did not offer efficient methods
to accomplish this. Figure 2 shows the results of an ultra-
sound simulation in a female breast phantom, using our pro-
jection method. Strong refraction effects at the subcutaneous
fat layer can be observed, and these prominent ray distor-
tions suggest that time of flight (TOF) is an important and
dominant feature in the transmission ultrasonic imaging of
the female breast.

As motivated above, the gradient of the wave front pro-
vides a natural instrument for guiding the rays across the
refractive media. All one requires is the TOF field of the
current estimate, originating from a given source. Our frame-
work computes this TOF field very efficiently using the fast
marching method (FMM). The FMM was first described by
Tsitsiklis?” and has become quite popular in computer graph-
ics and vision, and also in seismology.28 Our experiments
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FIG. 2. Shown are the ray paths from two ultrasound emitters (calculated
using our projection method) through a simulated human breast phantom as
viewed from above (the rays have been shaded differently to indicate their
originating sources). There are 64 transducer elements, arranged equiangu-
larly spaced in a single ring detector. On the left are the paths through a
volume rendering of the breast. On the right are the same paths without the
volume rendering. We observe strong refractive effects along the sides of the
breast due to the subcutaneous fat layer.

indicated, however, that a projector based on the traditional
FMM is not sufficiently accurate within a CT reconstruction
framework. We thus employ a high-accuracy extension to the
FMM, called the HAFMM.

We have conducted simulation experiments that indicated
that there can also be out-of-plane refractions. Incorporating
these effects into the UCT reconstruction procedure extends
the ray tracing from the typical 2D slice-stack procedure into
a 3D volumetric setting. However, since 3D wave tracking is
computationally expensive and the out-of-plane refraction is
not extensive, we devised a reconstruction procedure that
operates only within a certain slice neighborhood from the
given center slice.

Il.C. Reconstruction algorithm

The nonlinear rays, data noise, and possibly incomplete
data make the use of classical tomography reconstruction
algorithms based on filtered backprojection less favorable.”
Thus, similar to other UCT researchers, we employ an alge-
braic reconstruction approach, SART,19 which attempts to
iteratively solve the following system of equations,

N
pi= 2w, i=1,.M, (5)
j=1

where the p; are the acquired projection (transducer) data, the
v; are the Cartesian lattice pixels (or voxels in 3D) subject to
reconstruction, and the w;; are the weight factors that relate
the pixels to the data. In the simplest form these weights are
determined by the interpolation filter but they could incorpo-
rate ray effects as well, such as attenuation. Each equation in
Eq. (5) represents the ray integral of the energy arriving at
receiver i. In our ultrasound CT application there are S trans-
ducers each emitting once, with the (§—1) remaining trans-
ducers receiving the transmissions, thus M=S-(S—1). Equa-
tion (5) may also be expressed in matrix notation P=W-V,
with W being the (sparse) system matrix. SART seeks to
solve V=W- P via the following iterative framework:
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FiG. 3. Illustration of the fast marching method.
N at which the extremum of the first half wave is detected,
2 ciwij pi— E w,»lvf_1 while the attenuation data are formed by the magnitude of
k_ k-1, Pi€Py _ =1 the extremum of the first half wave. The results presented in
vj = Uj + o Cc; = 5 (6)
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where k enumerates the iteration. The correction/update fac-
tors c; are computed by subtracting the result of a discrete
(nonlinear) ray integration [given the current object estimate
reconstructed at iteration (k—1)] from the physical integra-
tion acquired at receiver i, normalized by the sum of weights.
SART is a block-based algorithm, that is, a grid update oc-
curs after all rays for a given source (emitter) due to a certain
projection P, have been traced and the correction factors
computed. Here, the subscript ¢ denotes the emitter’s angu-
lar location in the circular arrangement of transducers. Fi-
nally, « is the relaxation factor. It controls the convergence
speed of the reconstruction in the presence of noise. Much
research has been devoted to the choice of «, typically either
leaving the factor constant or decreasing it as iterations pro-
ceed. We propose an estimate-driven selection which im-
proves reconstruction quality significantly.

A key contribution of our paper is that we combine SART
with FMM to find the accurate ray directions by wave propa-
gation. In this way we can avoid the complicated bent-ray
computations that previous UCT reconstruction algorithms
had to contend with, replacing them with the simple and
linear computations afforded by the FMM. We thus call our
iterative reconstruction scheme FMM-SART.

lll. METHODS

Figure 2 illustrates the setup of our system. It consists of
a cylindrical multirow transducer unit with up to 256 trans-
ducers on each row, equiangularly spaced. The transducers
are considered point sources and operate at a center fre-
quency of 5 MHz. The pulse is sinusoidal and windowed
using a Gaussian to yield a —6 dB FWHM bandwidth of
about 2 MHz.

During acquisition, each transducer functions once as the
emitter while the others are receiving. In a practical, but
experimental system that we have conceived in our labora-
tory (not the focus of this paper) we record as TOF the time
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this paper, however, are based on data obtained by simula-
tion with a high-quality wave PDE solver. We choose to
employ simulated instead of real data to highlight the algo-
rithmic aspects of our work, using phantoms with realistic
sound speed and attenuation properties. We also note that we
use the term attenuation in a more general sense, in the form
of insertion loss. While attenuation in a strict sense is the
reduction in signal only due to energy absorption, insertion
loss is the loss in energy due to anything (e.g., attenuation,
scatter, reflection, diffraction) that reduces the energy that
arrives at the receiver.

Our UCT reconstruction framework iteratively tracks
wave fronts through space, based on the current estimate of
the sound speed (SS) field, and then uses the resulting TOF
field to guide the refractive rays from the sensors to the
source, updating the SS field by the iterative corrections.
Once the SS distribution is reconstructed we use it for ray
guidance in the reconstruction of the attenuation distribution.
We now detail this approach.

lIl.LA. Transmission ultrasound simulator

We first rewrite the Eikonal equation given in Eq. (3) into
a more implementation-accessible form™’ (here, to be most
general, we formulate the expression in 3D),

(9t19x)% + (9t/dy)* + (9t/9z)> = 1/SS*(x, y,2). (7)

The (x,y,z) are discrete spatial grid coordinates, and the
sound speed term SS(x,y,z) is a measure of the sound con-
ductance properties at that point. As mentioned, we solve the
Eikonal equation efficiently by employing the fast marching
method (FMM), originally proposed by Tsitsiklis.”’ The
FMM is related to Dijkstra’s method,”" which is a classical
algorithm for identifying the shortest path in a network of
links. The FMM is a single-pass, upwind finite difference
scheme, which produces the correct viscosity solution to the
Eikonal equation.28

The FMM computes for every voxel (x,y,z) the time
T(x,y,z) at which the wave from a particular emitter has
traversed it (see Fig. 3 for an illustration). It starts by putting
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all voxels connected to the source into a narrow band. Then,
as the wave front proceeds across the grid, the FMM selects
that voxel (x,y,z) in this narrow band (situated immediately
upwind from the current wave boundary) which minimizes
the time increment, given the speed values of the narrow
band voxels. It then freezes the voxel, writing to it the TOF
and inserts its neighbors into the narrow band (if not already
present). The final result of the FMM is the time of flight
(TOF) image. There is one such image for each emitter. Us-
ing the TOF image one can then compute accurate ray paths
from the source to the detectors.

We use a binary heap to quickly find the voxel with the
smallest postulated wave arrival time in the narrow band of
the advancing wave front. This voxel’s wave arrival value is
then written to the TOF image, and its neighbors and their
arrival times are updated in the heap. Note that a translation
table with double pointers (as is further described in Refs. 28
and 32) is used in order to quickly map the spatial domain
voxels to the heap voxels.

The original FMM solves the Eikonal equation using only
first-order finite differences. However, we found that this ap-
proximation leads to inaccuracies at high curvature bound-
aries. For a more accurate approximation of Eq. (6) we em-
ploy a second-order approximation to the partial derivatives,
the higher accuracy FMM (HAFMM),*®

(9t19x) = (3t(x,y,z) —4t(x = 1,y,2) + t(x = 2,y,2))/2.  (8)

We note that this formulation also requires accurate second-
order estimates for the initialization around the propagation
seed points (the emitter locations).

Once the wave propagation is complete we use the result-
ing TOF image to calculate the path of the rays from the
receivers back to the emitter [the reverse of Fig. 3(c)]. The
TOF image allows us to locally compute the ray direction
vectors, given by the TOF image gradients. This approach
ensures that a given ray will not miss the emitter (within a
tolerance of 1-2 voxels if a high-quality interpolation filter is
used to estimate the image gradients, see below), and thus
the need for the tedious ray linking and path assembly of
earlier approaches is eliminated. Figure 1 shows the acoustic
ray paths from 31 receivers, which are distorted when pass-
ing through the object.

An important issue here is the interpolation of the gradi-
ents from the TOF image. Since derivatives are increasingly
more sensitive to interpolation filter deficiencies than scalars,
as documented in our earlier work,™ we use a high-quality
B-spline derivative filter to calculate the TOF gradients.

lI.B. lterative FMM-SART UCT reconstruction
algorithm

Our framework consists of two consecutive phases. In
phase 1, we iteratively reconstruct the sound speed (SS) im-
age from the TOF data collected at the receivers. In phase 2,
we use this SS image to guide the nonlinear rays for the
iterative reconstruction of the sound attenuation (SA) image
from the attenuation data collected at the receivers. Both
phases employ SART as the iterative reconstruction engine.
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Initialize sound speed image SS
Until convergence, loop
Until all emitters have been chosen
Randomly select an emitter £
Load E’s acquired TOF receiver data TOF ycquired
Propagate wave from E using current SS estimate
Record TOF at each voxel
Record TOF at receivers = TOF guiaea
For each receiver R;
Trace rays from R; to E using TOF gradient
Store ray path rp for backprojection
Accumulate ray length L
Compute correction factor as

ATOF = (TOFacquired -TO

4 VL

F.vimulate
Back project ATOF along rp
Update SS estimate by ATOF at each rp voxel

Fi6. 4. The FMM-SART algorithm for sound speed reconstruction.

Note that the SA image is easy to reconstruct once an accu-
rate SS image is available for guiding the distorted rays,
provided the gradients are faithfully reconstructed using
good interpolation filters. We can save further time by stor-
ing (and subsequently using) the ray paths computed in the
final SS-reconstruction iteration.

When computing the SA image, we need to account for
the geometrical spreading of the acoustic energy as the wave
front expands away from the source. This expansion scales
down the energy (and subsequently scales up the estimated
attenuation). In a homogeneous medium, the energy in a
wave front falls off at a factor of 1/r (with r being the
distance from the source) while in 3D this factor is 1/7%. In a
heterogeneous medium the wave front deviates from circular
or spherical (see Fig. 3) and the most accurate method would
estimate the local wave front curvature and then scale the
local attenuation accordingly. However, we found that a
simple scaling by a distance measure was sufficient in our
case. Further, we do not perform such corrections in the
back-projection phase, referring to Ref. 22 who promote the
use of unmatched projector/backprojector pairs.

Figures 4 and 5 list the SS and SA reconstruction algo-
rithms, respectively. Figure 6 illustrates the grid update along
a refracted ray. The grid correction delivered by a given ray
is distributed into the grid voxels using the weights of a
B-spline interpolation filter centered at sample points along
the ray.

In the following we assume spherical voxels or blobs.**

Initialize sound attenuation image SA
Until convergence, loop
Until all emitters have been chosen
Randomly select an emitter £
Load E’s acquired attenuation receiver data SAcquirea
Load E’s rp data from final SS reconstr. iteration
For each receiver R;
Trace rays from R, to E using rp; 2 SAsimutated
Compute correction factor as

ASA = (SAuc'quired - SA.vimulated )/L
Back project AS4 along rp
Update S4 estimate by AS4 at each rp voxel

FiG. 5. The FMM-SART algorithm for sound attenuation.
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FiG. 6. Updating the grid voxels along the path rp of a refracted ray.

We match this representation by using spherical (radially
symmetric) B-spline interpolation filters. Spherical interpola-
tion filters result in a spherical frequency response which
makes both the interpolation and the reconstruction result
orientation independent.

For the SS update step, we use the relationship SS=d/t,
where d is the diameter of a spherical voxel (we use d=1,
that is, one grid spacing). The following voxel update equa-
tion arises:

SSkrl) = d . 9)

Mrays
dISSW + X ATOF /n,y,

2

Here, n,y are the number of rays updating the given voxel.
One SS (SA) iteration completes after all emitters have been
processed once, and the iterations continue until the differ-
ence between the simulated TOF (SA) data at the receiver
positions and the acquired TOF (SA) data there becomes
smaller than a threshold. In our experiments, convergence
typically requires three to four iterations.

While using the notion of “image,” our discussion so far
is valid for both 2D slice stack and fully-3D UCT reconstruc-
tion. The former acquires the data with a single transducer
ring stepping along the axis of the breast, while the latter
uses the cylindrical multirow transducer assembly axially
covering the entire breast. Previous work has attempted to
reconstruct these data in serial 2D, ignoring 3D refraction
effects. To advance these works we have implemented a fully
3D version of FMM. However, in practice we find that per-
forming the FMM in fully 3D is computationally rather ex-
pensive. Furthermore, it also requires a significant amount of
memory to store the heap with the (3D) narrow band.

As an alternative, for these computational reasons, we
have investigated reconstruction within a moderately thick
volumetric section. The advantage of this scheme is that it
allows us to reduce full 3D ray tracing and front tracking to
a narrow neighborhood of the plane in which the transducers
reside. We currently use a section width of 10%-20% of the
full volume height. Given the limits on the variation in
propagation velocities and the geometric arrangement with
the volume, this section width appears sufficient. If there are
large refraction effects, however, the resulting image will be
less accurate.”

In this locally fully 3D scheme we acquire data within a
short multirow assembly in which solely the central ring
transducers act as emitters as well, and then perform recon-
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Initialize sound speed volume SS
Until convergence, loop
Until all slices in SS have been chosen
Randomly select a slice in SS = central slice CS
Load SS estimate of slices peripheral to CS = PS
Until all emitters in CS have been chosen
Update SS estimate of all voxels in PS

FiG. 7. The FMM-SART algorithm for sound speed reconstruction in a lim-
ited multirow detector scenario.

struction only within the covered volume slices for each such
axial central ring position. In order to capture the out-of-
plane refraction effects properly, we increase the resolution
along the transducer stack axis, currently by a factor of 3.
That is, in addition to the original slices spanned by each
transducer ring, for each two consecutive such slices, we
maintain two further slices located in-between, spaced equi-
distantly.

The corresponding reconstruction algorithm for the SS
volume is outlined in Fig. 7. The reconstruction of the SA
volume proceeds in a similar manner. The wave front and
rays are now traced in 3D, within the short stack of slices.
The algorithm updates slice voxels several times per itera-
tion, that is, each time they fall within the range of the short
multidetector stack.

lll.C. Regularization

We observed in our experiments that the first sequence of
corrective updates is crucial in achieving a faithful object
recovery from the data. We found that the overall shape and
geometry (the SS distribution) of the object is often formed
quickly, but the SS values themselves are low.*® This effect
reduces resolved detail and contrast in the simulated projec-
tions, which in turn has a negative impact on the detail and
contrast delivered in the corrective updates. The algorithm
then often drives the solution estimate away from the true
desired solution estimate, leading to significant distortions.
Thus, we aim to “boost” the SS iterate prior to the forward
projection, to the effect that the more pronounced recon-
structed detail creates more contrast in the wave propagation,
producing a more detail-sensitive TOF image and corre-
sponding simulated projection. To achieve this effect, we ex-
plored two different strategies: (i) fixed scaling of the correc-
tive updates and (ii) state-driven scaling of the corrective
updates. Both methods use two separate SS images for pro-
jection and backprojection—we shall call them SS and SS,,,
respectively. SS,,, is obtained as usual via Eq. (8), but the
result is then translated into SS,, in the following manner. For
the fixed scaling we simply use SS,=aSS,,, where a is a
constant. On the other hand, the idea behind the state-driven
scaling is to boost the contrast of the reconstructed SS image
to the contrast expected in the final reconstruction. Since we
do not know the pixel-level contrast prior to reconstructing
the object, a more accessible model available is the expected
value ranges, that is, the minimum and maximum of these
values. These can be obtained from tables (see Table I which
lists values for both sound speed and attenuation). Once ob-
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TaBLE 1. Acoustic properties of the female human breast. Outside the object we set the sound attenuation to

nearly zero.

Ultrasound properties Tissue Fat Large lesions Small lesions Skin
Sound Speed (in m/s) 1475 1375 1560 1530 1680
Attenuation (insertion loss, in %) 60 70 or 40 70 50

tained, we use the following equation to scale the recon-
structed SS;,, values at iteration k into the SS,, values used in
the subsequent projection at iteration k+ 1:

k+1 k
SS( = Ssexp min T a(Spr S(bp),min) ’
SSexp,max - SSexp,min
a= SS(k) _SS(k) - (10)
bp,max bp,min

Here, SS.yp min and SSeXE max are the tissue values obtained
from the tables, and Spr min and SSbl;) max are the minimum
and maximum values in the present SS reconstruction. In this
mechanism the scale factor a is initially large and then tends
to 1.0 as the values in the reconstruction grow to the ex-
pected tissue values. We note that the same mechanism is
also used in the attenuation image reconstruction, just replac-
ing the SS with SA values in Eq. (10).

Our regularization scheme will benefit from an accurate
assessment of SS.,; in and SS., nax, Which can vary as a
function of breast density. For this, it may be possible to
gauge this density beforehand, by classifying the subject by
age, prior physical exams, or information gained in prior
scans (including x-ray). Alternatively, one may be able to
obtain some estimates during the ongoing reconstruction,
making the proper adjustments on the fly as the iterations
proceed. Since we use a GPU-accelerated implementation,37
a few extra iterations will not be overly critical to time per-
formance. Both methods, user assisted or not, could be ap-
plied in conjunction with a known statistical distribution in
min/max values of breast tissue in women to estimate the
most likely setting for the case at hand. This is subject of
further investigations.

IV. UCT BREAST PHANTOMS

We tested our UCT reconstruction framework with two
phantoms. The first is a relatively simple traditional 2D
phantom, composed of various circular primitives with dif-
ferent densities that mimic the values typically found in a
breast. Its quantitative parameters are given in Table 1. The
sound speed phantom is shown in Fig. 8(a), and the corre-
sponding attenuation phantom is shown in Fig. 8(f). Both
share the same geometry and feature various lesions of di-
ameters ranging between 2 and 8 pixels. We note that for all
figures presented throughout this paper, the calibration bar is
only valid for the focus object—the black embedding back-
ground is only provided for contrast.

The second phantom is aimed to be more realistic. While
in x-ray mammography a number of breast phantoms have
been defined,”® these are typically too complex and some
of the structures are not well differentiated by ultrasound or
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are irrelevant for this modality. We therefore designed a spe-
cific digital anthropomorphic breast phantom for ultrasound.
We used the Visible Female cryosection data set (NIH Na-
tional Library of Medicine)4o since it contains all the struc-
tures present in real breast tissue. We then augmented the
breast region of this data set with cancerous lesions of vari-
ous sizes, shapes, densities and contrasts. The cryosectional
data of the visible female has 5189 slices of 4096 X 2700
RGB pixels each. To construct our anthropomorphic breast
phantom, we began by extracting the breast portion from the
data set, which yielded 74 slices of 280 X 280 pixels each (a
spatial resolution of 0.330.33 mm). One such slice is
shown in Fig. 9(a)—we observe that fat, lobules (tissue), and
ducts are visually well distinguished. We then mapped the
RGB values to the corresponding ultrasound property values
in a three-step procedure. First, we transformed the data from
RGB to HSV (Hue, saturation, value). Since we found that
materials in the breast of the visible female can be differen-
tiated very well by Hue (H), we subsequently used the
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FiG. 8. Experiments with a simple phantom. (a) Original sound speed phan-
tom; (b) SS reconstruction with straight rays, fixed scaling; (c) SS recon-
struction with curved rays, HAFMM, fixed scaling; (d) SS reconstruction
with curved rays, FMM, state-driven scaling; (e) SS reconstruction with
curved rays, HAFMM, state-driven scaling; (f) original attenuation phan-
tom, (g) reconstructed attenuation image with curved rays, HAFMM, and
state-driven scaling.
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FIG. 9. A slice of the breast portion of the Visible Female data set. (a) A
cryosection RGB slice; (b) the same slice with the H value transformed to
gray scale; (c) the slice after the mapping to acoustic speed (see Table I).

H-channel only [see Fig. 9(b)]. We then found the mean and
the range of H for the different materials by statistically sam-
pling the corresponding regions (skin, fat, tissue, ducts). Us-
ing the ultrasound density values for these materials (Table
I), we created a discrete mapping from H to these ultrasound
densities. Here, for each material, we applied a Gaussian
kernel with its mean as the density distribution center and the
range as its sigma. When the Hue value fell into the tails of
the Gaussian kernel functions of multiple materials, the ma-
terial’s kernel function with higher value was chosen in order
to maintain continuity. When the Hue fell out of any range of
the Gaussian kernel function of materials, it was mapped to
the background value. Figure 9(c) shows a slice of the result-
ing continuous transformation from the cryosection data to
ultrasound properties.

V. RESULTS

We studied our framework with these two phantoms. In
these efforts we focused primarily on reconstruction quality,
but we will show that the FMM provides a very cost-efficient
means for achieving high-fidelity UCT projections and re-
constructions. A companion publication37 has explored the
computational efficiency further, describing a GPU-
accelerated framework that was able to achieve an 80-fold
speed-up over an optimized CPU implementation, without
any loss in reconstruction quality. It allowed us to reconstruct
an object of size 256X 44 with 512 transducers per ring in
less 5 min, which is a time that can easily satisfy real-life
clinical scenarios. The same task took over 5 h on a CPU.

V.A. Suitability of the FMM and the proposed
regularization

The first series of experiments is based on the simple
digital phantom (size 128 X 128 pixels). Our simulation as-
sumes 256 emitter/receiver positions along a circle, as dis-
cussed before. The resolution of the reconstructed image
matches the size of the phantom images. The reconstruction
took about 60 s for three iterations using a 2.8 GHz Pentium
4 CPU. The data were obtained using a high-quality full
wave equation solver (further described below) which oper-
ated on a significantly upsampled version of the phantom
(2048 X 2048 pixels) in order to gain a realistic near-
continuous scale simulation.
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For the sound speed phantom shown in Fig. 8(a), the re-
construction results are given in Fig. 8(b)-8(e). The recon-
structed image obtained with straight (linear) rays is shown
in (b) and reconstructions obtained with curved (nonlinear)
rays are shown in (c) and (e). For the curved ray reconstruc-
tion, we further compare the results obtained for the different
regularization strategies: Fixed scaling in (c) and state-driven
scaling in (e). We calculate the error as the average squared
intensity difference (the RMSE) for all grid points (inside the
phantom area) between the reconstructed image and the
original phantom. We observe that the use of straight rays
distorts the image with an error of 25%. Because refraction is
ignored, the size of the phantom’s regions grows or shrinks
dramatically, which has been reported before. However, we
also find that when correcting for refraction (using curved
rays) the regularization method has a large impact on the
resulting image accuracy. We observe that our state-driven
scaling results in a significantly better estimate of the origi-
nal image. It has an error of 3%, while the fixed speed strat-
egy overcorrects for refraction and results in an error of 19%.

The qualitative improvement that can be obtained with the
HAFMM method (over the standard FMM) is significant as
well. The image computed with FMM, shown in Fig. 8(d),
has poor boundary delineation (error of 10%), while the
HAFMM, shown in Fig. 8(e) does much better in that regard.
HAFMM also more accurately preserves detail, for example,
the interior lesions are much rounder than with the FMM.
The improvement in accuracy of the HAFMM is due to the
inclusion of second-order curvature information when solv-
ing the Eikonal equation, which means that boundaries, at
which refraction occurs, are better defined and determined.

Finally, the reconstruction results for the attenuation
phantom in Fig. 8(f) are presented in Fig. 8(g). The attenua-
tion image reconstruction is based on the curved ray paths
determined in the SS phantom reconstruction shown in Fig.
8(e). We see that the reconstruction recovers both intensity
and shape accurately, with an error of less than 7%.

V.B. Comparison with full wave equation solver

We compared our HAFFM ultrasound simulation with a
more traditional (but computationally much more expensive)
method which solves the wave equation via a PDE-solver
(for the 2D case). This solver takes a pseudospectral
approach,41 where the spatial derivatives were obtained using
the fast Fourier transform, while the temporal propagation is
performed using a fourth-order accurate Adams—Bashforth
explicit scheme. Our approach, on the other hand, advocates
an alternative way, rooted in geometric acoustics, which
solves the curved-ray problem by directly simulating the
acoustic sound wave propagation using the HAFMM.

For our comparative study, we collected time-of-flight
(sound speed) simulation data within a circle of sensors,
again using the phantom of Figs. 8(a) and 8(f), for both the
HAFMM-based and the PDE-based solver (the latter used
the high-resolution version of the phantom as discussed
above). We observed an excellent correlation between the
two simulation data sets, with R? greater than 99%, which
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Fi1G. 10. Our digital anthropomorphic breast phantom augmented with three
lesions. (a) Original; (b) speed of sound reconstructed from 280 transducers.
The size of the lesions ranges between 6 and 9 pixels with densities from
100 to 250 (for tissue properties, see Table I).

demonstrates that our HAFMM method is in excellent linear
agreement with a physically accurate PDE solver. Likewise,
we also compared the two solvers in terms of the ratios of the
estimated attenuation due to just water vs. the estimated at-
tenuation with the object immersed. Here we obtained R’
=0.95. Both of these results demonstrate that for the special
case of ultrasound breast mammography, the HAFMM pro-
duces accurate estimates of both time of flight and tissue
attenuation in a heterogeneous material setting. It, however,
does so at a great speed advantage. For example, for the
wave propagation simulation in a 512X 512 image, our
HAFMM-based method takes only minutes, while the PDE-
solver method requires several hours to complete. These
speed gains are very important in a practical iterative recon-
struction framework.

V.C. Influence of algorithmic parameters

In this section, we explore the influence of the various
algorithm parameters and their settings on reconstruction
quality. For all studies in this section (and the ones follow-
ing), we use the digital anthropomorphic breast phantom de-
scribed in Sec. IV, with three lesions of different sizes and
densities. A slice and its UCT reconstruction are shown in
Fig. 10. The data for this phantom were obtained using a
high-accuracy nonlinear ray-tracing algorithm.

V.C.1. Number of transducers

Figure 11 compares the errors obtained as a function of
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FiG. 11. Number of transducers vs. reconstruction error.
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FiG. 12. Number of transducers vs. computation time.

the number of transducers, N,. We use one slice of the phan-
tom of size 140 X 140 pixels. When N, is half that size, that
is, 70, aliasing artifacts are noticeable in the reconstruction.
With N, doubling to 140, the error drops sharply by 47%. As
N, continues to double (to 280), the error drops further by
18%. As N, increases further the improvements are marginal.

Next, Fig. 12 plots the cost of computation vs. N,. We
observe that the computational cost increases with the num-
ber of transducers. A trade-off between quality and compu-
tational cost is always to be made. In this particular case, to
achieve a good balance between accuracy and computation
time, the optimal number of transducers is 280, which is
about double the grid size. It gives a reconstruction error of
1.8%, at a computational cost of 112.5 s [see also Fig. 10(b)].
We use this configuration for all experiments presented. This
configuration results in a clear reconstruction of inner struc-
tures and lesions, at a reasonable reconstruction time.

V.C.2. Additional transducer ring positions

Sometimes one may not be able to afford more transduc-
ers in a ring, but one may attempt to gather additional data
by simply rotating the ring by a percentage of the equiangu-
lar distance between the individual transducers. We investi-
gated whether such a strategy can produce improved recon-
structions. For this, we added to each original data set
additional sets of observations, based on one or two inter-
spaced incremental rotational ring displacements. The results
of this experiment are shown in Fig. 13. We tested four con-
figurations using 50 (experiment ID 1-3), 70 (ID 4-6), 140
(ID 7-9), and 240 transducers (ID 10-12). The first measure-
ment in each series is due to the original configuration, with-
out using extra data due to ring displacement, while the other
two use additional data due to one or two such displace-
ments, respectively. We observe that such a strategy does not
produce better reconstructions. It appears that adding addi-
tional ring positions to a fixed number of transducers does
not add much independent information. We therefore con-
clude that a better correction of the SS and SA estimates
requires a denser set of reconstruction rays for a single emit-
ter position, and not multiple emitter positions.

V.C.3. Relaxation coefficient

The relaxation coefficient « is an important parameter for
SART. It provides a means to reduce (that is, smooth) the
influence of noise in the data, but there is a trade-off with
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FiG. 13. The effect of acquiring additional data by incremental rotational
transducer ring displacement, acquiring data at intermediate angular posi-
tions without increasing the number of transducers. Each triple has the same
number of transducers—only the number of intermittent positions increases
from left to right for each. Doing so does not significantly reduce recon-
struction error, if at all.

speed of convergence. In x-ray CT with limited data typi-
cally a value in the neighborhood of 0.1 is chosen for a. In
the case of FMM-SART, Fig. 14 shows that if « is greater
than 0.1, the error of the reconstruction image can increase
dramatically as iterations continue. Such growth is often
caused by overcorrection. For FMM-SART, the refraction
effects that give rise to curved rays and which in turn cause
nonuniform grid updates require a less aggressive relaxation
schedule than when linear rays are used. Therefore, smaller
« are needed. We find that the best reconstruction results are
achieved when « is between 0.1 and 0.05. The lowest error
occurs at about three to five iterations. Of course, in practice
the optimal a-setting depends on many parameters, such as
number of transducers, noise in the data, image size, and the
like. To that end, our study only seeks to demonstrate the
trends that come with the choice of a.

V.C.4. Interpolation filter

While using an interpolation filter of good quality is al-
ways important in iterative reconstruction,” it is even more
important when one seeks to estimate gradients from discrete
data. Earlier work has shown*’ that the sensitivity to subop-
timal interpolation increases with the order of the estimated
derivative. This sensitivity is especially crucial in iterative
reconstruction tasks, since interpolation errors committed in
the forward projection get fed back into the corrective up-
dates which can drive the reconstruction away from the de-
sired result. Linear and cubic convolution filters are widely
used in CT reconstruction. However, in previous work™ we
have shown that the B-spline filter family exhibits better per-
formance, in particular, in the presence of refractions. Al-
though B-spline filters are slightly more computationally ex-
pensive, their benefits are often worth this expense. The
B-spline filter is a noninterpolating filter. This provides more
freedom in the filter design since the kernel does not need to
be zero at integer positions. First, coefficients are calculated
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FiG. 14. The effect of the relaxation coefficient & on reconstruction quality.

from the original signal at each grid point. This coefficient
field emphasizes high-frequency information in the signal,
that is, it oversharpens (high passes) it. The subsequent in-
terpolation by the B-spline kernel during the ray tracing then
provides the smoothing, (low passing) that neutralizes the
sharpening in the prior coefficient calculation step. This
pipeline results in a very high-quality interpolation, with
only very little smoothing and aliasing remaining. In Fig. 15,
we plot the error vs. the number of iterations for various
filters. We observe that for the linear and cubic convolution
filters, the error drops initially as the number of iterations
grows, but then starts to increase as iterations continue. The
B-spline filters, on the other hand, exhibit a monotonic re-
duction in reconstruction errors, and we do not observe the
divergence trends of the other filters at later iterations. This
result, in fact, is an excellent demonstration of the impact of
interpolation filter quality on reconstruction convergence be-
havior. In our particular application, that is, breast phantom
reconstruction, we also find that the B-spline gradient inter-
polation filters achieve significantly more accurate results
than the traditional linear and cubic convolution filters. Fur-
ther, we find that the less expensive second-order B-spline
(B-spline 2) achieves a similar quality as the more expensive
third-order B-spline filter (B-spline 3). Using the B-spline 2
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FiG. 15. The effect of the TOF gradient estimation filter on reconstruction
error.

filter saves time, since the computational cost of the B-spline
2 filter is about 1/4 less than that of the B-spline 3.

V.D. Detectability, resolution, and noise tolerance

We now discuss (i) the framework’s spatial coverage by
the bent rays, (ii) its spatial resolution determining the size
and spacing of detectable lesions, (iii) its ability to distin-
guish among various diagnostic shapes, and (iv) its noise
behavior.

Since the rays are curved there is a chance that some
regions are never covered during the corrective updates, even
when the transducers are sufficiently close on the periphery.
In this case we would be bounded to overlook important
features. In the 3D wavefront construction method by Vinje
etal ™ rays emitted from the source form the vertices of an
advancing triangular mesh, which is synonymous to the
wave front. Then, if the side length of one of these triangles
exceeds a certain threshold the mesh is subdivided at that
location and a new ray is spawned. We performed experi-
ments to see if such an approach was needed in our tomog-
raphic reconstruction scenario, or if our current raytracing
approach was sufficient. In this context, we should note that
our forward projection using the FMM is in fact space cov-
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ering. The FMM is an implementation of Eikonal wave
tracking, which represents an alternative approach to mesh
tracking in Vinje et al.

In order to verify the complete space coverage of the col-
lection of curved rays we visualized the refraction effects of
the various wave propagations (see Fig. 16). First, Fig. 16(a)
shows the wave front that bends forward or backward at
refractive interfaces. As a consequence, the rays from the
emitter to the receivers deviate, as is shown in Fig. 16(b).
This bending results in emptier spaces through which fewer
rays pass—for this emitter. In Fig. 16(c) we show the image
due to the interpolation filter weights, collected from the rays
in one grid update. This image is used to normalize these
grid updates [compare Eq. (5)]. The brighter the points in the
weight images, the more rays have passed through their
neighborhood. Finally, Fig. 16(d) shows the accumulated
weight image due to all projection directions. One can easily
see that all grid points receive some amount of contributions,
and thus no areas exist that remain unknown. In fact, we can
also observe in these weight images the structure and the
shape of the phantom and its interior lesions.

Next we evaluate two important metrics: (i) lesion detect-
ability and (ii) lesion detail preservation, quantifying spatial
resolution.

V.D.1. Detectability: Lesion size

It is important to faithfully detect lesions of small sizes at
an early stage and at high fidelity. Figure 9 shows that tradi-
tional straight ray methods tend to produce a great amount of
distortions of small and large structures. Our framework cap-
tures the impact of refractions and effectively corrects the
deformation. The images in Fig. 17(a) and 17(b) show the
original phantom and its reconstruction, augmented with
various lesions of different sizes. We see that FMM-SART
clearly identifies lesions even at a size as small as 2 pixels in
radius, at clinically relevant contrast levels.

V.D.2. Resolution: Lesion spacing and shape

Lesions can grow in the vicinities of others. For accurate
diagnosis, a cluster of small lesions has to be reconstructed
with each individual lesion having the correct size and shape,
such that it can be differentiated from a large lobulated le-
sion. To test this ability, we inserted two lesions separated by

(a) (b)

(c) (d)

FIG. 16. Wave propagation and ray tracing. (a) Wave front (TOF) image for FMM,; (b) rays traced using the TOF image; (c) filter weights of corrective grid
updates (backprojections) for one emitter; (d) weight image accumulated for all backprojections.
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FIG. 17. Reconstructed images of lesions with different sizes. The smallest lesion is 2 pixels in radius. (a) Phantom with various small lesions, pointed to by

arrows; (b) speed of sound reconstruction.

a small distance (1-2 pixels) into the phantom. The recon-
structed image (Fig. 17(c)) clearly reveals the tiny gap
(pointed to by the arrow) between these lesions and correctly
identifies them as two lesions, instead of a single large one.

The shape of lesions is another critical factor to help di-
agnose the properties of lesions. Benign lesions may be
sharp and circumscribed, while malignancies may have
spiculated, lobulated/undulating shapes. Circumscribed mar-
gins are sharply demarcated with an abrupt transition be-
tween the lesion and surrounding tissue, with nothing to sug-
gest infiltration. Spiculated margins, on the other hand, are
suggestive of surrounding parenchymal infiltration.* Defor-
mation caused by refraction effects makes it hard to recon-
struct the original lesion shape faithfully. For example, for
rays reaching one lesion, some of them need to traverse other
lesions before reaching the lesion, while other rays enter
through surrounding tissue directly. In straight ray methods,
different ultrasound speeds in lesions and tissue may affect
the calculation and make the reconstructed image of part of
the lesion appear dilated and deform the shape. Our curved-
ray method overcomes these challenges by taking into con-
sideration the speed variation in different materials and thus
correctly calculates their deflected trajectories. We simulated
spiculated, lobulated, and obscured lesions in our phantom.
Figure 17(d) and 17(e) compares these simulated lesions
with their reconstruction using our UCT framework. We ob-
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FiG. 18. Impact of noise on projection on reconstruction quality.
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serve that our method can successfully reconstruct the differ-
ent lesion shapes (the reconstruction error is about 4%).
This ability of FMM-SART to separate small lesions 1-2
pixels apart (Fig. 17(c)) and to resolve small lesion detail at
similar granularities (for example, the comblike structure in
the upper third of Fig. 17(d) and 17(e)) demonstrates its ex-
cellent spatial resolution. Further experiments with physical
simulation data will be needed to verify these findings for
use in clinical practice. This is subject of ongoing work.

V.D.3. Noise tolerance

In practice, ultrasound projections tend to be noisy—the
signal-to-noise ratio (SNR) can range within 100 to 10. We
tested our algorithm by adding Gaussian noise into the pro-
jection results, using SNR levels at the lower end of this
range, 5 to 20, in order to gauge the robustness of our frame-
work. The resulting reconstruction errors are plotted in Fig.
18. We see that only for SNR=5 the reconstruction strongly
diverges at an early stage. The images in Figs. 19(a)-19(d)
show the reconstructed results for SNR=5, 10, 15, and 20.
We observe that even when the SNR is as small as 5 and the
reconstructed image is quite noisy, the inner lesions and
overall structure are still visible. With the SNR increasing to
10 (still a significant noise level) the inside lesion can be
well distinguished from the surrounding tissue.
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FiG. 19. Sensitivity to noise speed of sound images reconstructed from data
with (a) SNR=5, (b) SNR=10; (¢) SNR=15; (d) SNR=20. We observe that
even for SNR=5 the lesions can be well recovered.
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FiG. 20. Comparing 2D with short-stack 3D reconstruction. (a) A slice of
the phantom; (b) 2D reconstruction; (c) the same slice in a 3D short-stack
reconstruction.

V.E. Short-stack 3D reconstruction

The reconstructions presented so far have been on a slice-
by-slice basis, that is, the data have been acquired (simu-
lated) with a single row transducer ring. The remaining dis-
cussion now presents the quality gains that can be achieved
by acquiring (simulating) data with a short multirow trans-
ducer assembly and performing the reconstruction as out-
lined at the end of Sec. III B. We currently assume a short-
stack size of six transducer rings, which is 14% of the 44
slices reported in our companion papelr.37 As discussed in
Sec. III B we maintain two additional slices between each
such ring pair. Thus the total number of slices reconstructed
within one such short stack is 16. Figure 20 presents one of
these slices, reconstructed both in 2D [Fig. 20(a)] and with
the short-stack 3D approach [Fig. 20(b)]. We observe some
improvements in feature definition, but both reconstructions
can resolve all required detail satisfactorily. The RMSE error
for the 2D slice reconstruction is 3.6%, while the RMSE
error for the 3D approach is 3.4%. The computation time is
proportional to stack size.”’

VI. DISCUSSION

To bring our work into the proper clinical perspective, we
need to relate the wavelength used in the simulation with the
reconstruction’s resolution, in the context of the female hu-
man breast. A typical breast is about 110-140 mm wide at its
base, and thus at our current slice resolution of 1402 the size
of a pixel is 1 mm. Figure 17 indicates that our method is
able to detect features with a diameter of 2—4 pixels, which
corresponds to a size of 2—4 mm. As lesions less than 5 mm
are considered small, this is an encouraging result. For
smaller lesion sizes, we will need to reconstruct the object on
a finer grid, and for this we will need more transducers to
ensure sufficient angular sampling (compare Fig. 11). A natu-
ral limit here is imposed by the frequency of the transducers.
Our physics-based simulation uses a center frequency of
w=5 MHz. With a sound speed v in breast tissue of around
1500 m/s, this gives us a lower bound on the size of the
features that can be faithfully reconstructed of around A/2
=0.5-v/0=0.15 mm. However, such a resolution is beyond
the reported capabilities of ray theory-based reconstructions,
which is more on the scale of 2—3-\ or 0.6-0.9 mm in this
case.

With this in mind, we are encouraged by our finding (Sec.
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V B) that the HAFFM is capable of performing forward
simulations (predictions) of the TOF through a complex
structure with accuracy comparable to a numerical solution
of the full wave equation. The PDE solution was discretized
to accurately describe scattering from features down to at
least about N\/2. Therefore, the HAFFM has the potential of
performing accurate forward predictions through a medium
with features down to about 0.15 mm. However, this does
not necessarily translate into the ability to perform inversion
at this accuracy. Since inversion is an ill-posed problem, ac-
curately solving the forward problem does not guarantee
similar accuracy also in the inversion. This is subject to fur-
ther study.

VIl. CONCLUSIONS

We have presented a novel iterative framework termed
FMM-SART for CT reconstruction from transmission ultra-
sound data. Our approach is rooted in geometric acoustics
and, in contrast to most other systems of its kind it accurately
takes into account the strong refraction effects that occur in
the female breast. We have shown that breast lesions of even
small sizes and distances can be well reconstructed even in
the presence of significant noise. Our method also differen-
tiates lesion shape quite well which is important in cancer
diagnostics. Decisive factors in achieving these promising
results are, apart from the accurate modeling of curved rays,
a novel regularization scheme and a high-quality interpola-
tion filter. An added benefit of our refractive ray tracing
framework is that its foundation in the fast marching method
allows for an efficient implementation on the CPU and also
accelerates well on commodity multiprocessor architectures,
such as the GPU. With the latter, we have shown that clinical
reconstruction speeds are possible, requiring less than 5 min
to reconstruct a 256> X 44 volume. Further contributions are
the development of a realistic anthropomorphic breast phan-
tom based on the Visible Female data set.

In this paper, we aimed to demonstrate the feasibility of
our framework for breast transmission ultrasound CT and
make contributions with respect to its accuracy (both gradi-
ent interpolation and wave evolution) and efficiency (both
algorithmic and computational). We further discussed the im-
pact on feature resolution and tolerance to noise. We find that
given physics-based simulated data, our method is able to
detect features at clinically relevant contrasts with good pres-
ervation of detail. While it is too premature to claim (at this
stage) that this would also be the case in vivo, we do believe
that our results are quite encouraging in that respect.

In our setup, we calculate attenuation (insertion loss) for
the central frequency and the parameters we reconstruct are
with respect to this frequency. Additional information regard-
ing tissue properties may be obtainable by measuring at mul-
tiple frequencies and we intend to investigate this in the fu-
ture. As is typically done, we assume constant density;
variation in tissue density is more difficult to measure.

Finally, our simulations and the subsequent comparative
study with the full wave equation solver have only been in
2D. While we do not expect the outcome to change dramati-
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cally in 3D, since the TOF-simulations should still be valid,
the reconstruction of attenuation may possibly degrade a bit
due to the fact that interference effects could be more impor-
tant. We aim to study these 3D effects in the future.
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