
The Magic Volume Lens:

An Interactive Focus+Context Technique for Volume Rendering

Lujin Wang Ye Zhao Klaus Mueller Arie Kaufman∗

Center for Visual Computing, Computer Science, Stony Brook University

(a) (b) (c) (d)

Figure 1: Magic volume lens results. (a) magnifying inside features in an arbitrary-shaped area on an engine, (b) applying sampling-rate-based
lens on a foot, (c) enlarging area of interest on an aneurism, (d) magnifying the duodenum of a segmented frog dataset.

ABSTRACT

The size and resolution of volume datasets in science and medi-
cine are increasing at a rate much greater than the resolution of the
screens used to view them. This limits the amount of data that can
be viewed simultaneously, potentially leading to a loss of overall
context of the data when the user views or zooms into a particular
area of interest. We propose a focus+context framework that uses
various standard and advanced magnification lens rendering tech-
niques to magnify the features of interest, while compressing the
remaining volume regions without clipping them away completely.
Some of these lenses can be interactively configured by the user to
specify the desired magnification patterns, while others are feature-
adaptive. All our lenses are accelerated on the GPU. They allow
the user to interactively manage the available screen area, dedicat-
ing more area to the more resolution-important features.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.3.3 [Computer Graphics]:
Picture/Image Generation—Display algorithms I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Color,
shading, shadowing, and texture

Keywords: Focus+Context Techniques, Lens, Volume Rendering,
Hardware-assisted Volume Rendering

1 INTRODUCTION

Recent years have seen a dramatic growth in our ability to compute,
acquire, and assemble datasets of increasingly large magnitudes and

∗e-mail: {lujin|yezhao|mueller|ari}@cs.sunysb.edu

resolutions. Great advances have also been made in screen technol-
ogy, bringing high-resolution displays to the desktop at affordable
prices, as well as offering sophisticated CAVE environments. The
one device that has consistently resisted participation in this spiral
of growth is the human eye and the cortical visual processing abili-
ties. In fact, there is a natural limit on the screen pixel density, as a
function of distance, which the human eye can resolve, and there is
also a natural falloff of retinal receptor density towards the foveal
periphery. Finally, there is also a bound on the information the hu-
man brain can visually process at any given time, but this is proba-
bly an ability that can be trained the most. In view of these natural
limitations, which are bound to stay, we must devise ways to make
the best use of the available retinal surface and cerebral potential, in
light of the growing amount of visual information ready to be pre-
sented. These efforts have commonly been labelled focus+context
techniques, where the resolution of the visual information presented
is highest in the foveal center and then falls off towards the periph-
ery in some smooth fashion, without performing any clipping of the
viewed large object. Multi-resolution techniques, or even semantic
zooms, can be employed to navigate across the resolutions in visual
space, and a great number of techniques to control these have been
described in the past, including various forms of lenses, warps, and
distortions. On the other hand, there have also been a number of
methods and metaphors to aid the user in the perceptional naviga-
tion of a dataset or object, such as stylized highlighting of features,
cut-away views, and folding.

Interactive operability is the prime key to a successful user ex-
perience and his/her exploration and immersion in the data, and the
GPU has provided an attractive platform to achieve these goals. Our
work embraces this technology to provide a novel focus+context
tool that unifies and extends a variety of existing methods in this
area. Our techniques are primarily designed for volumetric ob-
jects, which have received the least amount of attention so far.
Our framework provides a free-form volumetric lens function that
can be feature-adaptive or user-configurable for a high-quality, anti-

aliased, and interactive display with smooth transitions from high-
to low-resolution areas. It is somewhat related to the importance-
driven visualization system, recently described by Viola et al. [22],
but our method allows users not only to highlight and expose an
object, but also to non-linearly magnify the object for closer in-
spection in its spatial and semantic context.

Our paper is structured as follows. We first present an overview
of previous work on this subject, in Section 2, and then describe our
volumetric lens, in Section 3 and GPU implementation in Section 4.
Finally, we present results, in Section 5, and end with conclusions,
in Section 6.

2 RELATED WORKS

Focus+Context Visualization Many techniques have been
developed in this area. Zhou et al. [25] devised focus-region based
volume rendering for volume feature enhancement. Volume data
inside and outside the focus region are rendered in different styles,
and the distance to the focal point is further included to control
the optical properties of volume features in the context region [24].
Gaze-directed volume rendering [17] takes the observer’s viewing
focus into account to increase the rendering performance. The vol-
ume dataset is rendered at different resolutions, with the focal re-
gion represented at full resolution and the other parts at a lower
resolution. Importance-driven volume rendering [22] is a view-
dependent model for automatic focus+context volume visualiza-
tion. The object importance is added as a new dimension to the tra-
ditional volume rendering pipeline in order to maximize the visual
information. This technique removes or suppresses less important
parts of a scene to reveal more important underlying information.

Cut-Away Views and Extensions Cut-away viewing, also
known as volume cutting [20], is another way to display volumet-
ric objects. Various cut-away techniques can be achieved automat-
ically [7], and many improvements have been made. Instead of
disposing cut-away volume parts, McGuffin et al. [18] use defor-
mations for browsing volumetric data. Tory et al. [21] provide a
framework, called ExoVis, for simultaneously viewing detail and
context in volumetric data sets. It allows users to view multiple
slices of a volume at arbitrary orientations, along with multiple sub-
volumes rendered in different styles. All slices and subvolumes are
outside or surrounding a 3D overview of the dataset.

Lenses and Distortion Lenses in real world can be quite
complicated [13]. However, simple lenses and magnifications are
still very useful and have been thoroughly studied for text, image
and information visualizations [16, 11, 12]. Bier et al. [1] in-
troduced Toolglass and Magic Lenses as a see-through interface
to modify the visual appearance of application objects, enhance
data of interest or suppress distracting information. Viewpoint-
dependent distortion of 3D data, see [3, 4] for example, highlights
regions of interest by dedicating more space to them. On the other
hand, relatively little work has been done on lenses in the domain of
volume visualization. Cignoni et al. [5] provided the Magicsphere
metaphor to visualize 3D data with a MultiRes filter. LaMar et
al. [15] integrated a 3D magnification lens with a hardware-texture
based volume renderer. Zooming is accomplished by modifying
texture coordinates, and the 2D perspective correct textures tech-
nique is extended to 3D in order to obtain the correct texture co-
ordinates for the lens border. Multiple segments on the border are
needed to generate more natural circular lenses. Wei et al. [23]
applied fisheye views to magnify particle track volume data using
nonlinear magnification functions. Cohen and Brodlie [6] magnify
volume data by generating a new volume using inverse distortion
functions, however, this method is slow and is memory-intensive.
Further research is clearly needed to design better lenses and find
efficient implementations for volume data.

GPU-based Volume Rendering GPU-accelerated volume
rendering can be based on textures [8] or ray casting [14]. Here
we will not list all the papers on GPU-based Volume Rendering.
Since our volume lenses are designed based on changes in ray di-
rection or ray sampling rate, it is straightforward to implement, as
well as extend, them using a ray casting approach.

3 VOLUMETRIC LENSES

In this section we describe several volumetric lenses which are
based on geometric optics and conform to sampling theory.

3.1 Magnifier

The magnification lens, called magnifier in this paper, is based on
the magnification model in optical physics. It provides users a
method for close inspection of regions of interest in volumetric ob-
jects. Figure 2 illustrates the principle of a magnifier. The blue line
segment represents a magnifier lens positioned on the image plane
by the user. LC is the center point of the lens and F is the virtual
focal point. When orthogonal incident rays hit the image plane, in
the region of the magnifier, then the ray directions are modified and
go through the focal point F . Therefore, a ray cone is formed be-
tween the lens and F . The objects within this cone are rendered in
a larger area on the image plane than their original size, while the
other objects retain their original size. Consequently, the objects in
the region of interest are magnified.

Image plane

Ray direction

F

Object

lr

lb

LC

PI
PF

PR

Figure 2: Magnifier illustration.

In the basic scenario described above, objects located between
the orthogonal rays and the focused rays will not be visible on the
image plane. This causes a loss of spatial context for the observed
objects and has to be compensated for by special treatments. Our
solution is to add a transition region close to the border of the ray
cone where the directions of rays are gradually changed from the
focused direction to the orthogonal direction. In Figure 2, the tran-
sition region is represented by the red line segments on the image
plane with a width lb, lr is the radius of the lens, and the magnifi-
cation region of the lens is shown as the blue line segment. For a
ray starting from a point PI in the transition region, the direction is
computed according to the distance from PI to LC as follows:

|PF −F |

lr
=

|PI −LC|− (lr− lb)

lb
, (1)

(a) (b) (c) (d)

Figure 3: Magnifier volume renderings with (a) No lens, (b) Circular lens, (c) Square lens, (d) Arbitrary-shaped lens.

PF = F +
PI −LC

|PI −LC|
· |PF −F |, (2)

ray dir = PF −PI . (3)

where PF is the point at which this ray passes through the virtual
lens focus plane, which is parallel to the image plane and includes
the focal point F .

As a result of the transition region approach, while the objects
inside the center region of the lens are magnified, the objects in the
transition region are compressed. Therefore, continuous observa-
tion of the objects is achieved and no artificial data loss is intro-
duced.

Based on this method, we are able to design magnifiers with
any arbitrary shape. Results obtained by using magnifiers in vol-
ume rendering are shown in Figure 3. Figure 3a is the original
volume rendering result with no magnifier and Figure 3b-d are the
results obtained by using circular magnifier, square magnifier and
arbitrary-shaped magnifier, respectively. Figure 4 shows the tran-
sition regions, magnification regions of three magnifiers, and the
rendering effects on enlarged portions of Figure 3b-d.

Transition
region

LC LC LC

Magnification
region

Figure 4: Transition region and its rendering effect.

The magnification factor can be changed by modifying the fo-
cal point position. Moving virtual focal point F towards the image
plane achieves a higher magnification factor and vice versa. The
GPU acceleration makes it possible for users to choose this interac-
tively. At the same time, the users can also change the size of the
magnifier, for example, the radius of a circular lens, and the size of
the transition region to generate the desired results.

Our volumetric lenses are based on ray casting and it can be eas-
ily detected whether a ray pass the feature, therefore the magnifier
can be utilized to enlarge only features of interest in the observed
volumetric object. The magnification method is straightforwardly

(a) (b)

Figure 5: Magnifier volume renderings for the bone feature in a
segmented frog dataset. (a) and (b) are renderings without and with
magnification under circular lens.

applied to the segmented volumetric datasets. The ray modification
method does not interfere with the composition of the voxels with
different properties because of their segmentation. Figure 5 shows
the results of applying the magnifier to show the bone features of a
segmented frog dataset.

Since in the transition region, the ray sampling rate is relatively
low, aliasing could occur. Although this is not always noticeable in
practice, anti-aliasing techniques can be applied to generate better
results. A solution is to use volume texture mip-mapping to adap-
tively choose the appropriate resolution of the volume data for ren-
dering. A lower resolution volume is chosen for regions sampled at
a lower rate, in order to eliminate aliasing. One can determine the
required mip-map level by calculating the magnification factor m f
for point PR,

m f =
|PR −PRI |

|F −LC|
(

lb

lr
−1)+1. (4)

where PRI is the orthogonal projection of PR on the image plane.
This factor will determine the mip-map level that needs to be used.

3.2 Feature-based lens

Feature-driven volume visualization provides users a highlighting
and exposition of the portions of interest in volume objects. This
facilitates an accurate and differentiated understanding of the im-
portant features. Besides the traditional fixed-shaped lens used to
magnify segmented datasets, our free-form magnifier can be em-
ployed to also achieve a feature-sensitive and feature-centric object
enlargement. The difference is that the shape of the magnifier is
defined dynamically by the shape of the features (represented by
the segmentation information) in the dataset, within an arbitrary
view port. This is illustrated in Figure 6. Whether an incident ray
changes direction depends on the distribution of the feature and the

current view port. Thus the direction of each ray has to be deter-
mined dynamically. Transition regions are also used here to retain
the space context of the features.

Image plane

Ray direction

F

Feature

lb

d

Figure 6: Feature-based lens illustration.

For each ray orthogonally incident upon the image plane, the
new direction is computed as follows. Assuming all rays have
changed directions to the focal point F ,

• if a ray passes through the feature, then its new direction is
pointing to F .

• if the ray does not pass through the feature but is inside the
transition region on the image plane, the distance d (see Fig-
ure 6) from its entry point to the boundary of the feature-
projected area is calculated. This distance is used to compute
the new direction as in Equations1-3.

• otherwise, the ray continues along its original direction.

(a) (b)

Figure 7: Distance computation on the transition region of the
feature-based lens. (a) Distance field on the transition region, (b)
Searching circle for each pixel outside the feature-projected region is
used for local computation.

On the image plane, the distance from a pixel to the boundary of
the feature-projected area has to be calculated for some rays. This
requires knowledge of the position of such an area on the image
plane in each different view port. Therefore, a two pass computa-
tion has to be used, where the first pass defines the feature-projected
region and the second pass computes the distance from a pixel to
this region. Different distance computation methods can be used
during the second pass. To facilitate the GPU acceleration for this
algorithm, it has to be implemented based on local operations where
each pixel only utilizes the knowledge of its neighborhood. Our
implementation is to use a searching circle for each pixel with the
transition region width lb as its maximal radius (see Figure 7 for an

illustration). Inside this circle, we compute a neighbor that is a fea-
ture projected point and has the smallest distance to the pixel. This
smallest distance is used as the distance value for this pixel. This
method is implemented directly as a fragment program on GPU (see
Section 4).

Our lens can be combined with any feature-based ray casting
volume rendering method, for example, the two level volume ren-
dering technique [9] for segmented volume data. Figure 8 shows
some rendering results for a color volume dataset, in which a user
selected feature is magnified and the other objects near that feature
are compressed. Figure 8a shows the skin of the brain. Figure 8b
shows an interior structure of the brain, without rendering other fea-
tures which occlude this structure, while the magnified structures
are shown in Figure 8c and 8d.

(a) (b)

(c) (d)

Figure 8: Feature-based lens volume renderings for a segmented hu-
man brain color volume dataset. (a) without specifying any feature
of interest, (b) with a feature of interest, which is not magnified and
appears too small to be seen clearly. From (c) to (d) the magnifica-
tion factor increases.

3.3 Sampling-rate-based lens

We introduced two magnification lenses that modify the casted rays
using geometric optics. They are implemented directly by changing
ray directions from different areas of the image plane. The distrib-
ution of the areas can be user-defined or feature-based. In this sec-
tion, we define a lens from another point of view. The rays casted
towards the observed object may have varying densities in differ-
ent portions of the object. This results in a varying sampling rate
for the object. Therefore, this special lens is called sampling-rate-
based lens. Various sampling functions could be adopted to define
various volumetric lenses and to achieve different volume rendering
results. we can use these lenses in conjunction with the mip-map
volumes discussed in Section 3.1.

(a) (b) (c) (d)

Figure 10: Comparing volume renderings with (a) No lens, (b) Magnifier, and Sampling-rate-based lenses (c) Cubic sampling function (maximal
sampling rate/normal sampling rate = 3), and (d) An arbitrary sampling function shown in Figure 11.

Normal
sampling
rate

Maximal
sampling
rate

Sampling rate

Image
plane

Rays

Distance
to LC

lr

Figure 9: Sampling-rate-based lens illustration.

We illustrate the idea of this lens in 1D in Figure 9, where a sam-
pling rate function is shown at the top and the corresponding rays
are shown at the bottom. In the sampling rate function, lr is the lens
radius, the vertical axis is the sampling rate and the horizontal axis
represents the distance to the lens center. The sampling rate close
to the lens center is the highest. It then decreases and becomes even
smaller than the original normal sampling rate towards the bound-
ary of the lens. At the bottom of Figure 9, we can see that the rays
shot to the object are dense in the center region of the lens and be-
come coarser towards the boundary. Note that the distribution of
pixels on the image screen is uniform and that the original orthog-
onal rays are also distributed uniformly. To distribute the rays ac-
cording to the sampling rate function, the start point of a ray is not
from its original starting pixel but depends on its distance to the lens
center and the sampling rate. Thus, we need to compute the correct
start point for each ray. As usual, the transition region approach
is applied to this lens. Here, the magnification region plus transi-

tion region must be exactly equal to the lens region, which means
the distance from the cutting point (where sampling rate returns to
normal) to the lens center must be equal to the radius of the lens,
lr. Define sr as the sampling rate and sd as the sampling distance
function. Here, sr is inversely proportional to the distance between
sampling rays. We first precompute a coefficient C satisfying the
integral equation: ∫ lr

0
C · sd(s)ds= lr, (5)

sd(s)=
1

sr
. (6)

Then for each ray j, the distance between its real start point and
the lens center can be calculated using Equation 7, which is the
discrete form of the distance integral.

distance(j)=
steps

∑
i=0

C · sd(i). (7)

Figure 10 shows the results with the sampling-rate-based lenses,
comparing it with the results obtained with no lens and with the
magnifier. The toes of the foot are rendered with different mag-
nification effects. The difference between Figure 10b and 10c is
mainly caused by the different magnification factor distributions on
the lenses. For the magnifier, the factors for points, which project
into the magnification region and locate on the same plane paral-
lel to the image plane, are the same. Therefore, objects with the
same depth are magnified uniformly. However, for the lens with
cubic sampling function, the factor is the highest on the lens center
and decreases gradually towards the lens boundary. Objects with
projections closer to the lens center are magnified with higher mag-
nification factors. Along any ray, the factor remains the same for
different depthes.

3.4 Angular lens

A common widely used lens is the fisheye lens [2], and our GPU
accelerated general volumetric lens framework supports this type
of lens as well. The fisheye lens is a specially designed lens which
achieves wider viewing angles. The original fisheye lenses were
photometric lenses designed to take photos of the entire sky. There
are two main idealized fisheye projections, the hemispherical and

Normal
sampling
rate

Maximal
sampling
rate

Sampling rate

Disance

to LC

Minimal
sampling rate

lr

Figure 11: Another sampling rate function.

the angular fisheye, which are common in computer graphics ren-
dering [2]. The hemispherical fisheye is less used due to the dis-
tortion introduced. An angular fisheye projection can be used for
angles up to 360 degrees and is defined such that the distance from
the pixel P to the center of the image is proportional to the angle α
of the viewing direction (see Figure 12a). The ray direction corre-
sponding to any pixel on the image can be calculated by a special
transform from pixel coordinates to 3D polar coordinates [2]. Fig-
ure 12b shows an image of a 180 degrees view on a bonsai with an
angular lens.

Eye

Image plane

Ray
direction

P
a

(a) (b)

Figure 12: Angular lens. (a) Angular fisheye lens with 180 degrees
illustration, (b) 180 degrees view of a bonsai with an angular fisheye
lens.

Our framework is based on a ray casting volume rendering
scheme. This allows us to walk into the interior of the object to
see the augmented volume rendering results. By using an angu-
lar lens, larger view port angles can be achieved and more objects
can be accommodated in the final image. This is helpful in many
interior volume rendering scenarios. A good example is virtual
colonoscopy [10]. When navigating inside the colon, more areas
can be viewed to achieve a more efficient observation. Figure 13
shows the result of viewing a colon from a point on the centerline
of the colon. Comparing this with a normal perspective view with
120 degrees, more information can be obtained when using a 180
degrees angular lens.

(a) (b)

Figure 13: Virtual tour of the colon. (a) Perspective view with angle
120 degrees, (b) 180 degrees view with an angular fisheye lens.

4 HARDWARE ACCELERATION

To achieve interactive focus+context volume rendering, we have
implemented all of our volumetric lenses on contemporary graphic
hardware. In GPU-accelerated ray casting volume rendering [14],
front faces and back faces of the volume bounding box are drawn
using OpenGL in two fragment passes to get the start and end points
for all the rays. However, this approach can not be used for our vol-
umetric lens. Because ray directions are not always orthogonal or
perspective, we have to calculate the start and end points of each ray
for the various lens algorithms described earlier. Hence, we imple-
mented our own ray casting rendering algorithms with lens effects
on the GPU. At first, we calculate the ray directions using the ap-
propriate lens rules. Then, the intersection points of each ray with
the bounding box of the volumetric object are computed. Finally,
a ray traversal algorithm is implemented for a given step size, with
the volume data (density, gradient or color) stored in 3D textures.
All these algorithms are translated into Cg fragment programs. The
current GPUs (e.g., NVIDIA GeForce 6800) have the required fea-
tures, such as loop, early termination and branches, making it pos-
sible to implement our ray traversal method efficiently.

For our magnifier and angular lenses, we use four passes frag-
ment programs as follows:

• Pass 1: RayDirection Calculate the ray direction for each
fragment based on the view port and lens parameters. Also
the information about whether a ray goes through the lens or
hits the feature of interest, or the distance to the lens center
can be obtained to achieve different rendering effects.

• Pass 2: RayTfrontback Compute the intersections of each
ray with the volume bounding box, and store the distances
from the front and back intersection points to the ray start
point, denoted as t front and t back, which will be used along
with the ray direction and view port parameters to define the
intersection points in the next pass.

• Pass 3: RayCasting Cast the ray into the volume and com-
posite the color based on the volume data and transfer func-
tion. Different traditional volume rendering modes can be eas-
ily added into this pass.

• Pass 4: Rendering Output the rendering results to the frame
buffer.

For the feature-based lens, one more pass called Pass 1+:
RayLensBorder, is added before Pass 2, to calculate the distance
field for the lens transition region and change the ray directions
based on the distance.

For sampling-rate-based lenses, ray directions are never
changed, but the real ray start points need to be computed. We also
use the four-pass fragment programs, but the first pass is changed to
Pass 1*: RayStartPoints, which computes the ray start points used
in later passes.

Table 1: GPU performance for different volume datasets.

Volume lens method Simple ray casting

Data Data size Rendering speed (ms) Frames/second Rendering speed (ms) Frames/second

lobster 128×128×128 70 14.2 61 16.4

engine 256×256×110 95 10.5 74 13.6

bonsai 256×256×128 110 9 95 10.5

foot 154×263×222 97 10.3 90 11.1

aneurism 256×256×256 186 5.4 158 6.3

frog 502×472×138 308 3.3 258 3.9

(a) (b)

(c) (d)

Figure 14: Magnification results. (a) and (b) are DVR results without
and with magnifier, (c) and (d) are DVR with gradient magnitude
modulation results without and with magnifier.

5 RESULTS

We have implemented our methods on a Pentium Xeon 2.4GHz
CPU with 2.5GB memory and an NVIDIA GeForce 6800 Ultra
GPU with 256MB memory. In Table 1, we report the data size and
the performance of our method with GPU-accelerated computation.
For comparison, we also include the performance of a simple ray
casting volume renderer (utilizing the front faces and back faces)
with the same data sets on the same GPU. All the performances are
tested with 512×512 images and with a 1.0 step size. Note that our
method has not been optimized for the GPU, therefore, we com-
pare it with the simple ray casting implementation, which is also
unoptimized. Our volume lens methods only slightly increase the
rendering time comparing to the general ray casting method. In the
future, we will implement the standard optimization methods, such

(a) (b)

Figure 15: Feature-based lens results. (a)-(b) Feature frog heart is
magnified, rendered with two level volume rendering method. The
bone and eye retia are rendered with MIP, all other features are
rendered with DVR, with different transfer function for each feature.

as empty space skipping to improve the performance. For example,
the speed for aneurism data can be dramatically accelerated with
space skipping.

As a ray casting based augmentation for volume rendering, our
volumetric lenses can be combined with many volume rendering
modes, for example, direct volume rendering (DVR), MIP and DVR
with no shading, DVR with gradient magnitude modulation, XRay
and the two level volume rendering method for segmented data. We
show results with several rendering methods in Figure 14, Figure 15
and Figure 16.

Our lenses can be used to interactively choose and magnify re-
gions or features of interest to see small details more clearly while
the context region remains. The size and shape of the lenses, and
the magnification factor also can be changed interactively, which al-
lows the user to adjust the lenses for desired results. Demo videos
that show the interactive volume lens renderings can be obtained at
http://www.cs.sunysb.edu/∼lujin/paper/vis05.

6 CONCLUSIONS

We have described a universal and general volumetric lens frame-
work that has applications in many domains. It allows users to ap-
ply any well known lenses, such as a fisheye lens in the context
of volumetric distortion, as well as design free-style and feature-
adaptive lenses for arbitrary magnified focus+context viewing. For
example, coupled with a GPU-based interactive segmentation al-
gorithm it can be used to magnify the segmentation result at great
detail and aid in its refinement. The support for free-style lenses,
created with our lens design interface, can help illustrators to de-
signed more helpful and informative visualizations of volumetric
objects, emphasizing an arbitrary shaped region of interest without

(a) (b)

(c) (d)

Figure 16: Feature magnification results with magnification factor
increasing from (a) to (d).

losing the context of its surround. Finally, the GPU acceleration of
our magic volume lens allows all of these to be done at interactive
speeds, fostering both creative design and exploration.

In future work, we would like to extend this free-style zooming
capabilities to multi-resolution data and to semantic zooms, where
the data appearing under magnification comes from a different data
source, or even texture synthesis. It may also proof helpful to users
to provide an option for superimposing a lens-distorted lattice on
top of the lens area, to aid in the assessment of the non-linear mag-
nification effects.

ACKNOWLEDGEMENTS

This work has been supported by NSF grants CCR-0306438 and
ACI-0093157. The datasets are courtesy of GE, National Library
of Medicine, Lawrence Berkeley National Laboratory, Philips Re-
search, Hamburg, Germany, Stony Brook University Hospital, and
HuminTec Inc., Korea. Special thanks to Wei Hong and Feng Qiu
for their contributions and valuable discussions in GPU based ray
casting implementation, Satprem Pamudurthy for proof reading the
paper, and the anonymous reviewers for their thoughtful comments.

REFERENCES

[1] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Tool-

glass and magic lenses: The see-through interface. Computer Graph-

ics, 27:73–80, 1993.

[2] P. Bourke. Computer generated angular fisheye projections.

URL://astronomy.swin.edu.au/∼pbourke/projection/fisheye/, 2001.

[3] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. Dis-

tortion viewing techniques for 3-dimensional data. In Proc. of IEEE

Symposium on Information Visualization ’96, pages 46–53, 1996.

[4] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. Extend-

ing distortion viewing from 2D to 3D. IEEE Computer Graphics and

Applications: Special Issue on Information Visualization, 17(4):42–

51, 1997.

[5] P. Cignoni, C. Montani, , and R. Scopigno. Magicsphere: an insight

tool for 3d data visualization. Computer Graphics Forum (Proc. of

EUROGRAPHICS ’94), 13(3):317–328, 1994.

[6] M. Cohen and K. Brodlie. Focus and context for volume visualization.

In Proc. of Theory and Practice of Computer Graphics ’04, pages 32–

39, 2004.

[7] J. Diepstraten, D. Weiskopf, and T. Ertl. Interactive cutaway illustra-

tions. In Proc. of EUROGRAPHICS ’03, pages 523–532, 2003.

[8] M. Hadwiger, C. Berger, and H. Hauser. High-quality two-level vol-

ume renderingof segmenteddata sets on consumergraphics hardware.

In Proc. of IEEE Visualization ’03, pages 40–47, 2003.

[9] H. Hauser, L. Mroz, G.-I. Bischi, and E. Gröller. Two-level volume

rendering-fusing mip and dvr. In Proc. of IEEE Visualization ’00,

pages 211–218, 2000.

[10] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual voyage:

Interactive navigation in the human colon. In Proc. of SIGGRAPH ’97,

pages 27–34, 1997.

[11] T. Keahey and E. Robertson. Techniques for non-linear magnification

transformations. In Proc. of IEEE Symposium on Information Visual-

ization ’96, pages 38–45, 1996.

[12] T. Keahey and E. Robertson. Nonlinear magnification fields. In Proc.

of IEEE Symposium on Information Visualization ’97, pages 41–49,

1997.

[13] C. Kolb, D. Mitchell, and P. Hanrahan. A realistic camera model for

computer graphics. In Proc. of the 22nd annual conference on Com-

puter graphics and interactive techniques, pages 317–324, 1995.

[14] J. Krüger and R. Westermann. Acceleration techniques for GPU-based

volume rendering. In Proc. of IEEE Visualization ’03, pages 287–292,

2003.

[15] E. LaMar, B. Hamann, and K. I. Joy. A magnification lens for interac-

tive volume visualization. In Proc. of the Ninth Pacific Conference on

Computer Graphics and Applications, pages 223–232, 2001.

[16] Y. K. Leung and M. D. Apperley. A review and taxonomy

of distortion-oriented presentation techniques. ACM Trans. on

Computer-Human Interaction, 1(2):126–160, 1994.

[17] M. Levoy and R. Whitaker. Gaze-directed volume rendering. Com-

puter Graphics (Proc. of Symposium on Interactive 3D Graphics ’90),

24(2):217–223, 1990.

[18] M. J. McGuffin, L. Tancau, and R. Balakrishnan. Using deformations

for browsing volumetric data. In Proc. of IEEE Visualization ’03,

pages 401–408, 2003.

[19] R. Perlman. Light and color. Golden Press, 1971.

[20] B. Pflesser, U. Tiede, and K. H. Höhne. Towards realistic visualization

for surgery rehearsal. In Proc. of Computer Vision, Virtual Reality and

Robotics in Medicine, pages 487–491, 1995.

[21] M. Tory and C. Swindells. Comparing exovis, orientation icon, and

in-place 3d visualization techniques. In Proc. of Graphics Interface

’03, pages 57–64, 2003.

[22] I. Viola, A. Kanitsar, and M. E. Gröller. Importance-driven volume

rendering. In Proc. of IEEE Visualization ’04, pages 139–145, 2004.

[23] X. Wei, A. E. Kaufman, and T. J. Hallman. Case study: visualization

of particle track data. In Proc. of IEEE Visualization ’01, pages 465–

468, 2001.

[24] J. Zhou, A. Döring, and K. D. Tönnies. Distance based enhancement

for focal region based volume rendering. In Proc. of Bildverarbeitung

für die Medizin ’04, pages 199–203, 2004.

[25] J. Zhou, M. Hinz, and K. D. Tönnies. Focal region-guided feature-

based volume rendering. In Proc. of 1st International Symposium

on 3D Data Processing Visualization and Transmission, pages 87–90,

2002.

