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ABSTRACT

This paper evaluates and compares four volume renderi
algorithms that have become rather popular for rendering datase
described on uniform rectilinear grids: raycasting, splatting
shear-warp, and hardware-assisted 3D texture-mapping. In ord
to assess both the strengths and the weaknesses of these algori
in a wide variety of scenarios, a set of real-life benchmark datase
with different characteristics was carefully selected. In the rende
ing, all algorithm-independent image synthesis parameters, su
as viewing matrix, transfer functions, and optical model, were ke
constant to enable a fair comparison of the rendering results. Bo
image quality and computational complexity were evaluated a
compared, with the aim of providing both researchers and prac
tioners with guidelines on which algorithm is most suited in whic
scenario. Our analysis also indicates the current weaknesses
each algorithm’s pipeline, and possible solutions to these as w
as pointers for future research are offered.

1 INTRODUCTION
Volume visualization methods display volumetric dataset

represented as sample points, on computer screens, head-mou
displays, group-immersive projection media (i.e., virtual work
bench, CAVE), and large projection screens (i.e., PowerWall). Tw
avenues can be taken to achieve this:
• The volumetric data are first converted into a set of polygonal is

surfaces (i.e., via Marching Cubes [23]) and subsequently re
dered with polygon rendering hardware. This is referred to
indirect volume rendering (IVR).

• The volumetric data are directly rendered without the intermed
ate conversion step. This is referred to as direct volume render
(DVR) [10][11][35][42].

The former assumes (i) that a set of extractable iso-surfac
exists, and (ii) that with the infinitely thin surface the polygo
mesh models the true object structures at reasonable fidelity. N
ther is always the case, and as illustrative examples may serve
amorphous cloud-like phenomena, (ii) smoothly varying flo
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fields, or (iii) structures of varying depth (and varying transpare
cies of an isosurface) that attenuate traversing light correspond
to the material thickness. But even if both of these assumptions
met, the complexity of the extracted polygonal mesh can ove
whelm the capabilities of the polygon subsystem, and a direct v
ume rendering may prove more efficient [33], especially when t
object is complex or large, or when the isosurface is interactive
varied and the repeated polygon extraction overhead must be
ured into the rendering cost [3].

In this paper, we concern ourselves solely with the direct vo
ume rendering approach and with volumetric datasets that
described on cubic and uniform rectilinear grids, i.e., grids wi
anisotropic spacing along the three grid axes. Datasets of t
nature are commonly obtained by means of volumetric scann
devices, such as MRI, CT, and confocal microscopy, by simu
tions, or by resampling of formerly irregularly gridded scientifi
datasets. Four techniques have emerged as particularly popula
this arena: Raycasting [41][19], Splatting [46], Shear-warp [18
and 3D texture-mapping hardware-based approaches [6].

Over the years, many researchers have worked independe
on refining these four methods, and due to this multifarious effo
all methods have now reached a high level of maturity. Most of th
development, however, has evolved along separate paths (altho
some fundamental scientific progress has benefited all method
such as advances in filter design [7][4][28] or efficient shadin
[36][44]). A number of frequently used and publicly available
datasets exists (e.g., the UNC CT / MRI heads or the CT lobste
however, due to the large number of parameters that were not c
trolled across presented research, it has so far been difficult
assess the benefits and shortcomings of each method in a dec
manner. The generally uncontrolled parameters include (apart fr
hardware architecture, available cache, and CPU clock spee
shading model, viewing parameters, scene illumination, trans
functions, optical model, image sizes, and magnification facto
Further, so far, no common set of evaluation criteria exists th
enables fair comparisons of proposed methods with existing on
Addressing this problem, it is one of the goals of this paper
establish an appropriate set of benchmark scenarios and evalua
criteria that can be used to compare both newly evolving a
improved DVR methods with existing ones. The need for a cle
specification of rendering parameters before any image comp
son takes place was recognized by Williams and Uselton in [4
where a detailed specification of these influential rendering para
eters is given. In the same work, metrics to identify the amount
noise, bias, and structural artifacts are also introduced. Some w
in comparing different rendering methods has been conducted
Bartz et. al. [3] who compared DVR using raycasting with IVR
using marching cubes for iso-surface extraction, while Tiede et.
[39] have compared gradient filters for raycasting and marchi
cubes. Finally, Kwansik et.al [16] have contrasted a variety of ra
casting implementations and other volume rendering algorithms
ways of artificial test datasets and assessed the rendering qualit
computing the RMS error and other statistical metrics. Both Wi
iams and Uselton and Kwansik et.al have focused mainly on qu
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ity. We shall complement these endeavors here with comparing the
aforementioned volume rendering methods also in terms of render-
ing performance, on real-life datasets. Rendering quality will only
be assessed visually.

The time for such comparative studies is clearly appropriate,
as all of these volume rendering techniques have reached a high
degree of maturity and quite a few heated arguments among
researchers have revolved around the question of which algorithm
is best. It is clear that such a clear-cut answer is unlikely to exist,
and thus it is not expected that one single algorithm will emerge as
an overall first choice in our, or any other, study. Rather, the results
gathered here are aimed at providing the community with certain
guidelines to determine under what conditions and premises each
volume rendering algorithm is most adequately chosen and
applied.

The outline of this paper is as follows. First, in Section 2, we
describe two common optical models in which all four algorithms
operate. Then, in Section 3, we discuss the peculiarities of the four
algorithms with respect to this theoretical framework. In Section 4,
we outline our benchmark scenarios and their evaluation criteria,
and in Section 5 we present the results of our study. Section 6,
closes the paper with concluding remarks and gives an outlook
onto further studies and enhancements of our benchmarks.

2 COMMON OPTICAL MODEL
We can write all four investigated volume rendering methods

as approximations of the well-known low-albedo volume rendering
integral, VRI [5][17][26][15]. The VRI analytically computes
Iλ(x,r), the amount of light of wavelengthλ coming from ray
directionr that is received at locationx on the image plane:

(1)

Here,L is the length of rayr. If we think of the volume as
being composed of particles with certain densities (or light
extinction coefficients [26])µ, then these particles receive light
from all surrounding light sources and reflect this light towards the
observer according to their specular and diffuse material
properties. In addition, the particles may also emit light on their
own. Thus, in (1), Cλ is the light of wavelengthλ reflected and/or
emitted at locations in the direction ofr. To account for the higher
reflectance of particles with larger densities, we must weigh the
reflected color by the particle density. The light scattered ats is
then attenuated by the densities of the particles betweens and the
eye according to the exponential attenuation function.

At least in the general case, the VRI cannot be computed
analytically [26]. Hence, practical volume rendering algorithms
discretize the VRI into a series of sequential intervalsi of width ∆s:

(2)

Using a Taylor series approximation of the exponential term
and dropping all but the first two terms, we get the familiar
compositing equation [20]:

(3)

We denote this expression as discretized VRI (DVRI), where
opacity . Expression (3) represents a
common theoretical framework for all surveyed volume rendering

algorithms. All algorithms obtain colors and opacities in discre
intervals along a linear path and composite them in front to ba
order. However, the algorithms can be distinguished by the proc
in which the colorsC(si) and opacitiesα(si) are calculated in each
interval i, and how wide the interval width∆s is chosen.

The position of the shading operator in the volume renderi
pipeline also affectsC(si) and α(si). For this purpose, we distin-
guish the pre-shaded from the post-shaded volume rendering p
line. In the pre-shaded pipeline, the grid samples are classified
shadedbeforethe ray sample interpolation takes place. We deno
this as Pre-DVRI (pre-shaded DVRI) and its mathematical expre
sion is identical to (3). It was recently shown by Wittenbrink et. a
[48] that it is incorrect to interpolate voxel colors and opacitie
separately and then compute the productC(si)·α(si). Rather, one
must multiply color and opacity beforehand at each voxel and th
interpolate the product. One disturbing feature of Pre-DVRI is th
it tends to excessive blurring when the image resolution excee
that of the volume, which occurs in zoomed viewing or at wid
perspectives [30][13].

The blurriness can be eliminated by switching the order
classification/shading and ray sample interpolation. Then, the or
inal density volumef is interpolated and the resulting sample va
ues f(i) are classified, via transfer functions, to yield materia
opacity, and color. All blurry parts of the edge image can b
clipped away using the appropriate classification function [30
Shading follows immediately after classification and requires t
computation of gradients from the density grid. The resultin
expression is termed Post-DVRI (post-shaded DVRI) and is wr
ten as follows:

(4)

C andα are now transfer functions, commonly implemente
as lookup-tables. Since in Post-DVRI the raw volume densities a
interpolated and used to index the transfer functions for color a
opacity, fine detail in these transfer functions is readily express
in the final image. One should note, however, that Post-DVRI is n
without problems: Due to the partial volume effect, a density mig
be interpolated that is classified as a material not really presen
the sample location, which can lead to false colors in the fin
image. This can be avoided by prior segmentation, which, howev
can add severe staircasing artifacts due to introduced high-
quency.

Expressions (3) and (4) represent two common optical mod
for the four surveyed algorithms, depending on the order of t
classification/interpolation components. The algorithms diff
mostly in the way interpolation and sampling is performed and al
how interpolations are avoided in less relevant or irrelevant volum
regions.

3 DISTINGUISHING FEATURES
Our comparison will focus on the conceptual difference

between the algorithms, and not so much on ingenious measu
that speed runtime. Since numerous implementations for ea
algorithm exist — mainly providing acceleration — we will selec
the most general implementation for each, employing the mo
popular components and parameter settings. More specific imp
mentations can then use the benchmarks introduced later to c
pare the impact of their improvements. We have summarized
conceptual differences of the four surveyed volume rendering alg
rithms as well as our assumptions in Table 1, for convenience.

3.1 Raycasting

Of all volume rendering algorithms, Raycasting has seen t

I λ x r,( ) Cλ s( )µ s( )e
µ t( ) td

0

s
∫– 

 

0

L
∫ ds=

I λ x r,( ) Cλ si( )µ si( )∆s e
µ sj( )∆s–( )

j 0=

i 1–

∏⋅
i 0=

L ∆s⁄
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largest body of publications over the years. Researchers have used
Pre-DVRI [20][21] as well as Post-DVRI [12][39][2][40]. The
density and gradient (Post-DVRI), or color and opacity (Pre-
DVRI), in each DVRI interval are generated via point sampling,
most commonly by means of a trilinear filter from neighboring
voxels (grid points) to maintain computational efficiency, and sub-
sequently composited. Most authors space the ray samples apart in
equal distances∆s, but some approaches exist that jitter the sam-
pling positions to eliminate patterned sampling artifacts, or apply
space-leaping [10][49] for accelerated traversal of empty regions.
For strict iso-surface rendering, recent research analytically com-
putes the location of the iso-surface, when the ray steps into a
voxel that is traversed by one [33].

But in the general case, the Nyquist theorem needs to be
obeyed which states that we should choose∆s≤1.0 (i.e., one voxel
length) if we do not know anything about the frequency content in
the sample’s local neighborhood. Then, for Pre-DVRI and Post-
DVRI raycasting, the C(si), α(si), and f(si) terms in equations (3)
and (4), respectively, are written as:

(5)

Note that α needs to be normalized for∆s≠1.0 [22]. Our
implementation uses early ray termination, which is a powerful
acceleration method of raycasting where rays can be terminated
when the accumulated opacity has reached a value close to unity.
Furthermore, all samples and corresponding gradient components
are computed by trilinear interpolation of the respective grid data.

3.2  Splatting

Splatting was proposed by Westover [46], and it works by
representing the volume as an array of overlapping basis functions,
commonly Gaussian kernels with amplitudes scaled by the voxel
values. An image is then generated by projecting these basis func-
tions to the screen. The screen projection of these radially symmet-
ric basis function can be efficiently achieved by the rasterization of
a precomputed footprint lookup table. Here, each footprint table
entry stores the analytically integrated kernel function along a tra-
versing ray. A major advantage of splatting is that only voxels rele-
vant to the image must be projected and rasterized. This can
tremendously reduce the volume data that needs to be both pro-
cessed and stored [31].

The traditional splatting approach [46] summed the voxel ker-
nels within volume slices most parallel to the image plane. This
was prone to severe brightness variations in animated viewing and
also did not allow the variation of the DVRI interval distance∆s.
Mueller et. al. proposed a method [32] that eliminates these draw-
backs by processing the voxel kernels within slabs of width∆s,
aligned parallel to the image plane — hence the approach was
termedimage-aligned splatting: All voxel kernels that overlap a

slab are clipped to the slab and summed into a sheet buffer,
lowed by compositing the sheet with the sheet before. Efficie
kernel slice projection is achieved by analytical pre-integration
an array of kernel slices and using fast slice footprint rasterizati
methods [14]. Both Pre-DVRI [46] and Post-DVRI [30] are poss
ble1, and theC(si), α(si), andf(si) terms in equations (3) and (4) are
now written as:

(6)

We observe that splatting replaces the point sample of ra
casting by a sample average across∆s. This introduces an addi-
tional low-pass filtering step that helps to reduce aliasin
especially in isosurface renderings and when∆s>1.0. Splatting also
typically uses rotationally symmetric Gaussian kernels, which ha
better anti-aliasing characteristics than linear filters, with the si
effect that they perform some signal smoothing. Splatting can us
concept similar to early ray termination: early splat elimination
based on a dynamically computed screen occlusion map, that (c
servatively) culls invisible splats early from the rendering pipelin
[31]. The main operations of splatting are the transformation
each relevant voxel center into screen space, followed by an in
into the occlusion map to test for visibility, and in case it is visible
the rasterization of the voxel footprint into the sheetbuffer. Th
dynamic construction of the occlusion map requires a convoluti
operation after each sheet-buffer composite, which, however, c
be limited to buffer tiles that have received splat contributions
the current slab [31]. It should be noted that, although early sp
elimination saves the cost of footprint rasterization for invisib
voxels, their transformation must still be performed to determin
their occlusion. This is different from early ray termination wher
the ray stops and subsequent voxels are skipped.

3.3  Shear-Warp

Shear-warp was proposed by Lacroute and Levoy [18] a
has been recognized as the fastest software renderer to dat
achieves this by employing a clever volume and image encod

Cλ si( ) Cλ i∆s( )= α si( ) α i∆s( )= f si( ) f i∆s( )=

1. Note that the original splatting method [46] was commonly only
used with Pre-DVRI, and therefore partial volume effects were never
observed. The more recent, higher-quality splatting approach ha
been used with both Pre-DVRI [32] and Post-DVRI [30], with the lat-
ter possibly introducing artifacts due to the partial volume effect.

Cλ si( )
Cλ s( ) sd

i∆s

i 1+( )∆s
∫

∆s
----------------------------------------------= α si( )

α s( ) sd
i∆s

i 1+( )∆s
∫

∆s
-------------------------------------------=

f si( )
f s( ) sd

i∆s

i 1+( )∆s
∫

∆s
------------------------------------------=
Table 1:  Distinguishing features and commonly used parameters of the four surveyed volume rendering algorithms

Raycasting Splatting Shear-Warp 3D Texture Mapping

Sampling rate freely selectable freely selectable fixed [1.0, 0.58] freely selectable

Sample evaluation point sampled averaged across∆s point sampled point sampled

Interpolation kernel trilinear Gaussian bilinear trilinear

Rendering pipeline post-classified post-classified pre-classified,
opacity-weighted colors

pre-classified,
no opacity-weighted colors

Acceleration early ray termination early splat elimination RLE opacity encoding graphics hardware

Precision/channel floating point floating point floating point 8-12 bits

Voxels considered all relevant relevant all
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scheme, coupled with a simultaneous traversal of volume and
image that skips opaque image regions and transparent voxels. In a
pre-processing step, voxel runs are RLE-encoded based on pre-
classified opacities. This requires the construction of a separate
encoded volume for each of the three major viewing directions.
The rendering is performed using a raycasting-like scheme, which
is simplified by shearing the appropriate encoded volume such that
the rays are perpendicular to the volume slices. The rays obtain
their sample values via bilinear interpolation within the traversed
volume slices. A final warping step transforms the volume-parallel
baseplane image into the screen image. The DVRI interval distance
∆s is view-dependent, since the interpolation of sample values only
occurs in sheared volume slices. It varies from 1.0 for axis-aligned
views to 1.41 for edge-on views to 1.73 for corner-on views, and it
cannot be varied to allow for supersampling along the ray. Thus the
Nyquist theorem is potentially violated for all but the axis-aligned
views.

The Volpack distribution from Stanford [1] only provides for
Pre-DVRI, but conceptually Post-DVRI is also feasible, however,
without opacity classification if shear-warp’s fast opacity-based
encoding is supposed to be used. Shear-warp uses opacity-
weighted colors in its Pre-DVRI interpolation. TheC(si), α(si), and
f(si) terms in equations (3) and (4) are written similarly to raycast-
ing, but with the added constraint that∆s is dependent on the view
direction:

(7)

where [dx, dy, dz]T is the normalized viewing vector, reor-
dered such thatdz is the major viewing direction. In Volpack, the
number of rays sent through the volume is limited to the number of
pixels in the base plane (i.e., the resolution of the volume slices in
view direction). Larger viewports are achieved by bilinear interpo-
lation of the resulting image (after back-warping of the base
plane), resulting in a very low image quality if the resolution of the
viewport is significantly larger than the volume resolution. This
can be fixed by using a scaled volume with a higher volume resolu-
tion.

3.4 3D Texture-Mapping Hardware

The use of 3D texture mapping was popularized by Cabral [6]
for non-shaded volume rendering. The volume is loaded into tex-
ture memory and the hardware rasterizes polygonal slices parallel
to the viewplane. The slices are then blended back to front, due to
the missing accumulation buffer forα. The interpolation filter is a
trilinear function (on SGI’s RE2 and IR architectures, quadlinear
interpolation is also available, where it additionally interpolates
between two mipmap levels), and the slice distance∆s can be cho-
sen freely. A number of researchers have added shading capabili-
ties [9][27][43][45], and both Pre-DVRI [43] and Post-DVRI
[45][9][27] are possible. The latter requires multi-pass methods.
Usually, the rendering is brute-force, without any opacity-based
termination acceleration, but some researchers have done this [9].
The drawbacks of 3D texture mapping is (i) that it is still limited to
expensive, proprietary graphics hardware (SGI, Hewlett-Packard
as OpenGL extension), and (ii) that larger volumes require the
swapping of volume bricks in and out of the limited-sized texture
memory (usually 4MB for smaller machines). Texture-mapping
hardware interpolates samples in similar ways to raycasting and
hence theC(si), α(si), andf(si) terms in equations (3) and (4) are
written as:

(8)

The factor that constrains quality in 3D texture mapping har
ware approaches is the fact that the framebuffer has limited bit r
olution (8-12 bits). This is far less than the floating point precisio
that can be obtained with the software algorithms. We have fou
that the limited bit-resolution severely limits the use of opacity
weighted colors, since the opacity-weighting reduces the color v
ues below the resolution of the framebuffer when the opacities
low. This limits the compositing of low intensity volume areas wit
low opacities. As a remedy, one could scale the voxel colors
before opacity-weighting, but then one may saturate other are
We have therefore chosen not to use opacity-weighted colors
the 3D texture mapping hardware.

4 EXPERIMENTAL METHODS
In this section, we will describe the complete rendering env

ronment, i.e., shading model, viewing parameters, lighting, a
transfer functions. We also introduce the benchmark datasets. T
section completes the full specification of the rendering paramet
used in our experiments and yields a comprehensive set of ben
mark scenarios for the evaluation of DVRs.

4.1 Shading model and compositing

All approaches use the same shading model:

(9)

whereCλ is the rendered color,f is the (grid or interpolated)
density value, CLUT is the color transfer function implemented
a lookup table,IL is the color of the lightsource, andka, kd, ks are
the ambient, diffuse, and specular coefficients of the object ma
rial, respectively.N is the normal vector andH is the half vector,
respectively.

All algorithms, except 3D texture-mapping hardware (se
above), use front-to-back compositing [34][20]:

(10)

The opacityα is obtained from the (interpolated or grid) den
sity via indexing of anα-transfer function, implemented as a
lookup table. For the pre-shaded renderers, the color is opac
weighted [48] (i.e., thecbαb product in (10) is interpolated).

4.2 Viewing, lighting, transfer functions and datasets

We can characterize a volumetric object by the amount of r
evant material contained in its convex hull. We will denote th
measure ascompactness. A highly compact object, such as a brain
or an engine block, fills a large percentage of its enclosing spa
On the other hand, a highly dispersed object, such as a gang
nerve cell or a blood vessel tree, has relatively few relevant vox
within its convex extent. We may add that the compactness o
volume is not always pre-defined, but can be altered by the opac
transfer function. Thus, a formerly compact object, such as an M
head, may turn into a sparse and dispersed object, such as a b
vessel tree. Volume rendering algorithms can take advantage
this, with varying level of complexity. Splatting, by default, only
renders the relevant voxels, no matter how compact they are s
tially. Raycasting must traverse the empty regions, but can u
space-leaping [49] or polygon-assisted raycasting (i.e., PARC [3
to traverse these regions quickly. However, the more twisted
object is, the more polygons are needed for PARC and the l
effective space-leaping becomes. Finally, shear-warp encodes
sparseness in its RLE runs. Both of the latter methods requir
pre-processing step to generate the volume encoding.

Apart from compactness, another useful measure is t
amount of voxel material that contributes to a pixel. This will b

Cλ si( ) Cλ i∆s( )= α si( ) α i∆s( )= f si( ) f i∆s( )=

∆s
dx
dz
------ 

  2 dy
dz
------ 

  2
1+ +=

Cλ si( ) Cλ i∆s( )= α si( ) α i∆s( )= f si( ) f i∆s( )=

Cλ CLUTλ f[ ] kaI a kd NL( )I L+( ) ks NH( )ns
I L+=

c f c f C+
b

αb 1 α f–( )=

α f α f α+
b

1 α f–( )=
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referred to as thepixel content. Semi-transparent renderings of a
particular object consider significantly more object voxels than
opaque renderings. Here, we distinguish the following rendering
modes: Semi-transparent with embedded opaque objects, fully
semi-transparent with no embedded opaque objects, or fully
opaque objects (i.e, a single iso-surface). To test our volume ren-
dering algorithms under a broad scope of scenarios, we have
selected a set of five benchmark datasets and opacity transfer func-
tions, each representing a different combination of compactness
and pixel content1. These are summarized in Table 2. In this table,
we have also listed a dataset named Marschner-Lobb [25], which
will be used to assess rendering quality in a quantitative manner.
We will expand on this further below. The datasets are:
• Fuel injection: Physical simulation of diesel being injected into a

cylinder of an engine filled with air. This is a semi-transparent,
but compact, representation that requires many samples to be
taken for each pixel.

• Neghip: Physical simulation of a high potential protein represent-
ing the electron probability around each atom (blue is high, green
is medium, and red is low). This dataset has some dispersed ele-
ments.

• Skull: Rotational biplane X-ray scan of a human head. Bones and
teeth are well scanned. The classification of the data into skull
and teeth yields moderate compactness. The opacity transfer
function also enables early ray termination, and many voxels are
occluded.

• Blood vessel: Rotational biplane X-ray (rotational angiography)
scan of a human brain where a contrast agent has been injected
into the blood to capture the blood vessel. This dataset is charac-
terized by its very low compactness and pixel content.

• Shockwave: Simulation of a unsteady interaction of a planar
shockwave with a randomly-perturbed contact discontinuity, ren-
dered with a highly translucent transfer function. All voxels
potentially contribute to the display.

• Marschner-Lobb: High frequency test dataset, rendered as an iso-
surface.

Both rendering quality and expense is likely to be dependent
on viewpoint, magnification, as well as image size. To study these
effects, we have rendered the datasets at four to five magnification
levels each and into six image dimensions, i.e., 64, 128, 256, 512,
1024, and 2048 pixels squared. Here, we aimed to cover all avail-
able display media ranges (sorted from small to large): Java render-
ing over the web, head-mounted display, computer screen, high-
definition screen, CAVE projection wall, and PowerWall. To get
statistically valid results we have also rendered a series of 24
images at random viewpoints over an enclosing sphere. No frame-
to-frame coherence in either data access or rendering was
exploited. A specific storage order of the volumes was not allowed

(Volpack with its three encoded volumes is an exception). Diag
nal views are especially testing for the shear-warp algorithm
terms of quality (the ray step size is significantly below Nyquist
and for the splatting algorithm in terms of rendering time (th
bucket-tossing of the splats into the slabs is non-trivial). Rayca
ing may incur some caching delays when the volume is acces
out of stride, while the texture mapping hardware will most likel
be least sensitive to the change of viewing directions.

4.3 Assessment of image quality

It is difficult to evaluate rendering quality in a quantitative
manner. Often, researchers simply put images of competing al
rithms side by side, appointing the human visual system (HVS)
be the judge. It is well known that the HVS is less sensitive to som
errors (stochastic noise) and more to others (regular patterns),
interestingly, sometimes images with larger numerical errors, e
RMS, are judged as worse by a human observer than images w
lower numerical errors [38]. So it seems that the visual comparis
is more appropriate than the numerical, since after all we produ
images for the human observer and not for error functions. In th
respect, an error model that involves the HVS characteristics [2
would be more appropriate than a purely numerical one. But nev
theless, to perform such a comparison we still need the true volu
rendered image, obtained by analytically integrating the volum
via equation (1) (neglecting the prior reduction of the volume re
dering task to the low-albedo case). As was pointed out by M
[26], analytical integration can be done when assuming that C
andµ(s) are piecewise linear. This is, however, somewhat restr
tive on our transfer functions. Hence we decided to employ visu
quality assessment only.

Apart from the real-life datasets, we also chose a particula
challenging dataset for visual quality assessment: the Marschn
Lobb function [25]. This three-dimensional function is made of
combination of sinusoids and contains very high frequencies, ho
ever, 99.8% of these are below a frequency of 10 times the Nyqu
rate when sampled into a 413 lattice. It is extremely sensitive to fil-
ter and sampling inaccuracies and has been used at many occa
for reconstruction error evaluations [25][28].

5 RESULTS
Before one goes ahead and compares rendering times

quality, one needs to realize that not all evaluated volume render
were created with identical priorities in mind. While shear-war
and 3D texture mapping hardware were devised to maximize fra
erates on the expense of rendering quality, image-aligned splat
and raycasting have been devised to achieve images of high q
ity, not to be compromised by acceleration strategies employed.
account for this, we have divided the four renderers into tw
groups of two renderers each:
• High-performance volume renderers: Shear-warp and 3D text

mapping hardware (from now on abbreviatedTEX). These ren-
derers use the Pre-DVRI optical model with pre-multiplied opa

1.  These datasets, transfer functions, and viewing parameters are
publicly available on the internet at http://www.volvis.org
Dataset Size Relevant voxels Rendering mode Compactness Pixel content

Blood vessel 2563 79,442 (0.5%) opaque isosurface low low

Neghip 643 207,872 (79.3%) moderately semi-transparent high medium

Skull 2563 1,384,817 (8.2%) opaque isosurface medium low

Fuel injection 643 32,768 (12.5%) semi-transparent with interior
opaque structure

high medium

Shockwave 642×512 1,245,184 (59%) fully semi-transparent high high

Marschner-Lobb 413 35,415 (51%) opaque isosurface high low

Table 2:  Benchmark datasets and rendering modes
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ities [48], which benefits their rendering speed but limits the
image quality under magnification.

• High-quality volume renderers: Splatting and raycasting. These
renderers use the Post-DVRI optical model.

All presented results were generated on an SGI Octane
(R10000 CPU, 250MHz) with 250 MB main memory and MXE
graphics with 4MB of texture memory. The graphics hardware was
only used by the 3D texture mapping approach. Figure 3 shows
representative still frames of the six datasets that we rendered with
the four volume rendering algorithms. Figure 1 relates frame times
to magnification factors. Note that we did not include the time/
frame for the high performance renderers shear-warp and TEX into
Figures 1 and 2 since (i) the dependencies are relatively small and
(ii) the scale of the plot forces both graphs to the x-axis. The icon
images next to the graphs indicate the level of magnification as
well as the viewpoint (the icon images were rendered with the ray-
caster). Figure 2 shows how image size affects rendering time of
the screen filling shots (a), (d), (f), (g), and (i) of Figure 3. Finally,
Table 3 lists the average frame time for the 24 randomly generated
views. For these random views we set the magnification factors
such that the object just filled the screen.

In Figure 3, we observe that the image quality achieved with
TEX shows severe color-bleeding artifacts due to the non-opacity
weighted colors [48], as well as staircasing. The latter is due to the
limited precision of the framebuffer and can be reduced by increas-
ing the number of slices.

Volpack shear-warp performs much better, with quality simi-
lar to raycasting and splatting whenever the resolution of the image
matches the resolution of the baseplane (Figure 3(a), (d), and (i)).
For the other images, the rendered baseplane image was of lower
resolution than the screen image and had to be magnified using
bilinear interpolation in the warping step. This leads to excessive
blurring, especially for the Marschner-Lobb dataset, where the
magnification is over 6 (Figure 3(k)). A more fundamental draw-
back can be observed in the 45˚ neghip view in Figure 3, where—
in addition to the blurring— significant aliasing in the form of
staircasing is present. This is due to the ray sampling rate being
less than 1.0, and can be disturbing in animated viewing of some
datasets (see provided animations).

The Marschner-Lobb dataset renderings for raycasting and
splatting demonstrate the differences of point sampling (raycast-
ing) and sample averaging (splatting). While raycasting’s point
sampling misses some detail of the function at the crests of the
sinusoidal waves, splatting averages across the waves and renders
them as blobby rims. For the other datasets the averaging effect is
more subtle, but still visible. For example, raycasting renders the
skull and the magnified blood with somewhat crisper detail than
splatting does, but suffers from aliasing artifacts, if the sampling
rate is not chosen appropriately. However, the quality is quite com-
parable, for all practical purposes.

But even though the quality is comparable, there are still su
tle differences in the images rendered by each algorithm. The
differences are most apparent for the fuel, neghip, and shockw
datasets. For example, the red cloud is completely missing in
image rendered by splatting.

From Table 3, we observe that the frame times for both TE
and shear-warp are always substantially faster than those of r
casting and splatting, in most cases by an order of one or two m
nitudes. Both TEX and shear-warp consistently achieve fram
times in the subsecond range. In TEX all data is always sliced a
composited by the graphics hardware in brute force. Shear-war
frame times are a function of the number of relevant voxels a
opaqueness. It takes roughly three times longer to render the tra
lucent shockwave dataset than the opaque skull, although b
have about the same number of relevant voxels. This was to
expected and is due to Volpack’s early ray termination. An intere
ing case is the blood vessel dataset, where splatting’s frame tim
only about twice that of TEX. This is because here the render
active voxel list of splatting was only a very small percentag
(0.5%, see Table 2) of the brute-force rendered TEX volume. Bo
TEX and shear-warp are relatively insensitive to magnificatio
since the number of rendered pixels is held constant. For the sh
warp algorithm, the interpolation of the base plane into the mag
fied screen image takes little time.

Table 3 also shows that compactness of the dataset has
major effect on splatting: Both the blood vessel of low compac
ness and the fuel injection of high compactness render at about
same time. This was to be expected, since splatting’s voxel li
discards spatial coherency. Further, we observe that splatting d
best when the relevant voxel list is small, as is the case for both
blood vessel and the fuel injection. We see that early splat elimin
tion is quite effective since the pixel content has a large effect
rendering time: Although the opaque blood vessel (low pixel co
tent) has twice the amount of relevant voxels, it requires about
same frame time as the fuel injection (medium pixel content). T
same is true for the skull and shockwave datasets. Both have a s
ilar number of relevant voxels, but the shockwave, with high pix
content, renders twice as slow as the skull.

On the other hand, raycasting shows its strength for mediu
and highly compact datasets with a low number of non-contribu
ing samples along the ray (i.e., the shockwave dataset in Table
In contrast, a high number of non-contributing samples can dom
nate the rendering time, as observed with the vessel and f
datasets. In both cases most of the rays are cast solely through
relevant voxels wasting render time. This is different with the sku
dataset, where early ray termination skips most empty space.
associated costs of early ray termination are low, since it is a si
ple comparison of theα−value with a specified threshold. In con-
trast, splatting’s early splat elimination has high associated co
and that is why splatting takes considerably longer to render
skull dataset. The shockwave dataset, where the low opacity of
voxels prevents both early ray termination and early splat elimin
tion, exposes the differences in cost for trilinear interpolation v
footprint mapping. Since the rendering time for raycasting
almost seven times lower than that of splatting, we conclude th
the mapping of footprint kernels is costlier than trilinear interpola
tion, at least at moderate screen sizes.

The magnification plots of Figure 1 indicate that it is better t
rasterize a small number of large footprints, even when they fill t
entire screen, than to rasterize and transform a large numbe
small footprints. Good examples for this are the skull and th
neghip datasets where at large magnification the number of sp
that survive frustum culling is small, but their footprints are large

Figure 2 illustrates the relationship of image dimension v
rendering time. But before we go about analyzing them, there ar
few facts that are worth mentioning:

Table 3: Average frame times (in secs) for 24 random views
onto the five datasets. The image size was 2562, and the object
was viewed in a screen filling shot. Note that 3D Texture
mapping is slower than shear-warp for large datasets (skull,
blood) which exceed the 4 MB of texture memory of the used
SGI Octane/MXE and require texture swaps.

Fuel Neghip Skull Blood Shock

Raycasting 4.96 8.15 7.78 12.31 3.02

Splatting 1.41 7.35 11.09 1.87 21.77

Shear-warp 0.09 0.24 0.27 0.09 0.91

Texture map 0.06 0.04 0.7 0.7 0.14
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• For splatting, the amount of relevant voxels is independent of
image dimension. The increases in rendering time are due to (i)
larger footprints to be rasterized and (ii) larger sheetbuffers to be
convolved to update the occlusion map. Thus, datasets with many
sheets (large depth) and many visible footprints will be more sen-
sitive to screen size increases.

• For raycasting, the number of trilinear interpolations and com-
positings are linearly related to screen size. No further major
dependencies exist.

We observe that for both the fuel and the blood vessel datasets
the differences between splatting and raycasting become more pro-
nounced as the screen size increases, and that the neghip dataset
continues to have a balanced cost ratio for the constituents of the
two algorithms. However, the shockwave and the skull dataset
exhibit a reversal of the rendering cost relationships at larger
screen sizes. Both datasets render faster with splatting in this case.
This is due to the fact that although the cost for footprint rasteriza-
tion and occlusion map maintenance grows with screen size, the
time for transforming the voxels and for setting up the footprint
rasterization (i.e., mapping the voxel center and computing the
footprints screen extent) does not. There seems to exist a critical
screen size for each dataset in which the cost for the increased
number of trilinear interpolations overtakes the cost for footprint
mappings, due to the screen size-independent components in this
operation.

6 CONCLUSIONS
Both high-performance renderers, i.e., 3D texture mapping

and shear-warp, have sub-second rendering times for the more
moderately-sized datasets. The quality of the display obtained with
the texture mapping approach we have used is limited, due to the
lack of bit accuracy. A framebuffer color/RGBA resolution of least
16 bits or more would be desirable. Simulations are needed to
determine the minimum number of bits needed for good image
quality. On the other hand, the quality of shear-warp rivals that of
the much more expensive raycasting and splatting when the object
magnification is about unity. Handling higher magnifications is
possible by relaxing the condition that the number of rays must
match the resolution of the volume. Although higher interpolation
costs will be the result, the rendering frame rate will most likely
still be high (especially if view frustum culling is applied). A more
serious concern is the degradation of image quality at off-axis
views. In these cases, one could use a volume with extra interpo-
lated slices, which is Volpack’s standard solution for higher image
resolutions. But the fact that shear-warp requires an opacity-
encoded volume makes interactive transfer function variation a
challenge1. In applications where these limitations do not apply,
shear-warp proves to be a very useful algorithm for volume render-
ing.

The side-by-side comparison of splatting and raycasting
yielded interesting results as well: We saw that image-aligned
splatting offers a rendering quality similar to that of raycasting. It,
however, produces smoother images due to the z-averaged kernel
and the anti-aliasing effect of the larger Gaussian filter. It is hence
less likely to miss high-frequency detail. Raycasting is faster than
splatting for datasets with a low number of non-contributing sam-
ples. On the other hand, splatting is better for datasets with a small
number of relevant voxels and sheetbuffers. It seems that rotational
angiography visualization would benefit from a splatting algo-
rithm, while typical semitransparent scientific data would benefit
from raycasting. Since the quality is so similar and the same trans-
fer functions yield similar rendering results, one could build a ren-

derer that applies either raycasting or splatting, depending on
number of relevant voxels and the level of compactness. One co
even use different renderers in different portions of the volume,
for the rendering of disconnected objects of different compactne
in the scene.

An important outcome of this study is splatting’s strengt
when it comes to large volume magnifications, required in hig
resolution displays, such as PowerWalls and CAVEs. Splatting c
generate a high-quality image faster than raycasting in this ca
and does not cause the extensive blurring of shear-warp.

Based on the insight gained, can we resolve the weaknesse
the algorithms? For raycasting, the problem areas are the trans
ent regions in front of the opaque object portions, while for spla
ting the problem areas are the non-transparent regions behind
opaque object portions. This may be a compromising fact for spl
ting, since large datasets may have a lot more material hidden
the back than empty regions in front. In addition, a great number
powerful techniques exist for raycasting to guide rays quick
through irrelevant volume regions: bounding volumes, space-le
ing [49], multi-resolution grid traversal [33], and PARC [37]. It ha
yet to be determined if these techniques also work well with high
irregular objects such as the blood vessel dataset, where splat
does so well. Further, volumes with a high percentage of relev
voxels, such as the shockwave dataset, will not be able to ben
much of space leaping techniques, and thus our current conc
sions will continue to hold for these data sets.

Much fewer work has been done on accelerating splattin
and most work has focussed on the speed of footprint rasteriza
[14]. Our analysis indicates that future research must focus
reducing the cost for handling invisible material (i.e., sheet conv
lution, occlusion culling, and voxel transformations). Octre
encoding could be used, along with a simultaneous occlusion m
volume traversal scheme similar to that employed in shear-wa
Using smaller kernels, such as the Crawfis-Max kernel [8], w
also provide faster renderings and bring the kernel size closer
that used in raycasting. We have measured speedups of 25%
45% when reducing the kernel radius from the standard 2.0 to 1.
without a significant drop in quality.

We noticed that there were subtle differences in the imag
rendered by different algorithms. This is due to the fact that ea
method uses a somewhat different interpolation scheme, but all
the same transfer function. The post-DVRI pipeline before shadi
can be written as: f’=T(f⊗kernel), where T is the transfer function
and⊗ is the convolution operator. Clearly, f’ will not be identica
for the different algorithms, and therefore the images will not b
exactly alike. Thus, unless one can come up with a master tran
function from which all others can be algorithmically derived, on
needs to fine tune each transfer function for the algorithm at ha

In this study, we wanted to make certain that we conduct
our experiments and analyses in plausible scenarios, and not a
cial ones that may never occur in real life. Hence our choice
real-life datasets. And although these chosen benchmark data
form a rather comprehensive mix and allowed a number of insig
ful conclusions, we still feel that many questions have been l
unanswered. We therefore plan to add a set of procedural data
to the mix where we can keep the ratio of occlusion to depth co
stant, and where we can keep the ratio of non-empty to empty p
els constant as well. This controlled and scalable environme
would allow us to test hypotheses quickly and in a concise way. W
also plan to perform a detailed profiling of the components of t
four volume renderers, such as interpolation, transfer functi
look-ups, shading, compositing, visibility test, and occlusion-ma
maintenance (the last two are for splatting only). Further, we wou
like to incorporate various popular acceleration methods into t
existing algorithms and evaluate their effects. In light of the perfo1.  If no pre-classification is provided, Volpack renders at a lower

frame rate.
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mance of the shear-warp algorithm in this study, it seems also
worthwhile to investigate if some of shear-warp’s concepts can be
ported to both raycasting and splatting, but without compromising
the current rendering quality. Finally, we would also like to study
the effect of perspective viewing and super- and subsampling in z
on the rendering result. Large datasets of GB size are becoming
increasingly popular these days. The current benchmarks have to
be expanded in this direction. We can create a series of increas-
ingly larger datasets that are derived from supersampling the cur-
rent low-resolution benchmark datasets. This way we keep
compactness and pixel content constant, and only change the num-
ber of voxels. Research challenges also still exist in devising exten-
sions to shear-warp and 3D texture mapping algorithms to
adequately handle the per-pixel (or sample) classification and
shading.
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Figure 1: Frame time vs. magnification;
image size is 2562.
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Figure 2:  Frame time vs. frame size
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	Raycasting
	Splatting
	Shear-Warp
	3D Texture Mapping
	Sampling rate
	freely selectable
	freely selectable
	fixed [1.0, 0.58]
	freely selectable
	Sample evaluation
	point sampled
	averaged across Ds
	point sampled
	point sampled
	Interpolation kernel
	trilinear
	Gaussian
	bilinear
	trilinear
	Rendering pipeline
	post-classified
	post-classified
	pre-classified,
	opacity-weighted colors
	pre-classified,
	no opacity-weighted colors
	Acceleration
	early ray termination
	early splat elimination
	RLE opacity encoding
	graphics hardware
	Precision/channel
	floating point
	floating point
	floating point
	8-12 bits
	Voxels considered
	all
	relevant
	relevant
	all
	Table 1: Distinguishing features and commonly used parameters of the four surveyed volume renderi...
	Figure 3

	Dataset
	Size
	Relevant voxels
	Rendering mode
	Compactness
	Pixel content
	Blood vessel
	2563
	79,442 (0.5%)
	opaque isosurface
	low
	low
	Neghip
	643
	207,872 (79.3%)
	moderately semi-transparent
	high
	medium
	Skull
	2563
	1,384,817 (8.2%)
	opaque isosurface
	medium
	low
	Fuel injection
	643
	32,768 (12.5%)
	semi-transparent with interior opaque structure
	high
	medium
	Shockwave
	642¥512
	1,245,184 (59%)
	fully semi-transparent
	high
	high
	Marschner-Lobb
	413
	35,415 (51%)
	opaque isosurface
	high
	low
	Table 2: Benchmark datasets and rendering modes




