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Abstract— Numerous methods have been described that allow the visualization of the data matrix. But all suffer from a common 

problem – observing the data points in the context of the attributes is either impossible or inaccurate. We describe a method that 

allows these types of comprehensive layouts. We achieve it by combining two similarity matrices typically used in isolation – the 

matrix encoding the similarity of the attributes and the matrix encoding the similarity of the data points. This combined matrix yields 

two of the four submatrices needed for a full multi-dimensional scaling type layout. The remaining two submatrices are obtained by 

creating a fused similarity matrix – one that measures the similarity of the data points with respect to the attributes, and vice versa. 

The resulting layout places the data objects in direct context of the attributes and hence we call it the data context map. It allows 

users to simultaneously appreciate (1) the similarity of data objects, (2) the similarity of attributes in the specific scope of the 

collection of data objects, and (3) the relationships of data objects with attributes and vice versa. The contextual layout also allows 

data regions to be segmented and labeled based on the locations of the attributes. This enables, for example, the map’s application 

in selection tasks where users seek to identify one or more data objects that best fit a certain configuration of factors, using the map 

to visually balance the tradeoffs.  

Index Terms— High Dimensional Data, Low-Dimensional Embedding, Visual Analytics, Decision Make, Tradeoffs  

 

1 INTRODUCTION 

The data matrix, DM, is one of the most fundamental structures in 
data analytics. It is the M×N rectangular array of N variables (often 
referred to as attributes or labels) and M samples (also frequently 
called cases, observations, or data items). The N×N or M×M 
similarity (or co-occurrence, correlation) matrix S is another often 
used structure and frequently derived from DM. Here it should be 
noted that the roles of variables and samples can change – there are 
many practical settings in which we consider the ‘variables’ as 
outcomes we wish to predict (or use for prediction) using the set of 

samples acquired before. To visualize DM, current methods either 
focus on spatially preserving the relations among the samples or on 
spatially preserving the relations among the variables, but they are                    
typically not capable to do both. This is a severe limitation when 
one wishes to transform DM into a comprehensive map in which 
the acquired samples are accurately presented in the context of the 
variables. Our paper describes new data and similarity matrices that 
overcome these deficiencies.   

To illustrate these points, let’s consider a parent looking for a 
university for their child. This is an important decision with many 
factors to consider – academic score, tuition, athletics, 
teacher/student ratio and many others. College Prowler [15] is a 
popular website that allows users to navigate this parameter space 
by filtering – using slider bars and menu selections for each 
parameter to narrow down the search. But this is rather tedious and 
it also makes it difficult to recognize tradeoffs. Conversely, a 
visualization expert would use interactive parallel coordinates [17] 
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plots but it is difficult to imagine that an average parent would 
engage in such an advanced interface. There are other visualization 
methods, such as biplots or interior layouts but these are seldom 
found in the mainstream arena. The wide-spread familiarity of maps, 
on the other hand, makes these a natural canvas to overview the 
landscape of universities in the context of the various factors 
(attributes) to consider. Parents could simply sit back and examine 
this illustration like an infographic and then decide on a school. 
They could still use a filter to eliminate some schools from the map 
but they would never lose sight of the big picture. 

Methods like Multidimensional scaling (MDS) [23][2], self-
organizing map (SOM) [6][22], t-distributed stochastic neighbor 
embedding (t-SNE) [28], locally linear embedding (LLE) [31], etc. 
create 2D map-like data layouts computed from the similarity 
matrix S of schools (in this case). The entries of S are derived by 
assessing the distances of pairs of the M schools in the N-D space 
spanned by the N attribute axes. The maps will show similar 
schools as clusters, and special schools as outliers. This is certainly 
useful, but parents will not know from the plot alone why some 
schools are special and others are clustered. What is their ranking, 
tuition, athletics, etc.?  

It is important to note that S could just as well hold the 
similarities of attributes. The maps mentioned above would then 
allow a visual assessment of the grouping of attributes. So instead 
of finding that schools A and B are very similar (or dissimilar) in 
terms of their attributes, one would find that attributes C and D are 
heavily correlated (or not) in this set of schools. A parent might 
learn that the higher the academic score, the higher the tuition, and 
the higher the number of students per faculty (see findings 
presented in [37] where such a map was presented). And so, if the 
parent is interested in smaller classes, schools with lower academic 
scores might be a better choice. Hence, while such a plot is useful 
in explaining the relationships of the different features of the 
educational landscape, what it now cannot do is allow anxious 
parents pick a specific school for their child, which is what they 
really wish to do. 

We propose a framework that overcomes these limitations and 
combines both of the similarity aspects derived from DM into a 
single comprehensive map which we call the data context map. It 
requires a non-trivial fusion of the two alternative similarity 
matrices S discussed above. By ways of this fused matrix a 
mapping can be performed that allows users to faithfully appreciate 
all three types of relationships in a single display: (1) the patterns of 
the collection of samples, (2) the patterns of the collection of 
attributes, and (3) the relationships of samples with the attributes 
and vice versa. Further, the contextual mapping also provides the 
information needed to add semantic labelling of the samples as well 
as the regions they reside in. Iso-contouring these regions then 
creates decision boundaries by which one can easily recognize 
trade-offs among different samples which can be helpful in 
complex decision making. Our paper demonstrates this by ways of 
a few practical examples. 

Our paper is structured as follows. Section 2 summarizes related 
work. Section 3 provides its theoretical aspects. Section 4 describes 
the construction of our data context map. Section 5 presents case 
studies. Section 6 concludes the paper and expands on future work.   

2 RELATED WORK 

The visualization of high-dimensional data on a 2D canvas 
essentially follows three major paradigms – projective data displays, 
interior displays, and space embeddings. However, since the 
visualization of high-dimensional data in 2D is inherently an ill-
posed problem, there is no method without drawbacks. It is simply 
impossible to preserve all variances of a high-dimensional point 
cloud in a 2D mapping. Hence the different methods that have been 
described offer different strengths and weaknesses, but some do 
better than others.  

2.1 Projective and interior displays 

These displays typically warp the data in some way to emphasize 
certain properties, such as locality or similarity. A projective 
display is the scatterplot matrix [12] which is an extension of the 
scatterplot. It reserves a scatterplot tile for each pair of variables 
and projects the data items into it. This distributes the data context 
into two variables per tile which makes it difficult to appreciate the 
overall context pertaining to all variables simultaneously. In 
addition, the mapping operation can lead to ambiguities as points 
located far way in high-dimensional space may project into similar 
2D locations. This adds to the difficulties for recognizing 
multivariate relationships.    

Parallel coordinates and their radial version, the star plot [1], 
represent the variables as parallel or radial axes, respectively, and 
map the data as polylines across the axes. However, the clutter of 
polylines can become a significant problem once the number of 
dimensions and data points increases. In order to decrease the 
clutter of lines, star coordinates [20] arrange the attribute axes in a 
radial fashion but instead of constructing polylines, they plot the 
data points as a vector sum of the individual axis coordinates. 
However, since a vector sum is an aggregation, it maps the data to 
locations that are not unique. In other words, points that map to 
nearby locations may not be close in high-dimensional space, and 
vice versa. To help users resolve these ambiguities, at least partially, 
an interactive interface is often provided that allows them to rotate 
and scale the data axes and so uncover false neighbors.  

In fact, there are number of displays that are similar to star 
coordinates and share its shortcomings [32]. These are Radviz [13], 
Generalized Barycentric Coordinates (GBC) plot [29], and PolyViz 
[14]. We call them interior displays since they all lay out the 
variables as dimension anchors [14] around a circle and map the 
data items as points inside it, given some weighting function that 
relates to a data point’s different attribute strengths. All of these 
displays are useful in what they have been designed to convey, that 
is, the relation of data points with respect to the attributes. But since 
the mapping function does not involve the similarity of the data 
points, ambiguities result. 

Our research described here has been motivated by recent work 
presented by the authors [7] which proposes an optimization 
approach to reduce the data mapping ambiguities in Radviz-type 
displays. The current framework is radically different in that it 
maps the attributes not in the periphery along a circle, but 
intersperses them into the data distribution which reduces all 
mapping errors significantly. It also enables the region labelling and 
decision boundaries discussed above.  

2.2 Comparing the interior displays 

We have shown in [7] that the method of GBC [29] can serve as a 
standard reference framework to describe most interior displays. 
The GBC plot uses the dimension values of an N-D point as 
weights in a weighted sum of the anchor 2D locations to determine 
the point’s placement in the 2D polygon.   

Using the GBC plots, we conducted a controlled experiment to 
compare them with the method proposed here. For this, we 
generated a test dataset comprised of a set of 6 6-D Gaussian 
distributions. We first randomized the 6 6-D center vectors and then 
randomized 600 data points following these distributions. Fig. 5d 
visualizes this dataset using parallel coordinates, assigning each 
Gaussian a unique color. In addition, we also colored the axes 
(representing the 6 dimensions) such that each axis color matches 
that of the cluster with the highest value for that dimension. Fig. 2 
shows how (a) standard GBC compares with (b) the optimized 
GBC plot [7], and (c) the method proposed in this paper which 
allows the attribute nodes to intersperse with the samples. We can 
show our method is more flexible and can preserve the pairwise 
distances well. We will describe more comparison in section 4.1.7. 
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(a)                                                 (b) 
 
Fig. 4. The two spaces: (a) data space D and (b) variable space V. 
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2.3 Embedded displays  

The ambiguities in the relations of the data points are often 
overcome by embedding the high-dimensional space into the 2D 
canvas. Principal component analysis (PCA) [19] finds the two 
eigenvectors associated with the largest variation in the data 
(expressed by the largest positive eigenvalues) and then projects the 
data points into the plane spanned by these vectors. Other methods 
seek to create a mapping from high-dimensional to 2D space that 
optimizes for some measure of data point similarity. MDS [23] 
aims to preserve some distance metric, such as Euclidian distance 
or pattern distance [24]. Other mappings, such as ISOMAP [34], 
LLE [31], SOM [6][22], t-SNE [28], LAMP [18], and PLP [30] 
optimize for geodesic distance, distribution distance, locality, etc.  

In these 2D embeddings, the viewer can easily appreciate 
neighborhood relations and obtain a good overview of the space 
quickly. However, these methods also have a shortcoming – the 
mapped data points no longer maintain any context with the 
attribute space as this information is typically not preserved in the 
mapping. If users wish to see the relationships of both attributes and 
data samples then two separate maps need to be created using the 
two alternative forms of the similarity matrix S as presented in the 
introduction – one for the samples and one for the attributes. But 
with two separately and independently created maps, it is difficult, 
if not impossible, to appreciate the mutual relationships of the 
samples and their attributes – the context. The method we describe 
in this paper fuses the two alternative similarity matrices and so is 
able to create an embedding in which the relationships among 
samples, among attributes, and among the two of them is equally 
well preserved.  We note that in practice we use a dissimilarity (or 
distance) matrix. Similarity is just the reverse of dissimilarity.   

2.4 Fused displays 

The work on fused displays is relatively rare. One recent 
implementation is by Broeksema et al. [3] who similar to us, have 
also created a fused matrix of samples and attributes and used it for 
2D layouts. Our approach is different from theirs in multiple ways: 
 Their framework is primarily designed for categorical data. 

Numerical data are binned into regular intervals which can 
be inaccurate. Conversely, our approach starts with 
numerical data by default and could use the approach of 
Zhang et al. [37] to transform any categorical variables into 
numerical ones, taking into account the pairwise distribution 
relationships. 

 They use a linear projection approach based on Multiple 
Correspondence Analysis (MCA) to create the 2D mapping. 
Our layouts are generated via numerical optimization which 
can support a variety of constraints and can also better 
preserve high-dimensional relationships. 

 They compute a tiled Voronoi diagram to divide the domain 
into value regions which only accounts for the relationships 
among the attributes and their levels. Our approach 
generates a set of general iso-contours computed from a 
continuous heat map of the data, using adaptive kernel 
density estimation. The extended accuracy this affords also 

affects the accuracy of the decision boundaries computed 
from these regions [4].  

3 THEORY AND METHOD 

We wish to create a mapping in which all three types of 
relationships in DM are preserved – the relationships among the 
samples, among the attributes, and mutually among the samples and 
attributes. Here, the notion of relationship can be a distance, such as 
Euclidian (across space) or geodesic (across a manifold), or a 
similarity, such as Pearson’s correlation [33], cosine, or pattern, or 
it can be some measure of significance, such as value or feature. 
We combine these functions collectively into a distance metric, F, 
and note that, depending on the application, each relationship might 
be expressed in a different F. For example, the similarity of 
attributes might be measured by correlation, while the proximity of 
samples might be gauged via the Euclidian distance. We wish for a 
mapping that preserves this set of simultaneous constraints as well 
as possible. It calls for an optimization strategy on a fused 
representation of three types of relationships. The pipeline of this 
process is shown in Fig.3.  
 
 
 
 
 
 

 
In the following we outline the various steps of this pipeline in 

detail. The underlying primitive is a distance matrix, one for each of 
the three pairs, encoding the respective F. The fusion process then 
merges these three matrices into a single distance matrix 
emphasizing certain constituents or equalizing them. This is 
followed by a mapping to 2D using an optimization process. We 
use an MDS-type strategy because it is well tested for such 
mapping problems.    

3.1 Data Matrix 

We begin with 𝐷𝑀, the data matrix, with 𝑚 rows and 𝑛 columns, 

𝐷𝑀 = [

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

] 

Here, the rows denote the data samples, the columns denote the 
variables and xij is the data value in the ith row and jth column. 
Without loss of generality, we assume 𝐷𝑀 is normalized to [0, 1].  

Depending on how we look at DM, row-wise or column-wise, 

we have two types of spaces – the data space D and the variable 

space V, respectively. The data space D contains all m data items 

(samples): 

𝐷𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]             (𝑖 = 1,2, … , 𝑚) 

(a)                           (b)                              (c)                   

Fig.2. Comparing different attribute/sample layout schemes:      

(a) standard GBC, (b) optimized GBC, and (c) our new method.  

Fig. 3 The fusion pipeline 

 

Data Distance Fusion Mapping 



4 

 

Fig. 5: (a) The fused space composed of D and V and (b) the 

composite distance matrix CM and the extents of its submatrices 

DD, DV, VD, and VV.  

                   (a)                                                          (b) 

and is spanned by the n orthogonal attribute (or variable) axes (see 
Fig, 4a) Conversely, the variable space V contains all n data 
attributes: 

𝑉𝑗 = [𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑚𝑗]′              (𝑗 = 1,2, … , 𝑛) 

and is spanned by a set of m orthogonal data item axes (Fig. 4b).  
The data space D is the more familiar of the two but there are 

many applications, in which samples can turn into attributes and 
vice versa depending on the focus of the analytics. For example, for 
a data matrix storing the results of a DNA microarray experiment 
for multiple specimens, one research objective might consider the 
genes expressed in the microarray to be the samples and the 
specimens to be the attributes, or vice versa.  

3.2 The Composite Distance Matrix (CM) 

The next step is to define the desired distance or similarity metric 
for each relationship. Mapping more similar items into closer 
proximity, we need to use (1-correlation), and (1-attribute value) etc, 
while the spatial distance metrics, such as Euclidian can be used as 
is. We have four different distance matrices: 

 DD to store the pairwise distance of data items 
 VV to store the pairwise distance of attributes (variables) 
 VD to store the pairwise distance of attributes to data items 
 DV to store the pairwise distance of data items to attributes  

DD is an n×n matrix with elements DDij=F(Di, Dj) and VV is a 
m×m matrix with elements VVij=F(Vi,Vj). Fig. 6a and Fig. 6 b 
shows an MDS layout of DD and VV respectively for the 6 test 
Gaussians described in Section 2.2.  

3.2.1 The Data to Variables Distance Matrices (DV, VD)  

The DV and VD matrices are new types of matrices. They are 
required to enforce the distance/similarity constraints in the relation 
of the data samples with the attribute (dimension) anchors and vice 
versa. In the following, let us first consider DV – similar arguments 
also hold for VD. 

Referring to Fig. 4a which shows the data space D, one can 
make the argument that an attribute axis is essentially just another 
data sample – a (fictional) data point with unit length, n dimensions, 
and a single non-zero component, namely a value of 1 for the 
attribute’s dimension j. So essentially, the attribute vector serves a 
dual role: (1) as a dimension axis and (2) as a data point. With this 
in mind we can then impose any distance metric that links the m 
data samples with the n attribute axes to fill the m×n matrix DV.    

The derivation of the matrix VD follows a similar line of 
thought. Just now we consider the variable space V depicted in Fig. 
4b where the axes are m-dimensional unit vectors each with exactly 
one dimension component set to 1. A point in that space is defined 
by the values a certain variable has for all of the data samples – one 
column of DM. For example, for a car dataset, if V1 is horsepower 
(hp) and V2 is miles per gallons (mpg) and we have two cars – a 
VW and a Ford – then the coordinates for V1 would be [hp(VW), 
hp(Ford)] and the coordinates for V2 would be [mpg(VW), 
mpg(Ford)]. We can again impose any distance metric between the 
n V-points and the m points constituted by the D-vectors to fill the 
n×m matrix VD. 

We note that in order for CM to be a proper distance matrix, VD 
should be a transpose of DV. This, however, is not necessarily the 
case, even when normalizing the vectors in V and D which would 
place all distance relationships on the surface of a hypersphere. It 
occurs because V and D have different dimensionalities (and 
different hyperspheres) and are also not related by a simple scale 
factor. The only similarity metric we know that fulfils this matrix 
identity is (1-value), where ‘value’ is the value a space point SP has 
for a space dimension vector SD’s coordinate. The (1-value) 
distance can be thought of as a significance distance. It is small for 
a given data point when the value of a point’s attribute is large, 
encoding a notion of affinity that SP has for SD. We have used this 
distance for all examples shown in this paper. For the case when 

VD is not a transpose of DV, like Euclidian or correlation distance, 
we typically select one of DV or VD – using the one with the larger 
matrix norm – and computing the other by transposing it. In this 
case, DV and VD become symmetric. 

3.2.2 Assembling the composite distance matrix (CM) 

With all four constraint matrices in place, we can now assemble the 
composite distance matrix CM from them. The fused space 
composed of D and V and the composite distance matrix CM are 
shown in Fig. 5. We can now use it within an MDS-like 
optimization framework to achieve the 2D mapping into the joint 
sample/attribute display. But first we need to make some 
adjustments as is described in the following section.   

3.3 Fusion 

In order to merge or fuse the two spaces, V and D, in consideration 
of the four distance constraint matrices, VV, DD, DV and VD, 
defined on them we require a set of transformations – scale, rotation, 
translation. For the time being we have only implemented scaling.   
     The four matrices VV, DD, DV and VD that make up CM were 
not created equally. They have been calculated from vectors with 
different lengths – n or m – and they may also have used different 
distance metrics F. We have observed that this inequality, if not 
compensated for, can lead to cases in which data samples and 
attributes may not mix well. That is, points due to the data samples 
and those due to the attributes may clump together into separate and 
disjoint communities.   

Thus, transformations are necessary to enlarge or shrink the data 
or variable spaces. Suppose, we have the transformation 𝜃: 

𝐷𝜃 = 𝜃𝐷(𝐷)                          𝑉𝜃 = 𝜃𝑉(𝑉)                        (1) 

where 𝐷𝜃 and 𝑉𝜃 are the transformed D and V, respectively. 
There are different ways to define the 𝜃. In order to mix the data 

and variables spaces well, we should balance the difference of each 
of the four matrices. One simple way to define 𝜃 or achieve this is 
to make the four sub-matrices (the entities in each submatrix) have 
equal mean. In this way, the two spaces have equal scale. In 
addition, in order to keep the distance matrixes unite, we make the 
DV and VD also have these equal scales 

𝐷𝜃𝐷𝜃
̅̅ ̅̅ ̅̅ ̅ = 𝐷𝜃𝑉𝜃

̅̅ ̅̅ ̅̅ ̅ = 𝑉𝜃𝐷𝜃
̅̅ ̅̅ ̅̅ ̅ = 𝑉𝜃𝑉𝜃

̅̅ ̅̅ ̅̅                         (2) 

where the ¯ operator denotes the mean of the distance matrix.        
There are different options to make these four distance matrices 
have the same mean (or L1 norm) – we can use a linear, polynomial, 
or kennel function. A linear function has the advantage that it 
preserves the distribution, topology, etc. and thus, for this paper we 
apply a linear weight adjustment for each submatrix. In this way, 
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Fig. 6: Layout experiment for the 6 Gaussian test dataset. (a) MDS 

layout of the data samples (Euclidian distance); (b) MDS layout of 

the attributes (correlation distance); (c) parallel coordinate display 

with node colors marked; (d) MDS layout of samples and attributes 

using the CM matrix (samples: Euclidian, attributes: correlation).    

(a)

  

(d)

  

(b)

  
(c)

  

(d)

  

the transform is a simple weight adjustment for each submatrix. The 
weights are obtained as: 

𝑊𝐷𝐷: 𝑊𝐷𝑉: 𝑊𝑉𝐷: 𝑊𝑉𝑉 =
𝑀𝑚𝑎𝑥

𝐷𝜃𝐷𝜃̅̅ ̅̅ ̅̅ ̅̅
:

𝑀𝑚𝑎𝑥

𝐷𝜃𝑉𝜃̅̅ ̅̅ ̅̅ ̅̅
:

𝑀𝑚𝑎𝑥

𝑉𝜃𝐷𝜃̅̅ ̅̅ ̅̅ ̅̅
:

𝑀𝑚𝑎𝑥

𝑉𝜃𝑉𝜃̅̅ ̅̅ ̅̅ ̅̅
         (3) 

where 𝑊 is the weight for the submatrix and Mmax is the maximum 
mean of all the submatrices.  

3.4 Mapping 

With the composite distance matrix CM in hand, the final step is to 
create the joint map of samples and attribute points. We have opted 
to use an optimization approach for the map layout, as opposed to a 
linear projection with PCA or biplots since it gives us more 
freedom in choosing the constraints governing the layout, such as 
mixed distance functions, layout schedules, and mapping criteria. 
There are a number of distance-preserving optimization algorithms 
applicable for our purposes. LLE produces locally optimal layouts, 
while MDS-type schemes create globally optimal layouts which 
have become more popular in recent years since they provide a 
consistent overview of the data. Finally, t-SNE or linear 
discriminant analysis (LDA) [9] excel in their ability to isolate 
individual clusters, but they have a reduced ability to preserve the 
statistical appearance of the clusters which we feel is important for 
visualization. We have therefore chosen a metric MDS approach. 
Particularly useful here is the iterative and progressive point 
insertion schedule of Glimmer MDS [16]. We have adopted this 
multi-level scheme for our framework since it allows us to 
implement a variety of strategies for controlling the layout.    

One of these strategies makes use of the weighting scheme for 
handling the submatrices of CM, as proposed in the previous 
section. It results in a rather general framework and offers much 
freedom to design a visualization that fits current criteria of interest. 
Users can simply assign the default weights that give equal 
emphasis to all submatrices or they can increase the weight for one 
of more submatrices that influence those aspects they would like to 
focus on. For example, a user might want to have an accurate 
representation of the relationships among the samples and of the 
samples to the variables but is less interested in an accurate 
representation of the relationships the attributes have with one 
another. So he/she would increase WDD, WDV and at the same 
amount WVD, but reduce WVV. Reducing one or more constraints 
will enable the mapping algorithm to trade the precision losses 
incurred for these unimportant relations in favor of those that are 
less desirable. Essentially, it serves as a buffer of the errors that are 
incurred with the necessarily imperfect space embedding. Section 
4.1.1 describes another mechanism by which users can express their 
emphases – the scheduling of the data/variable primitives in the 
MDS-like layout.   

3.5 A First Example 

Fig. 6 shows a first result achieved with this mapping using the 6 
test Gaussians introduced in Section 2.2. Fig. 6a is the MDS layout 
for just the data samples using the Euclidian distance metric; Fig. 
6b is a MDS layout for the attributes using Pearson’s correlation 
distance [33]; Fig. 6c is the layout created with MDS using the 
entire CM matrix and weights set to not give emphasis to any CM 
submatrix, and Fig. 6d is the parallel coordinate display for this 
dataset with the axes marked with the colors used for the attribute 
nodes in Fig. 6b and c. We used the (1-value) distance for the DV 
and VD submatrices.   

We first observe that the layout of the clusters in the sample-
only MDS plots has been well preserved in the CM-based MDS 
layout. On the other hand, the locations of the attributes, while still 
largely isolated to account for the correlation differences, have 
changed and better match the associations they have with the data 
clusters. This shows that the fusion of the two spaces D and V is not 
just a trivial superposition of the two plots.  

Some more specific observations we make are: (1) the red 
cluster has a clear dominance in the red attribute and indeed its 
dimension node gets mapped right into the red cluster’s center, (2) 
the green and the brown cluster both have high values in the green 
attribute and so the green attribute’s node gets mapped between 
these two clusters, (3) similar is true for the brown attribute and the 
red and brown data clusters; (4) the dark blue and black attributes 
have somewhat similar (but switched) relationships with respect to 
high values of the black and dark blue clusters and so they get 
mapped more closely to each other right between these two clusters.  

On closer inspection of Fig. 6 it appears that lower levels in the 
attributes are being taken into lesser or no account in CM’s layout. 
This can be explained by the distance metrics we chose for this 
particular case. The preference of the algorithm in picking attribute 
locations with respect to high values of the data clusters is due to 
the (1-value) distance we selected for the DV and VD submatrices. 
The behavior would change had we chosen a different distance. 
This and other choices, as well as their effects, largely depend on 
the aspects in the data the analyst would like to emphasize. Here in 
this example the emphasis was on extreme values.  

4 CONSTRUCTING THE DATA CONTEXT MAP (DCM) 

In this section we provide more details on the map construction and 
its segmentation into regions of similar properties.  

4.1.1  Populating the map 

The submatrices of CM can not only be weighted differently during 
the MDS layout, we can also impose different MDS schedules for 
the samples and the attribute points. We take advantage of this 
concept to achieve layouts with different priorities.  

We require an iterative MDS algorithm to achieve this goal. 
Iterative MDS algorithms often do not update all points 
simultaneously at each step. Rather, they select a subset of points 
that is allowed to move, while another stays put, either indefinitely 
after an initial layout or the point sets alternate. The point sets can 
also be transient and can change over time. A particularly 
convenient algorithm in this regards is the Glimmer MDS (G-MDS) 
algorithm [16]. It has a stochastic force algorithm which iteratively 
moves each point until a stable state is reached. The forces acting 
on a point are based on a Near Set of points and a Random Set of 
points. The Near Set contains those points that are nearest to the 
point being updated. The Random Set contains points that are 
randomly chosen from the set of available points. It ensures some 
global control in the update process. We have altered the standard 
Glimmer MDS framework in two ways. First, we manipulate which 
types of points – variables or data – are allowed to be chosen for the 
Random Set. Second, we manipulate which types of points are 
allowed to be updated. Both change the local minimum of G-MDS 
as it is a metric MDS scheme using non-convex optimization. 
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Fig.7. MDS layout schedules. (a) M-MDS layout. (b) VF-
MDS. (c) DF-MDS (d) U-MDS. 

(a)                                         (b)                                         

(c)                                         (d)                                         

Fig.8. The data context map for the car data.   

Using this flexible update scheme we currently provide four 
MDS schedules: (1) Update the variables and the data points 
simultaneously (M-MDS); (2) Map the variables first, then fix them 
and only map the data (VF-MDS); (3) Map the data first, then fix 
them, and only map the variables (DF-MDS); (4) the user defined 
order (U-MDS). We describe each of these in turn in more detail.  

(a) Update all types of points simultaneously (M-MDS) 

This first schedule is the most general. It only runs G-MDS once 
and both types of points can be in the Random Set. See Fig. 7a. 

(b) Update variables first, then the data (VF-MDS) 

Here the goal is to achieve a layout that prioritizes the fidelity of 
the variable-variable (V-V) distances. It runs G-MDS two times. In 
the first run only the V-points are entered into the G-MDS point set. 
This results in an accurate V-layout. Then we run G-MDS the 
second time with the V-points frozen. Essentially, we add a 
statement that disallows the selection of a V-point for update, that 
is, only the data points (D-points) are allowed to move. Since this 
has the tendency to drive the D-points away from the V-points we 
only allow V-points in the Random Set. This preserves the 
influence the V-points have on the layout of the D-points. See Fig. 
7b. 

(c) Update data first, then the variables (DF-MDS) 

This is essentially the reverse of the VF-MDS scheduling scheme 
and prioritizes the fidelity of the data-data (D-D) distances. This 
schedule also has two stages. First G-MDS is run in the D-points 
only. Next, G-MDS is run on the V-points with the D-points frozen 
and the D-points are only allowed in the Random Set. See Fig. 7c.  

(d) User-defined iteration schedule (U-MDS) 

The three schemes just presented are very basic update schedules 
and maybe there are better ones. For this purpose we allow users to 
draw a customized schedule via a timing (iteration) diagram editor. 
It first runs the VF-MDS schedule for a few iterations, then the DF-
MDS schedule, and finally the M-MDS schedule. See Fig. 7d. 

(e) Comparing the schedules 

Comparing the layouts achieved with the different schedules we 
observe that for VF-MDS the variable to variable error is lowest 
and for the DF-MDS the data to data error is lowest. It also appears 
that M-MDS and U-MDS are good compromises. It depends on the 
user’s priorities which method to choose. Considering the accuracy 
and complexity, we normally choose the first schedule, but the 
others are also useful for different preferences.  

4.1.2 First use case for the car dataset 

We use the UCI Auto MPG dataset for our first non-toy example. 
This dataset  has 392 cars built 1983 or older with 7 attributes – 
MPG, #cylinders (CYL), horsepower, weight, acceleration, year, 
and origin (US, Japan, Europe). Note that acceleration is the time a 
car requires to reach 60 mph and so slower cars have higher values. 
Fig. 8 shows a data context map generated via M-MDS. In this map, 
the large red points represent the attributes while the small blue 
points represent the cars. Cars that locate close to a given attribute 
node have high values for this attribute. On the other hand, cars that 
locate far away from a certain attribute node have a low value for it.  

We observe that there are two main populations of correlated 
attributes. On one side there are horsepower, weight, and CYL, and 
on the other there are acceleration, mpg, and year. Origin is 
somewhat separate. We can also observe four distinct clusters of 
cars (with some sub-clusters) which are all heavily elongated in the 
vertical direction. Their relation with the attributes reveals that each 
cluster has a fairly large diversity in car attributes. Using the 
attribute nodes as landmarks we can now gauge the types of cars 
these clusters contain. For example, the cluster in the lower left 
contains the large high-performance cars with high horsepower and 
weight. The other clusters are more difficult to judge since they are 
so elongated and span a large attribute interval.   

 The map can be readily used for informed selection tasks. The 
user would simply look for features he is most interested in (or not 
at all), observe how many cars are actually available that have the 
desired feature constellation, and then select cars near these 
attributes (or far away depending on preference). For example, the 
user may be interested in a full-sized car, clicks on a node in that 
region on the map, and uncovers a 1975 Pontiac Catalina which is 
an entry-level full-size car (red-circled sample node in bottom 
cluster). Or he may be interested in a newer economic car and so 
selects a node close to the year attribute and fairly close to the mph 
and acceleration attribute. He correctly finds a newer (for the 
dataset) 1982 Chevy Cavalier which is an economy-grade compact 
car (red-circled sample node in top left cluster).   

4.1.3 Error evaluation   

Since our data context map is a 2D optimized layout, there is 

necessarily an error. As in every layout scheme we can estimate the 

error by comparing the distance in the matrix CM with the 

corresponding Euclidian distances in the 2D layout. We can use 𝐷�̃�, 

𝐷�̃�, 𝑉�̃� and 𝑉�̃� to store the 2D layout distances, respectively. A 

popular metric to summarize the layout error is stress [23]. The 

error E in each sub-matrix is:  

                   𝐸𝐼𝐽 = √
∑ (𝐼𝐽𝑖𝑗−𝐼�̃�𝑖𝑗)2

(𝑖∈𝐼,𝑗∈𝐽)

∑ 𝐼𝐽𝑖𝑗
2

(𝑖∈𝐼,𝑗∈𝐽)
      𝐼, 𝐽 ∈ {𝐷, 𝑉}           (4) 
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Fig.10. The samples’ (a) “Horsepower” values  and (b) its heatmap.  

  

a)                                         b)                                         
(a)                                         (b)                                         

Hpower Hpower 

Fig.9.The KDE (a) and AKDE (b) show the density of the data points 

respectively.    

    

a)                                         b)                                         
(a)                                         (b)                                         

The overall error EA is also weighted based on different blocks, 

                                          𝐸𝐴 = ∑ 𝛽𝐼𝐽𝐸𝐼𝐽𝐼,𝐽∈{𝐷,𝑉}                               (5) 

where βIJ is the weight. Typically, we set the βIJ to: 

𝛽𝐷𝐷: (𝛽𝐷𝑉 + 𝛽𝑉𝐷): 𝛽𝑉𝑉 = 1: 2: 4                    (6) 

As mentioned in Section 2.2, we have used the GBC plot as the 
standard formulation to describe the set of interior displays, and we 
also presented an optimized plot to improve the GBC plot error [7], 
called DIFGBC. In this section we compare this error with the one 
we can now reach with the data context map (DCM).Table 1 below 
compares the error for three datasets we studied.  

We find that EVV improves greatly – this is because the interior 
layouts map the variables to the 1-dimensional space (the boundary 
of the enclosing shape) but the DCM maps them into 2-
dimensional space which naturally incurs less error. The EDD error 
also greatly improved, but the EDV error did not or even grew 
slightly for these examples, but this is also dependent on the update 
schedule, the distance metric, and the weighting. Yet, the overall 
error improved greatly and this quantitatively shows our data 
context map is more accurate than the competing interior layouts 
even when optimized. 

Table 1. Comparing the error of the optimized GBC plot and the DCM 

DataSet Layout 𝐸𝑉𝑉 𝐸𝐷𝑉 𝐸𝐷𝐷 𝐸𝐴 Up% 

Car 
DIFGBC 0.34 0.25 0.23 0.3 

36.7% 
DCM 0.16 0.27 0.17 0.19 

University 
DIFGBC 2.07 0.32 0.49 1.35 

71.1% 
DCM 0.38 0.41 0.36 0.39 

Campaign 
DIFGBC 0.33 0.26 0.31 0.31 

25.8% 
DCM 0.22 0.3 0.16 0.23 

4.2 Segmenting the Map 

The data context map as presented so far already allows attribute-
informed selection of data objects, as we have demonstrated in 
Section 4.1.6. But it was somewhat difficult to judge the different 
value regions for combinations of attributes. This would be easy if 
the map could be somehow colored into distinct spatial areas which 
then could each be tagged by the respective attribute value 
combinations. To achieve this goal we require a continuous 
representation of the map. We have used adaptive kernel density 
estimation (AKDE) for this purpose.   

4.2.1  Adaptive Kernel Density Estimation (AKDE) 

The AKDE [21] is a method for estimating the density of a point 
cloud. It first estimates the local density of each sample and then 
shrinks or enlarges the sample’s bandwidth. Suppose we have N 
points and each point is marked as Pi with a fixed bandwidth H. For 
any point P, its local density f is obtained by: 

𝑓(𝑃) =
1

𝑁
∑ 𝐾𝐻(‖𝑃 − 𝑃𝑖‖)𝑁

𝑖=1                     (7) 

where ||.|| is the L2 distance. We can then estimate the local 
smoothing parameter 𝜆𝑖  and from it, the new bandwidth Hi for 
adaptive smoothing:  

λi = (G/f(Pi))2                𝐻𝑖 = 𝐻 × 𝜆𝑖               (8) 

where G is the geometric mean of all the samples local density.  
The adaptive bandwidth of the AKDE kernels makes sure that 

small dense regions are preserved and not over-smoothed while less 
dense regions are properly fused. Fig. 9 compares fixed kernel 

density estimation (KDE) (Fig. 9a) with AKDE (Fig. 9b) for the car 
dataset. In this figure the brighter values correspond to lower values 
and vice versa. Consider the regions pointed to by the yellow arrow 
where we can see two separate regions for the AKDE, while these 

regions appear mixed together for the KDE. There are also other 
examples in the map where AKDE gives a more accurate estimate 
of the local density.  

4.2.2 Creating the attribute distance field using AKDE 

We estimate the values in the continuous map based on adaptive 
kernels – when the point has a higher density, it would have lower 
bandwidth to shrink its effect area, and vice versa. Then, based on 
the adaptive kernel distance, we use Nadaraya-Watson kernel 
regression [27][35] to obtain the estimated value. Suppose the value 
at Pi is xi, then the value x at the estimated point P is 

𝑥 = ∑
KH(‖P−Pi‖)∙xi

∑ KH(‖P−Pj‖)N
j=1

N
i=1                            (9) 

where KH is the kennel function. Here we choose Gaussian 
function. However, some areas on the 2D canvas are far away from 
the samples and are therefore undefined. Thus it is important to 
control the border of the map and remove these undefined areas. 
We set the threshold ε for the sum distance – if the estimated point 
is far away from all the samples, we ignore it. 

∑ 𝐾𝐻(‖𝑃 − 𝑃𝑗‖) ≥ 𝜖𝑁
𝑗=1                           (10) 

Fig. 10 shows how we convert the point map into a distance 
heatmap using AKDE. Here we first color the data points based on 
their values (here, of the horsepower attribute, Fig. 10a) and then 
generate the heatmap based on AKDE-based interpolation (Fig. 
10b). We can see that the AKDE can estimate the values well and 
the border of this heatmap is also well defined.  
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Fig.11. The data context map contour (a) and MDS plot contour (b). 

  

(a)                                         (b)                                         

Fig.12. The decision of (a) “Hpower” (120~230), (b) “MPG” (15~46) 

and (d) “Origin” (“European”) and (c) (e) their merge process. 

  

    

  

(b)                                         
(a)                                         

(c)                                         (d)                                         

(e)                                         

Hpower 

MPG 

Origin 
  

  

MPG 

Hpower 

Hpower 

MPG 

Origin 

4.2.3 Creating the contour fields 

Just by using the distance heatmap alone it is difficult to make out 
actual values. A common technique to visualize distance fields is 
via topographic maps. Then if a point is within a certain pair of iso-
contours we can easily read off its value. We generate these 
contours via the conrec algorithm [1]. Fig. 11a shows the contour 
field of Fig. 10a, for the horsepower attribute. We observe that the 
contour region’s value decreases level by level as we move away 
from the attribute node.   

 The contour field can also compare the layouts generated with 
standard MDS and our DCM. Fig. 11b shows the contour field 
generated from a distance heatmap based on a standard MDS layout 
(also using Glimmer MDS but without using attribute points). We 
find that the contour field has a rather ragged appearance with many 
more islands than the one generated from the DCM. In the data 
context map, on the other hand, the attribute nodes attract high-
valued points and push low-valued points away. This magnetic 
force organizes the samples and so a smooth distance field can be 
created.       

4.2.4 Creating the decision regions 

Each attribute gives rise to a set of contours, and a closed range of 
attribute values gives rise to a filled region between the two 
corresponding contours. Fig. 12a shows such a region for the 
horsepower range (120~230). We emphasize that this region has 
been computed from the value field generated by the actual data 
samples and so any sample selection that is based on it will be 
accurate. As such any of the cars that get mapped into the salmon-
colored region in Fig. 12a indeed has a horsepower value in it.  

Fig. 12b shows the iso-region for the (15-46) mpg value range 
which we can obtain in a similar fashion. This purple region 
contains all cars that have a mpg rating in that range. Next we can 
superimpose these regions to create the joint map shown in Fig. 12c. 
This joint map has three regions. The first is due to the original 
horsepower range only, the second is due to the original mpg range, 
and the third, overlapping region blending into a darker salmon 
color, contains cars that fit both value ranges. So if we wanted a car 
that fits both criteria we would pick a car from this overlap region.  

Finally, we add a third constraint – origin. Origin is a discrete 
variable and we select the value 2 – the European cars. This gives 
rise to the green region in Fig. 12d. Blending it with the 
horsepower-mpg joint map creates the triple-attribute joint map 
shown in Fig. 12e. Now if we wanted to buy a car that is European 
and fits the other two range constraints we would look into the olive 
green region on the lower right. There are still some choices. We 
could pick a car on the upper boundary of that region which would 
be a more efficient car but with less horsepower. There is a car that 
fits the bill, which has been circled in the figure. Alternatively, we 
could pick a car from the left region boundary which would be a 
less efficient car but with a bit more muscle. There is also a car that 
fits this preference. However, if we sought to find a car that 
represents a compromise of mpg and horsepower – one that falls 
right into center of the region – we learn from the map that there is 
no such car in the database. There are obviously many more 

explorations we can do with this map in hand. Since the interface is 
fully interactive, the user is free to modify his preferences in real 
time and fit the map to these preferences.  

4.2.5 Creating a fully segmented and self-labeled map 

Now suppose we have k attributes and each attribute can be divided 
into lk levels based on users’ preference. For example, these levels 
can be high level, middle level, low level etc. Then we can encode 
the entire area and see the combination of these attributes. Each 
region can then be encoded as [𝑅1, 𝑅2, … , 𝑅𝑘], where Ri represents 
the level in the each factor i and 𝑅𝑖 ∈ [0, … , 𝑙𝑖]. We can divide the 
domain based on these codes and color the regions. However, it is 
important to maintain the color connection such that users can read 
the combination of different colors. We first assign the color for 
each attribute and let distances between colors are as big as possible. 
We set the intensity of each color based on the contour range level. 
Finally, when a region is composited we blend these colors. 
      Fig.13 shows an example for three attributes horsepower, mpg, 
and origin. We choose two levels - low or high (we set 40% as the 
threshold). For origin we split the set between Euro-Japanese cars 
and US cars. We give each attribute the color shown inside the 
attributes’ symbols and then color the entire domain via color 
blending. We can now color each of the regions depending on 
levels of the participating attributes. The legend below the figure 
lists a human-created annotation for the regions. However, such a 
labelling could also be done automatically, using the levels of the 
attributes in each region to support natural language generation.   
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Fig.13. The fully segmented and self-labeled map based on 

“Horsepower”, “MPG” and “Origin”. 

1 
 

Euro-Japanese efficient compact cars 

 US efficient compact cars 

  US semi-efficient medium-power cars 

  US big block gas guzzlers 

 Euro-Japanese gas guzzlers 

  Euro-Japanese semi-efficient medium-power cars 

Fig.14. The data context map for the business priority case study. 

  

5 CASE STUDIES 

5.1 Selecting a College 

Let us now return to the scenario we mentioned in the introduction 
– selecting a college. Our database has 46 universities distinguished 
by 14 attributes of interest: academics, athletics, housing, location, 
nightlife, safety, transportation, weather, score, tuition, dining, 
PhD/faculty, population, and income. Now suppose there is a 
prospective student, Tom, who is looking for a university. He aims 
for a school that has high athletics (>9), high academics (>9), but 
low tuition (<$18,000). He searches the universities with a 
traditional browser, but sadly he cannot find one which can meet all 
three requirements at the same time. He knows that he needs to 
make a compromise, trading off a few factors, and find the school 
that offers the right balance. This, however, he finds hard to do 
because he does not even know what his personal good balance 
really is. He wants to see “what’s out there” and get inspired. So he 
calls up the data context map to immersive himself into the 
landscape of schools to find the elusive balance.  

He begins by generating the decision boundaries based on his 
three criteria. This is shown in the teaser image, Fig.1a-d. Then he 
merges them and gets Fig. 1e. He (once more) recognizes that there 
is no university that can satisfy all three criteria at the same time – 
for example, the green tuition region does not overlap with the two 
other regions simultaneously. But now he sees in one view what his 
options are. He notices a few schools that meet two of his 
conditions – those schools that fall into two-layer overlap areas. He 
picks a few that are closest to the third layer at “just the right 
distance” as he describes it – the schools labelled A, B, and C in Fig. 
1e He says that he likes A “because it has good athletics and low 
tuition, while the academics is not stellar but alright”. Similarly, B 
is good and he’d be “OK with paying a bit more tuition for the great 
value.” Finally, school C has good academics and low tuition which 
is great because he “could just use the savings to buy a big screen 
TV to watch the games of other schools”. Nevertheless, he picks A 
and lives happily ever after.   

5.2 Analyzing the business priorities 

Our second case study demonstrates the utility of the fused display 
of samples and attributes. We peek into an analysis session of a 
group of top level managers of a multinational company with many 
subsidiaries in different countries. The topic is to determine the 
different priorities these companies have when it comes to sales 
strategy and long term goals. They have 600 samples of sales team 
data with 10 attributes: #Leads (generated), #Leads Won (LW), 
#Opportunities (generated), Pipeline Revenue (Rev), Expected 
Return on Investment (EROI), Actual Cost (Cost), Cost/WonLead 
(Cost/LW), Planned Revenue (Rev), and Planned ROI (PROI). The 
highly paid visual analytics consultant the firm has hired pulls out 
the data context map and with a few mouse clicks produces the 
visualization shown in Fig. 14. It is quickly seen that there are three 
clusters, call them red group, blue group, and green group. It turns 
out these three groups have rather different strategies and priorities. 

      The red group’s focus is dominated by #Opp, PROI, 
Cost/WL, where they have high values and achievements. At the 
same time, however, they score very low in #Leads, LW, Rev, etc. 
The members of this group tend to focus on the individual leads and 
invest a lot in these, and as a result they have usually a high number 
of opportunities. The blue group, in contrast, are possibly larger 
companies – they have high revenue and they can generate a large 
amount of Leads. The green group is dominated by PRev 
and %Comp. Since they have high expected revenue, 
their %completed is high. But clearly all groups have one thing in 
common – cost. This factor has equal distance for all of them. It 
means they all care about the cost with similar weights. 

6 CONCLUSION 

We have described the data context map – a framework and visual 
interface that enables a comprehensive layout of both data points 
and variables. We achieve it by fusing two distance matrices – the 
data and the attribute distance matrix. We create an optimized 
layout that can be used for in data-driven decision selection and 
decision problems that require a mindful balancing of trade-offs. 

While we provide several parameters for experts to guide the 

layout for their goals, they are not essential to produce usable 

results. Casual users can just use the pre-set weights, upload the 

data, generate the initial map, and interact with the value sliders. 

Future work will explore how casual users actually do this.  
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