
88	 May/June	2008	 Published	by	the	IEEE	Computer	Society	 0272-1716/08/$25.00	©	2008	IEEE

Feature	Article

Color-Space CAD:
Direct Gamut Editing in 3D
Neophytos Neophytou and Klaus Mueller ■ Stony Brook University

A s digital photography grows at an increas-
ing pace, so do the number of image- and
color-manipulation tools and their capa-

bilities. Currently, these tools are almost always
confined to traditional 2D interfaces. Color, how-
ever, is a 3D entity, most naturally manipulated
in a suitable 3D interface. Yet two hurdles have
prevented these types of interfaces from becom-
ing mainstream. First, there are concerns regarding

usability and the learning curve
such a new paradigm would im-
pose on the current user commu-
nity. Second, pre-GPU hardware
is incapable of facilitating an
interactive, responsive, and com-
pelling interface that would sup-
port these direct manipulations
in 3D color space. We present
an interface that addresses these
two obstacles.

We extend the current set of
image-processing tools by intro-
ducing a technique for trans-
forming the range of colors in
any region of an image using
geometric operations in a per-
ceptually uniform color space.
The provided environment lets

users directly operate on an image region’s color
gamut using a 3D CAD-like interface. The color-
visualization environment, along with real-time
feedback on the effects of geometric manipula-
tions on the image, let the artist better understand
and explore the color-space relationships. To al-
leviate some of the 3D manipulations’ complex-
ity, we provide the complete editing environment
used in CAD applications, which combines a set
of simultaneous 2D orthographic projections and

a 3D perspective view. This provides additional
contextual information and much better control
to the artist.

Color-Space CAD has inherently different goals
from other classes of colorization methods (see the
“Related Work on Colorization” sidebar, page 90).
Our primary goal is to generalize the traditional 1D
and 2D color-manipulation mechanisms resident in
many photo-processing software packages into 3D
interaction techniques. We use linear mapping op-
erations, which are similar to traditional methods,
and are far less computationally expensive than the
statistical or optimization methods of the more in-
volved colorization methods mentioned previously.
From this simplicity, we gain interactive processing
speeds, which are a must-have in an artistic and
creative setting where users tend to experiment ex-
tensively until they reach a satisfying result.

Direct manipulation in the color space
Figure 1 gives an overview of our color-space manip-
ulation method. Initially, the user imports a color
photograph into the host system (Adobe Photoshop,
for example). The user selects the area to be edited
and calls the Color-Space CAD plug-in to modify
the selected region’s color gamut. Alternatively, the
user can import a gamut from other reference im-
ages to serve as the target gamut. The system then
transforms the source colors of the selected image
regions into the reference gamut’s target colors us-
ing a 3D transformation in the color space. This
transformation can take place in CIELAB or HSV
color spaces, depending on the user’s preference.

Using CIELAB
We chose the CIELAB color space (whose coor-

dinates are L*, a*, b*) as the most uniform and
intuitive for our 3D spatial color visualization.

Color-Space	CAD	is	an	
interactive	image-processing	
framework	that	lets	users	
manipulate	colors	directly	in	
3D	perceptual	color	space.	
Unlike	traditional	2D	color-
manipulation	tools,	which	
often	require	multiple	
iterations,	Color-Space	CAD	
allows	direct	3D	navigation	
of	the	solution	space.	The	
framework	uses	graphics	
hardware	to	accelerate	
the	computation-intensive	
mapping	operations.

	 IEEE	Computer	Graphics	and	Applications	 89

Psychophysical experiments have shown that even
though CIELAB isn’t perfectly isotropic, the spatial
relationships between colors are more natural to
human observers. Thus, this color space is more
satisfactory for image-understanding applications.1

With perceptual uniformity as the main mo-
tivation, we defined all the interactive geometric
operations within CIELAB to offer a better corre-
spondence to Euclidian 3-space. Further, the ma-
nipulations on the color objects in this space are
quite straightforward to the user. Any movement
along the z-axis (mapped to L*) affects the lumi-
nance (like using a television’s brightness control),
and any movement along the x- (mapped to a*)
and y-axes (mapped to b*) corresponds to changes
in the image region’s chroma. Because the images
are originally in RGB, a nonabsolute color space,
we require a proper International Color Consor-
tium (ICC) profile for the conversions to and from
the CIELAB color space. In the absence of such
a profile, we assume the parameters of a generic
CRT monitor. Because the artist’s creative process

takes place using a specific monitor when loading
the first image into Color-Space CAD, this monitor
becomes the device profile attached to the result-
ing images and is used to standardize the image
for subsequent edits, possibly by other users on
different monitors.

Given these circumstances, we don’t claim that
CIELAB provides better accuracy. We use this color
space merely because it’s a convenient tool for geo-
metric user interaction with 3D color objects.

Using HSV
Because the CIELAB color space provides a percep-
tually more uniform alternative, it represents a nat-
ural choice for performing 3D manipulation and
transformations. However, the greater familiarity
and comfort that most graphic artists and profes-
sionals have with HSV poses certain limitations to
using CIELAB for production color-editing tasks.

We therefore extended our application to also
use the HSV color space as a working environ-
ment for performing 3D color manipulation and

(a)

(c)

(e)

(d) (f)

(b)

src src

src

refref

ref ref

Figure	1.	Creating	a	virtual	silkscreen	using	Color-Space	CAD.	(The	term	“virtual	silk-screen”	refers	to	Andy	
Warhol’s	famous	prints	using	this	technique.)	The	user	imports	(a)	the	original	image	into	the	system	then	
creates	(b)	the	target	regions	in	the	original	image,	using	advanced	selection	tools.	After	importing	the	colors	
from	the	reference	images	(c−f),	the	system	converts,	for	every	selected	region,	the	colors	using	a	geometric	
transform	from	the	source	color	objects	(src)	to	the	reference	color	objects	(ref).	(FreeDigitalPhotos.net	
provided	the	reference	images.)

90	 May/June	2008

Feature	Article

transformation operations. For this, we modified
the hue and saturation channels to form a 2D
Cartesian plane. The assumption that hue varies
along the circumference of a circle with a radius
of 1.0, while saturation varies [0.0 . . . 1.0] from
the circle’s center to its perimeter, motivated this
modification. Next, we convert these polar coordi-
nates into Cartesian space to obtain the new HSx
and HSy coordinates in [−1 . . . 1], which express
the color variations on the hue-saturation plane.
This approach also resolves the problem of the hue
component being modulusthat is, as hue ranges
from 0 to 360 degrees, hue is red at both 0 and
360 degrees.

Color range definition
In our system, a color range is the gamut that in-
cludes the group of colors appearing in a selected
image region. The defining colors are expressed as
3D points in the perceptual color space (CIELAB/
HSV), and the color range is simply the convex hull
enclosing these points. To find the color range of a
particular region within the image, we convert the
colors of all pixels within that region into points
in the perceptual space, then create their enclos-
ing 3D convex hull. At this point, the user can ma-
nipulate the 3D color objects in the provided CAD

environment, or define a completely new object by
drawing the enclosed points and performing geo-
metric operations on the resulting polyhedra in
the perceptual color-space domain. The system vi-
sualizes the color-range objects in the GUI using
GPU fragment programs that convert the associ-
ated CIELAB or HSV position into an RGB color
for every drawn point in real time, even while the
user manipulates the color objects.

In the CIELAB color space, the convex hull of
an entire image region’s colors includes not only
all the colors that currently appear in that image
region but also any possible combination of these
colors. We can explain this through the color
range’s geometric interpretation. Every contribut-
ing color is actually a 3D point in the color space. A
color mix is the interpolation of two points, which
will always be somewhere between those points in
3D space. Hence, it will still fall within the con-
vex hull already enclosing these two points. We
derive an interesting observation from this prop-
erty. If we create a digitized painting’s color-range
gamut, the most basic colors used will always re-
side on the gamut’s edges, and, in all likelihood,
these were the colors on the artist’s palette. On
the other hand, everything in the interior of this
gamut is the result of mixing the outside colors of

Related Work on Colorization

Work on the colorization of gray-level images1,2 and the
recolorization of color images2,3 is slightly relevant to our
work. Both of these approaches are semiautomatic offline
processes that have enjoyed much recent interest. They
use statistical analysis to impose one image’s character-
istics onto another. First, they convert the image into a
perception-based color space (lαβ) and then apply the
color-correction process in a way that preserves the de-
sired statistical characteristics along the three axes of the
color space. Welsh and colleagues use swatches to control
the gray-scale-to-color conversion.2 This lets users better
resolve ambiguities when the luminance statistics are
similar in the source and reference images. Another ap-
proach lets users define new colors by scribbling a strip of
uniform paint directly on the image to be processed.1 An
offline process then produces the colorized image based
on these user parameters and hints (the scribbles).

Color science researchers have demonstrated color
transfer using a direct representation of the image’s
color gamuts in ways quite different from ours. Here, the
gamut-mapping algorithms deal with the problem of
transferring an image across different media such as CRT
monitors, ink-jet color printers, and color laser printers,
with minimal loss of contrast and faithful color representa-
tion. Morovic and Luo provide an overview and evaluation

of such gamut-mapping functions, with some emphasis
on contrast-preserving scaling functions.4 A related ap-
proach introduces the use of Alpha shapesa generaliza-
tion of convex hullsto provide a geometric analytical
description of the gamut’s surface.5 This facilitates the
comparison of gamuts and the computation of simple
figure-of-merit quantities related to the device’s quality
(such as a gamut’s volume). It also aids in out-of-gamut
mappings using geometric techniques.

References
A. Levin, D. Lischinski, and Y. Weiss, “Colorization Using

Optimization,” ACM Trans. Graphics (Proc. Siggraph), vol.

23, no. 3, 2004, pp. 689–694.

T. Welsh, M. Ashikhmin, and K. Mueller, “Transferring Color

to Greyscale Images,” ACM Trans. Graphics (Proc. Siggraph),

vol. 21, no. 3, 2002, pp. 277–280.

E. Reinhard et al., “Color Transfer between Images,” IEEE

Computer Graphics and Applications, vol. 21, no. 5, 2001,

pp. 34–41.

J. Morovic and M.R. Luo, “The Fundamentals of Gamut

Mapping: A Survey,” J. Imaging Science and Technology, vol.

45, no. 3, 2001, pp. 283–290.

T. Cholewo and S. Love, “Gamut Boundary Determination

Using Alpha-Shapes,” Proc. 7th Color Imaging Conf., Soc. for

Imaging Science and Technology, 1999, pp. 200–203.

1.

2.

3.

4.

5.

	 IEEE	Computer	Graphics	and	Applications	 91

the basic palette. Later, we describe an application
that uses this property.

Color transformation
The transform operation converts all colors of a
source color gamut so they’ll fit as a group into the
target (or reference) color gamut. Here, the reference
gamut might be the result of geometric manipula-
tions on the original gamut or an entirely different
gamut imported from another image or artificially
created using the 3D interactive environment.

The transformation process converts every color
of the source image gamut into its corresponding
color in the reference gamut by taking the resulting
color’s distance from the reference gamut’s center
to be proportional to the distance of its counter-
part from the source gamut’s center. Chang and
colleagues also used this correspondence to trans-
fer the mood among different images.2 By allowing
the transformation only between color gamuts of
the same perceptual color category, they preserve
the source and reference images’ basic perceptual
color categories.3 In contrast, our system allows
drastic changes in the color category, in the spirit
of artistic editing.

We define the correspondence between the
source and reference gamut (where the gamut is
a convex hull) using the distance vector of the
source point to the source hull’s center. The new
point in the reference gamut will lie on the seg-
ment drawn from the reference hull’s center along
the same direction, at a relative distance from the
center given as:

P
P C
E C

E C Cref
src src

src src
ref ref ref=

−
−

⋅ −() +

 (1)

Here, Pref is the corresponding point in the refer-
ence hull, Psrc is the source point, Csrc is the source
hull’s center, Cref is the reference hull’s center, Esrc is
the intersection of a ray of direction Psrc – Csrc with
the source hull’s shell, and Eref is the intersection of
a ray of the same direction with the reference hull.
Figure 2 illustrates this transformation.

During the color transformation, the system first
converts the source image’s pixels from RGB to per-
ceptual space. After computing the corresponding
reference point according to this method, the sys-
tem converts it back to RGB in the final image.

Gamut clipping
In some cases, the user’s manipulations on a color
gamut could transform parts of the resulting 3D
shape to the outside of the display device’s bound-

aries. Left untreated, this situation would produce
colors that are impossible to represent and visual-
ize on the user’s device. One way to deal with the
problem is to use interactive collision-detection
techniques to prohibit the user from moving or
resizing color objects outside of this visible region.
Our current application uses the much simpler ap-
proach of clamping the resulting colors to their
closest RGB representation during visualization,
while preserving the out-of-gamut representation
for the internal computations.

Slight gamut clipping can also occur during the
transformation process. This occurs when using
the perceptual color space CIELAB, in which some
device gamuts, including common CRT/LCD dis-
plays, are concave in certain regions. So, if any
image colors lie on these concave boundaries, their
convex hull will also contain some slightly out-of-
gamut colors. This problem isn’t acute in 8-bit-per-
channel images; however, it’s becoming a major
concern with the continuous availability of much
higher resolution raw images and Photoshop’s sup-
port for 16-bit-per-channel images. This specific
case isn’t a problem for the HSV implementation,
which is also a nonabsolute color space and in
which all color points are fully enclosed within a
predefined cylinder. We plan to extend our plug-in
with a modified transformation process that uses
freeform and mass-spring model-deformation
techniques, which will better address this issue.

System implementation
To be practical for use in a creative trial-and-error
process in which artists try many settings until they
find one that works, such a system must be interac-
tive. However, the methods we’ve described involve
considerable computation to obtain the trans-
formed color for each pixel. In our initial software
implementation, most of the processing cost was
consumed in finding the intersections between the

Esrc Psrc

Csrc

Eref Pref

Cref

(a) (b)

Figure	2.		
(a)	Given	the	
position	of	the	
color	point	
Psrc	inside	the	
source	hull,	the	
point	Esrc	is	the	
intersection		
of	the	vector	
Psrc	−	Csrc	with	
the	hull.		
(b)	Using	the	
same	direction	
vector,	we	
can	find	Eref.	
We	can	then	
position	Pref	
on	Eref	−	Cref	
at	a	relative	
distance	from	
the	reference	
hull’s	center.

92	 May/June	2008

Feature	Article

ray and the convex hulls, Esrc and Eref, respectively.
A GPU hardware-accelerated version of the system
addresses this bottleneck operation by reducing it
to a single texture lookup in a specially encoded
cube map. This modification effectively reduces the
response time to fractions of a second.

The intersection of an arbitrary ray with a convex
hull (3D polyhedron) requires cycling through all
the polyhedron’s facets, performing an intersec-
tion test for each. However, all the intersections
required to calculate Esrc involve rays that pass
through the hull’s center and span to all possible
directions. The same is true for Eref in Equation 1.
Cube maps encode the environment using six pro-
jections onto a surrounding cube’s sides.4 They’re
easy to index and are currently implemented in
most graphics hardware accelerators.

In our application, the surrounding scene is the
convex polyhedron for the current color range. The
information that must be stored in this structure
is the distance from the object’s center to the in-
tersecting polygon along every direction. Because
this distance, Esrc − Csrc, doesn’t change through-
out the color-range polyhedron’s lifetime, the sys-

tem can store it in the cube map data structure
and use it per pixel. This operation’s lookup key
is the direction of the Psrc − Csrc vector, which the
fragment shader computes for every pixel.

To create the cube map, we use a fragment pro-
gram that only computes the distance of every
point on the surface to the hull’s center. As we
rasterize each triangle, we pass the coordinates of
the triangle’s vertices as texture parameters. The
hardware interpolates these parameters for every
fragment rasterized. The fragment program sub-
sequently uses them to compute the distance of
every point of the triangle to the polyhedron’s cen-
ter. To properly render each side of the cube map,
we draw the structure from six different viewing
angles. We encode the final result into 32-bit floats
using the shaders’ pack and unpack utilities (this
allows compatibility to previous-generation hard-
ware, which doesn’t support rendering to float tex-
tures). Figure 3 illustrates this process.

User environment and features
Our system lets users interactively manipulate
(through an affine sculpting operation) the 3D

(a)

(d) (e) (f)

(b) (c)

Psrc
Psrc

Csrc

Csrc

Esrc

Psrc Csrc

Ecube Ecube

Figure	3.	Using	a	cube	map	to	speed	the	intersection	lookups.	We	render	(a)	the	color-range	convex	hull	
onto	(b)	a	set	of	six	panels,	each	representing	a	different	viewing	angle	from	inside	a	cube.	The	fragment	
program	that	we	use	for	rasterization	computes	each	point’s	distance	to	the	hull’s	center	and	encodes	it	into	
the	texture	as	a	32-bit	float,	resulting	in	(c)	the	final	cube	map.	(d)	During	transformation,	we	compute	Psrc	
by	converting	the	current	pixel’s	RGB	color	to	an	L*a*b	point.	(e)	Using	the	direction	of	the	vector	Psrc	−	Csrc	
we	can	look	up	texel	Ecube	from	the	cube	map.	(f)	The	lookup’s	result	will	give	the	distance	Esrc	−	Csrc,	which	we	
plug	into	Equation	1	and	use	to	produce	the	transformed	color.

	 IEEE	Computer	Graphics	and	Applications	 93

color space. Our Color-Space CAD Photoshop
plug-in interface (detailed in Figure 4) has two
main components:

the color-space windows, where the color ranges
are visualized and manipulated as solid shapes
in perceptual space through a combination of
2D orthogonal projections and a 3D perspective
projection; and
the image preview window, which provides im-
mediate feedback regarding the user’s actions’
effect on the selected image region.

As the user interacts with the 3D color-space in-
terface, the system applies the transformations

■

■

directly to the selected image region and renders
them in real time in the image preview window.

Selection mask
Photoshop invokes the Color-Space CAD plug-in
after the user selects a region using the advanced
selection tools. These tools include color-range
selection, magic-wand, lasso, and magnetic lasso
tools, in combination with selection modifications
such as antialiasing, feathering, and smoothing.
These tools all result in an 8-bit selection mask,
which our plug-in uses to adjust the selection
boundaries. Photoshop uses the 8-bit range to
mark every pixel with tags varying from not se-
lected (mask = 0) to fully selected (mask = 255).

(a) (b)

(c) (e)

(d) (f)

Figure	4.	(a)	The	Color-Space	CAD	plug-in	interface	with	a	selection	for	editing	in	CIELAB	mode.	On	the	left	
is	the	color-space	object	in	a	combination	of	orthographic	and	a	perspective	editor	views	as	in	a	general	CAD	
system.	The	changes	are	immediately	reflected	in	the	preview	image	on	the	right	of	the	window.	The	bottom	
right	section	browses	the	gamut	library	to	activate	gamuts	from	other	images	for	a	color	transfer.	(b)	The	
plug-in	interface	when	working	in	HSV	mode.	Editing	actions	in	the	color-space	domain	include:	(c)	initial	
color	transfer	for	the	background;	(d)	resizing	(contracting)	along	the	z-direction	modifies	the	dynamic	range,	
resulting	in	a	flat	color;	(e)	the	source	(tan)	and	reference	(blue)	hulls	aren’t	aligned,	resulting	in	unpleasant	
artifacts;	and	(f)	an	alternative	approach	rotates	only	the	internal	vectors.

94	 May/June	2008

Feature	Article

Color-space visualization
As Photoshop calls the plug-in, the plug-in creates
a 3D solid representation of the selected region’s
color gamut. We represent the L*a*b* color space
in 3D by assigning the L* channel to the z axis
and the a* and b* channels to the x and y axes, re-
spectively. Fragment programs convert each pixel’s
coordinates back to the corresponding RGB colors,
so that the objects visually carve out a 3D color
volume. We represent the modified HSV color
space (shown in Figure 4b) using the transforma-
tion discussed earlier, with the V (intensity value)
component mapped to the z axis, and the HSx and
HSy components mapped to the x and y axes. We
divide the color-space visualization display into
four resizable components, consisting of three or-
thogonal projections and a perspective view of the
color object. The 2D and 3D views include a host
of editing features so users can further fine-tune
the color-transfer process, with support available
at multiple levels.

The main display (perspective view) handles
gamut clipping by discarding all nonvisible pix-
els when carving the axial planes, but clamps the
colors toward their closest boundary in displaying
the color gamut shapes. In contrast, the 2D or-
thogonal displays extend the out-of-gamut regions
by drawing the nonvisible colors clamped to their
closest in-gamut equivalents.

Alternative 2.5D visualization and editing
To make Color-Space CAD more accessible to users
familiar with the existing 2D manipulation tools,
we provide an alternative 2.5D depth-visualization
capability. This additional display augments the
existing three orthogonal 2D displays by adding a
depth-perception layer. This display uses a check-
erboard pattern in which the front- and back-
most layers of the projected color gamut appear
in alternating squares. A large color difference in
the front and back layers (caused by a large depth
difference) becomes immediately apparent in the
checker display as high contrast, giving a better
perception of the shape’s actual depth. A more
homogeneous look would suggest a thin object of
much less depth.

Basic editing support lets users directly edit the
selected region’s 3D gamut object. The interface’s
most intuitive operation is translating the 3D
color objects. Translating the color object along
the z axis affects the target image region’s lumi-
nance (CIELAB) or intensity value (HSV). Mov-
ing the object along the xy plane affects the target
image region’s chroma in both perceptual color
spaces. The color of the objects in the 3D ma-

nipulation window gives additional hints regard-
ing the final image’s appearance, simultaneous
to updating the resulting image. Resizing the ob-
jects intuitively affects the color region’s dynamic
range along the resize direction. For example, we
can accentuate tone differences within the same
color by enlarging the color object, or flatten the
resulting region’s color by contracting the color
hull (Figure 4d). We perform these operations in
the orthographic view using a 2D resizer box, or
in the perspective view using a 3D cube widget.
We initially adjust the cube’s orientation to the
minimum enclosing cube for the given object.
We compute this cube by performing principal
component analysis (PCA) on the color gamut.
We can also rotate the resizer cube to allow re-
sizing along arbitrary directions. Finally, the sys-
tem also lets us rotate the gamut around its own
center or around the color-space center. This op-
eration makes more sense in HSV mode, where
rotations of the object around the V axis result
in consistent hue changes.

Import reference gamut
In addition to the free-hand approaches described
so far, Color-Space CAD also supports example
images, allowing the direct transfer of the color
gamut from a separate reference image to the
current user selection. Users can further modify
the imported color gamut using the controls de-
scribed previously. The plug-in interface supports
this functionality by letting users select the de-
sired reference gamut from a library of previously
processed image regions with their color gamuts.
Allowing color transfers between any arbitrary
color gamuts can cause quantization artifacts
when either the shape or the orientation of the
source and reference gamuts differ significantly.
That is, the problem arises when a short axis in
the source gamut coincides in orientation with a
longer axis in the reference gamut. In this case,
a neighborhood of pixels spanning a small range
of contrast in the original image must map onto
a larger contrast range in the resulting image.
The new contrast difference between neighboring
pixels in the selected image region is now much
steeper, resulting in the pronounced quantization
artifacts illustrated in Figure 4e.

Gamut alignment dequantization
The system automatically aligns the selected refer-
ence gamut to the orientation of the image source
gamut. It does this by performing PCA on both
gamuts and rotating the major axis of the refer-
ence gamut to match the orientation of the source

	 IEEE	Computer	Graphics	and	Applications	 95

gamut axes. This approach eliminates the quan-
tization artifacts; however, the resulting rotation
effectively changes the reference gamut’s color sta-
tistics. Hence, the resulting color transfer doesn’t
completely represent a transfer to the selected ref-
erence image color region.

As an alternative to rotating the reference gam-
ut and changing the resulting color mood, we use
a different rotation in the transformation process,
which we apply on the reference vectors (Pref − Cref)
just before using Equation 1. This internal vector
transformation avoids the quantization artifacts
explained previously, without rotating or changing
the reference gamut itself, and effectively preserves
the intended mood of the target image region.
Figure 4f illustrates the effect of vector-alignment
dequantization. This method ensures that a short
axis’s orientation from the source hull won’t coin-
cide with the orientation of a long axis of the ref-
erence hull by applying an appropriate rotation to
the reference hull’s coordinate system. We compute
the rotation using PCA similarly to its use in the
gamut alignment (the wireframe hull in Figure 4d).
We then rotate the vectors into the original refer-
ence hull, using the intended color gamut in the
mapping. This rotation can result in mappings in
which a source image area of varying hue changes
to varying luminance in the result image.

This rotation approach isn’t conceptually wrong;
in fact, it’s in keeping with the reference gamut
statistics. It also complies with the approach’s two
main goals: to preserve the user’s reference gamut,
and to avoid mapping quantization artifacts. The
tradeoff associated with our dequantization tech-
nique is similar to the tradeoff associated with
replacing aliasing with blur in sampling tasks.
Nevertheless, if the effects of the dequantiza-
tion are unacceptable, yet users want to avoid the
quantization without severe gamut changes, they
can alternatively widen or shorten the reference
gamut using the scaling tools.

An additional switch lets users convert the re-
gion to gray scale. This instructs the rendering frag-
ment programs to use only the luminance channel
for the final image. Users can then adjust the re-
gion’s brightness and contrast by manipulating
the color object’s position and size (stretch) along
the z-direction to enhance some features. Howev-
er, to preserve subtle features that depend only on
chromatic contrast, users must pursue a salience-
preserving approach.5

We can also save the system’s entire state, in-
cluding the color gamuts and their associated
modifications, on disk for later retrieval using
an extensible XML format. This lets Color-Space

CAD maintain its library of preprocessed gamuts
for users, which can include gamuts shared over
the Internet.

Artistic applications
We tested Color-Space CAD on a standard config-
uration comprising a Pentium 4 processor running
at 2 GHz with 512 Mbytes RAM and an NVidia
GeForceFX 6800 graphics board. The hardware-
accelerated implementation’s response time when
operating on 3-megapixel images is less than 30
milliseconds, enabling real-time manipulations
for even large images.

We tested the system in different image-pro-
cessing application scenarios, mostly for artistic
purposes. One example application is the virtu-
al silkscreen, in which our artistic collaborator
sought to create enhanced silkscreen-like images
resembling the style of Andy Warhol’s silkscreens.
The images in Figure 5 illustrate our attempts to
create a set reminiscent of Andy Warhol’s 1962
Marilyn Monroe silkscreen series. He made the
originals by projecting the positives of black and
white photos onto a silkscreen. The original pho-
tograph was from Monroe’s 1953 movie, Niagara.
However, in contrast to Warhol’s original tech-
nique, color-space sculpting capitalizes on the sta-
tistics of color images. To illustrate this capability,
we used an alternative image of Monroe from the
same movie in a similar setting and recreated an

(a) (b)

(c) (d)

Figure	5.	
The	“virtual	
silkscreen”	
Marilyns.		
These	images	
illustrate	how	
we	can	use	
this	method	
to	produce	
extreme	results	
for	fun	and	
as	an	artistic	
tool.	These	
images	were	
the	original	
inspiration	for	
the	Photoshop	
tool.

96	 May/June	2008

Feature	Article

enhanced silkscreen-style effect. Transferring an
entire color gamut onto a region results in full-
er images, which also preserve some texture and
lighting from the original image. These results
can’t be reproduced simply by changing some re-
gions’ hue element, because the entire transfor-
mation process also depends on the source’s shape
and reference color gamuts.

Another application of the color-range transfer
process involves transferring the color gamut of
a selected region from one image to the select-
ed region in another image. So, if we’re working
with portrait or full-body images of individuals
with different color skin complexions, we could
transfer only the skin color from one picture to
another. Figure 6 shows the results of transfer-
ring the skin complexion from a photograph of an
African woman to a photograph of Monroe. For
this transfer, we isolated a selection that includes
the African woman’s face as the reference color
range, and Monroe’s face and neck as the source
color range. Both the source face and the refer-
ence selection include a multitude of colors that
define the blonde Caucasian and the dark African
complexions.

Similarly, we can achieve other difficult color
transfers involving a range of colors to be con-
verted, such as hair color. This ability could be
useful in modeling and styling applications that
must provide a convincing preview before a make-
over takes place. The images in Figure 7 illustrate
similar uses of Color-Space CAD.

Applications in visualization
As Bauer and colleagues demonstrated in their
fundamental perception study,6 given a set of col-
ors enclosed by their color-space convex hull, ad-
ditional colors only pop out (become noticeable
pre-attentively) if they fall outside this convex

(a)

(b)

Figure	7.	Using	color-space	sculpting	to	enhance	selected	image	
features.	We	transformed	selected	features	to	Americana-inspired	colors	
using	Color-Space	CAD	manipulation	and	gamut	imports	from	other	
images.	(We	used	aqualegia	flowers	for	the	purple-bluish	chair	and	
mustard	seeds	for	the	grass.

(a)

(b)
(c)

(d)

(e)

Figure	6.	Using	color-space	sculpting	to	transfer	skin	color:	(a)	reference	image	(African	woman),	(b)	selected	
region	in	reference	image,	(c)	source	image	(Marilyn	Monroe)	with	selected	region,	(d)	Monroe	after	the	
conversion,	and	(e)	original	image	for	comparison.

	 IEEE	Computer	Graphics	and	Applications	 97

hull. Our system provides a natural interface for
using this fundamental finding. For example, a
potentially useful application is the semiautomatic
selection of colors for highlighting and annotating
color photographs. Figure 8 demonstrates such an
application. Here, the system first calculates the
gamut convex hull of the photograph to be high-
lighted or annotated. Next, it lets the user choose
from a selection of colors situated outside the
gamut. If the image’s gamut completely fills the
color space, leaving no apparent choices for colors
outside the gamut, the user can resize the gamut
using any of the gamut operations discussed to re-
duce its dynamic range in an arbitrary direction
to make space for the color of the new feature to
be introduced.

Comparison to existing packages
Color-Space CAD offers a versatile environment for
color transformations by letting users manipulate
3D color shapes and practically sculpt an image’s
color-space domain. This feature offers an advan-
tage over similar features in the most advanced
photography processing packages, such as Adobe
Photoshop. To test our claim, we tried to replicate
a virtual silkscreen (produced by Color-Space CAD)
using Photoshop’s layer operations. We started with
the original color photograph and, after segment-
ing the image, matched the desired colors for each
layer. We defined the colors as flat color overlays
over the image’s segmented areas. We assigned each

layer/overlay a mixing operation with the layer un-
derneath it, which in our case was the original im-
age. These predefined operations included darken,
multiply, difference, and exclusion. For our exam-
ple, we used Photoshop’s linear dodge operation for
applying hair color and its hard light operation for
applying face color. We used the color operation to
assign the background and other regions. This oper-
ation keeps the original luminance channel and re-
places the chrominance channels with the assigned
colors. We selected these operations to emulate the
results of color-space sculpting.

Figure 9 shows the two images side-by-side. Al-
though we used most of Photoshop’s available op-
tions in our effort to achieve a comparable image,
these global operations don’t offer enough control
to fine-tune the results to the extent that color-
space sculpting permits. As the example shows, the

(a) (b)

(c) (d) (e)

Figure	8.	Photograph-highlighting	and	text-annotation	example.	(a)	The	user	selects	a	purple	color	from	
inside	the	image’s	color	gamut	to	highlight	a	person’s	t-shirt.	(b)	The	plug-in	screen	shows	the	highlighted	
photo.	(c)	We	choose	a	light	green	lying	outside	the	gamut	and	(d)	the	color	highlighted	is	immediately	
apparent.	(e)	We	compare	three	colors	for	text	annotation	as	sampled	from	the	image	color	space.	As	we	
expect,	line	1	has	been	sampled	from	inside	the	gamut	and	line	2	was	sampled	outside	of	the	gamut.

(a) (b)

Figure	9.	
Comparison	
with	layer	
operations	
in	Adobe	
Photoshop:		
(a)	Color-
Space	CAD	
and	(b)	Adobe	
Photoshop.

98	 May/June	2008

Feature	Article

image in Figure 9b matches the colors and some
features of the image in Figure 9a, but it’s still
less refined. Our system’s flexibility let the art-
ist eliminate the unwanted hair highlights, while
keeping the overall color assignment. The system
offers this unexplored level of flexibility by allow-
ing interactive and more direct manipulation and
sculpting of the color space.

Of course, other packages could replicate all of
Color-Space CAD’s functionality through a long
trial-and-error process, using the provided 1D lay-
er operations. However, our system provides fast
shortcuts to these functionalities by allowing the
manipulation to take place in 3D, directly on the
color object.

During recent interactions with various art-
ists and color professionals in the context of

our software demonstrations and an oral sketch
presentation of an earlier prototype,7 we found
that such an interface has long been awaited and
promises to be useful. To provide better accessibil-
ity of our plug-in to the color artists and color
professionals communities, we’ve extended our
system to support the HSV color space in addi-
tion to CIELAB. Our current focus is on exploring
further applications with these professionals and
investigating additional functionalities specific to
the perceptual color spaces we use. The current
version of the plug-in is due for a public release in
the summer of 2008, in the hope of wider usage
and feedback.

Acknowledgments
We thank our artistic collaborator, Odaly Cruz, for
her feedback during the development and testing of
this system, and for creating the “Virtual Silkscreen
Marilyns” and other examples in this article. We
greatly appreciate the artistic feedback of Philip Sand-
ers, associate professor at the College of New Jersey,
and Aviv Yaron, 2D technical director at Cinesite Eu-
rope. Many thanks to Youngha Chang for our useful
conversations about color transfers, and to Keiji Uchi-
kawa for allowing us access to his perceptual color re-
search data. Our gratitude also goes to Adobe Systems
for providing complimentary access to the Photoshop
software developer’s kit. US NSF Career grant ACI-
0093157 and US NIH grant 5R21EB004099-02 par-
tially supported this work.

References
G. Wyszecki and W.S. Stiles, Color Science: Concepts 1.

and Methods, Quantitative Data and Formulae, 2nd
ed., Wiley-Interscience, 2000.
Y. Chang, S. Saito, and M. Nakajima, “A Framework
for Transfer Colors based on the Basic Color
Categories,” Proc. 2003 Computer Graphics Int’l (CGI
2003), IEEE CS Press, 2003, pp. 176–181.
K. Uchikawa, I. Kuriki, and H. Shinoda, “Categorical
Color-Name Regions of a Color Space in Aperture
and Surface Color Modes,” J. Light and Visual
Environment, vol. 10, no. 1, 1996, pp. 26–35.
R.A. Hall, “Hybrid Techniques for Rapid Image
Synthesis,” Image Rendering Tricks, Course Notes
16 for Siggraph 1986, T. Whitted and R. Cook, eds.,
ACM Press, 1986, p. 986.
A.A. Gooch et al., “Color2gray: Salience-Preserving
Color Removal,” ACM Trans. Graphics (Proc.
Siggraph), vol. 24, no. 3, 2005, pp. 634–639.
B. Bauer, P. Jolicoeur, and W. Cown, “Distractor
Heterogeneity Versus Linear Separability in Colour
Visual Search,” Perception, vol. 25, no. 11, 1996, pp.
1281–1293.
N. Neophytou and K. Mueller, “Color-Space CAD,”
ACM Siggraph 2006 Sketches, ACM Press, 2006, p.
122.

Neophytos Neophytou is a senior
scientist at Intelepix LLC, where
he leads research and development
on GPU-accelerated geospatial in-
telligence and visualization. His
research interests include graphics,
scientific visualization, medical

imaging, and geospatial visualization. Neophytou has
a PhD in computer science from Stony Brook Univer-
sity. Contact him at nneophyt@cs.sunysb.edu.

Klaus Mueller is an associate
professor in the Computer Science
Department at Stony Brook Uni-
versity, where he also holds coap-
pointments in the Biomedical
Engineering and Radiology Depart-
ments. His research interests are

computer and volume graphics, visualization, visual
analytics, medical imaging, and computer vision. Muel-
ler has a PhD in computer science from the Ohio State
University. He is a senior member of the IEEE and the
IEEE Computer Society. Contact him at mueller@cs.
sunysb.edu.

For further information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/csdl.

2.

3.

4.

5.

6.

7.

