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Color-Space CAD:  
Direct Gamut Editing in 3D
Neophytos Neophytou and Klaus Mueller ■ Stony Brook University

A s digital photography grows at an increas-
ing pace, so do the number of image- and 
color-manipulation tools and their capa-

bilities. Currently, these tools are almost always 
confined to traditional 2D interfaces. Color, how-
ever, is a 3D entity, most naturally manipulated 
in a suitable 3D interface. Yet two hurdles have 
prevented these types of interfaces from becom-
ing mainstream. First, there are concerns regarding 

usability and the learning curve 
such a new paradigm would im-
pose on the current user commu-
nity. Second, pre-GPU hardware 
is incapable of facilitating an 
interactive, responsive, and com-
pelling interface that would sup-
port these direct manipulations 
in 3D color space. We present 
an interface that addresses these 
two obstacles.

We extend the current set of 
image-processing tools by intro-
ducing a technique for trans-
forming the range of colors in 
any region of an image using 
geometric operations in a per-
ceptually uniform color space. 
The provided environment lets 

users directly operate on an image region’s color 
gamut using a 3D CAD-like interface. The color-
visualization environment, along with real-time 
feedback on the effects of geometric manipula-
tions on the image, let the artist better understand 
and explore the color-space relationships. To al-
leviate some of the 3D manipulations’ complex-
ity, we provide the complete editing environment 
used in CAD applications, which combines a set 
of simultaneous 2D orthographic projections and 

a 3D perspective view. This provides additional 
contextual information and much better control 
to the artist.

Color-Space CAD has inherently different goals 
from other classes of colorization methods (see the 
“Related Work on Colorization” sidebar, page 90). 
Our primary goal is to generalize the traditional 1D 
and 2D color-manipulation mechanisms resident in 
many photo-processing software packages into 3D 
interaction techniques. We use linear mapping op-
erations, which are similar to traditional methods, 
and are far less computationally expensive than the 
statistical or optimization methods of the more in-
volved colorization methods mentioned previously. 
From this simplicity, we gain interactive processing 
speeds, which are a must-have in an artistic and 
creative setting where users tend to experiment ex-
tensively until they reach a satisfying result.

Direct manipulation in the color space
Figure 1 gives an overview of our color-space manip-
ulation method. Initially, the user imports a color 
photograph into the host system (Adobe Photoshop, 
for example). The user selects the area to be edited 
and calls the Color-Space CAD plug-in to modify 
the selected region’s color gamut. Alternatively, the 
user can import a gamut from other reference im-
ages to serve as the target gamut. The system then 
transforms the source colors of the selected image 
regions into the reference gamut’s target colors us-
ing a 3D transformation in the color space. This 
transformation can take place in CIELAB or HSV 
color spaces, depending on the user’s preference.

Using CIELAB
We chose the CIELAB color space (whose coor-

dinates are L*, a*, b*) as the most uniform and 
intuitive for our 3D spatial color visualization. 

Color-Space	CAD	is	an	
interactive	image-processing	
framework	that	lets	users	
manipulate	colors	directly	in	
3D	perceptual	color	space.	
Unlike	traditional	2D	color-
manipulation	tools,	which	
often	require	multiple	
iterations,	Color-Space	CAD	
allows	direct	3D	navigation	
of	the	solution	space.	The	
framework	uses	graphics	
hardware	to	accelerate	
the	computation-intensive	
mapping	operations.
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Psychophysical experiments have shown that even 
though CIELAB isn’t perfectly isotropic, the spatial 
relationships between colors are more natural to 
human observers. Thus, this color space is more 
satisfactory for image-understanding applications.1 

With perceptual uniformity as the main mo-
tivation, we defined all the interactive geometric 
operations within CIELAB to offer a better corre-
spondence to Euclidian 3-space. Further, the ma-
nipulations on the color objects in this space are 
quite straightforward to the user. Any movement 
along the z-axis (mapped to L*) affects the lumi-
nance (like using a television’s brightness control), 
and any movement along the x- (mapped to a*) 
and y-axes (mapped to b*) corresponds to changes 
in the image region’s chroma. Because the images 
are originally in RGB, a nonabsolute color space, 
we require a proper International Color Consor-
tium (ICC) profile for the conversions to and from 
the CIELAB color space. In the absence of such 
a profile, we assume the parameters of a generic 
CRT monitor. Because the artist’s creative process 

takes place using a specific monitor when loading 
the first image into Color-Space CAD, this monitor 
becomes the device profile attached to the result-
ing images and is used to standardize the image 
for subsequent edits, possibly by other users on 
different monitors.

Given these circumstances, we don’t claim that 
CIELAB provides better accuracy. We use this color 
space merely because it’s a convenient tool for geo-
metric user interaction with 3D color objects.

Using HSV
Because the CIELAB color space provides a percep-
tually more uniform alternative, it represents a nat-
ural choice for performing 3D manipulation and 
transformations. However, the greater familiarity 
and comfort that most graphic artists and profes-
sionals have with HSV poses certain limitations to 
using CIELAB for production color-editing tasks.

We therefore extended our application to also 
use the HSV color space as a working environ-
ment for performing 3D color manipulation and 
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Figure	1.	Creating	a	virtual	silkscreen	using	Color-Space	CAD.	(The	term	“virtual	silk-screen”	refers	to	Andy	
Warhol’s	famous	prints	using	this	technique.)	The	user	imports	(a)	the	original	image	into	the	system	then	
creates	(b)	the	target	regions	in	the	original	image,	using	advanced	selection	tools.	After	importing	the	colors	
from	the	reference	images	(c−f),	the	system	converts,	for	every	selected	region,	the	colors	using	a	geometric	
transform	from	the	source	color	objects	(src)	to	the	reference	color	objects	(ref).	(FreeDigitalPhotos.net	
provided	the	reference	images.)
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transformation operations. For this, we modified 
the hue and saturation channels to form a 2D 
Cartesian plane. The assumption that hue varies 
along the circumference of a circle with a radius 
of 1.0, while saturation varies [0.0 . . . 1.0] from 
the circle’s center to its perimeter, motivated this 
modification. Next, we convert these polar coordi-
nates into Cartesian space to obtain the new HSx 
and HSy coordinates in [−1 . . . 1], which express 
the color variations on the hue-saturation plane. 
This approach also resolves the problem of the hue 
component being modulusthat is, as hue ranges 
from 0 to 360 degrees, hue is red at both 0 and 
360 degrees.

Color range definition
In our system, a color range is the gamut that in-
cludes the group of colors appearing in a selected 
image region. The defining colors are expressed as 
3D points in the perceptual color space (CIELAB/
HSV), and the color range is simply the convex hull 
enclosing these points. To find the color range of a 
particular region within the image, we convert the 
colors of all pixels within that region into points 
in the perceptual space, then create their enclos-
ing 3D convex hull. At this point, the user can ma-
nipulate the 3D color objects in the provided CAD 

environment, or define a completely new object by 
drawing the enclosed points and performing geo-
metric operations on the resulting polyhedra in 
the perceptual color-space domain. The system vi-
sualizes the color-range objects in the GUI using 
GPU fragment programs that convert the associ-
ated CIELAB or HSV position into an RGB color 
for every drawn point in real time, even while the 
user manipulates the color objects.

In the CIELAB color space, the convex hull of 
an entire image region’s colors includes not only 
all the colors that currently appear in that image 
region but also any possible combination of these 
colors. We can explain this through the color 
range’s geometric interpretation. Every contribut-
ing color is actually a 3D point in the color space. A 
color mix is the interpolation of two points, which 
will always be somewhere between those points in 
3D space. Hence, it will still fall within the con-
vex hull already enclosing these two points. We 
derive an interesting observation from this prop-
erty. If we create a digitized painting’s color-range 
gamut, the most basic colors used will always re-
side on the gamut’s edges, and, in all likelihood, 
these were the colors on the artist’s palette. On 
the other hand, everything in the interior of this 
gamut is the result of mixing the outside colors of 

Related Work on Colorization

Work on the colorization of gray-level images1,2 and the 
recolorization of color images2,3 is slightly relevant to our 
work. Both of these approaches are semiautomatic offline 
processes that have enjoyed much recent interest. They 
use statistical analysis to impose one image’s character-
istics onto another. First, they convert the image into a 
perception-based color space (lαβ) and then apply the 
color-correction process in a way that preserves the de-
sired statistical characteristics along the three axes of the 
color space. Welsh and colleagues use swatches to control 
the gray-scale-to-color conversion.2 This lets users better 
resolve ambiguities when the luminance statistics are 
similar in the source and reference images. Another ap-
proach lets users define new colors by scribbling a strip of 
uniform paint directly on the image to be processed.1 An 
offline process then produces the colorized image based 
on these user parameters and hints (the scribbles).

Color science researchers have demonstrated color 
transfer using a direct representation of the image’s 
color gamuts in ways quite different from ours. Here, the 
gamut-mapping algorithms deal with the problem of 
transferring an image across different media such as CRT 
monitors, ink-jet color printers, and color laser printers, 
with minimal loss of contrast and faithful color representa-
tion. Morovic and Luo provide an overview and evaluation 

of such gamut-mapping functions, with some emphasis 
on contrast-preserving scaling functions.4 A related ap-
proach introduces the use of Alpha shapesa generaliza-
tion of convex hullsto provide a geometric analytical 
description of the gamut’s surface.5 This facilitates the 
comparison of gamuts and the computation of simple 
figure-of-merit quantities related to the device’s quality 
(such as a gamut’s volume). It also aids in out-of-gamut 
mappings using geometric techniques.
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the basic palette. Later, we describe an application 
that uses this property.

Color transformation
The transform operation converts all colors of a 
source color gamut so they’ll fit as a group into the 
target (or reference) color gamut. Here, the reference 
gamut might be the result of geometric manipula-
tions on the original gamut or an entirely different 
gamut imported from another image or artificially 
created using the 3D interactive environment.

The transformation process converts every color 
of the source image gamut into its corresponding 
color in the reference gamut by taking the resulting 
color’s distance from the reference gamut’s center 
to be proportional to the distance of its counter-
part from the source gamut’s center. Chang and 
colleagues also used this correspondence to trans-
fer the mood among different images.2 By allowing 
the transformation only between color gamuts of 
the same perceptual color category, they preserve 
the source and reference images’ basic perceptual 
color categories.3 In contrast, our system allows 
drastic changes in the color category, in the spirit 
of artistic editing.

We define the correspondence between the 
source and reference gamut (where the gamut is 
a convex hull) using the distance vector of the 
source point to the source hull’s center. The new 
point in the reference gamut will lie on the seg-
ment drawn from the reference hull’s center along 
the same direction, at a relative distance from the 
center given as:

P
P C
E C

E C Cref
src src

src src
ref ref ref=

−
−

⋅ −( ) +

  (1) 

Here, Pref is the corresponding point in the refer-
ence hull, Psrc is the source point, Csrc is the source 
hull’s center, Cref is the reference hull’s center, Esrc is 
the intersection of a ray of direction Psrc – Csrc with 
the source hull’s shell, and Eref is the intersection of 
a ray of the same direction with the reference hull. 
Figure 2 illustrates this transformation.

During the color transformation, the system first 
converts the source image’s pixels from RGB to per-
ceptual space. After computing the corresponding 
reference point according to this method, the sys-
tem converts it back to RGB in the final image.

Gamut clipping
In some cases, the user’s manipulations on a color 
gamut could transform parts of the resulting 3D 
shape to the outside of the display device’s bound-

aries. Left untreated, this situation would produce 
colors that are impossible to represent and visual-
ize on the user’s device. One way to deal with the 
problem is to use interactive collision-detection 
techniques to prohibit the user from moving or 
resizing color objects outside of this visible region. 
Our current application uses the much simpler ap-
proach of clamping the resulting colors to their 
closest RGB representation during visualization, 
while preserving the out-of-gamut representation 
for the internal computations.

Slight gamut clipping can also occur during the 
transformation process. This occurs when using 
the perceptual color space CIELAB, in which some 
device gamuts, including common CRT/LCD dis-
plays, are concave in certain regions. So, if any 
image colors lie on these concave boundaries, their 
convex hull will also contain some slightly out-of-
gamut colors. This problem isn’t acute in 8-bit-per-
channel images; however, it’s becoming a major 
concern with the continuous availability of much 
higher resolution raw images and Photoshop’s sup-
port for 16-bit-per-channel images. This specific 
case isn’t a problem for the HSV implementation, 
which is also a nonabsolute color space and in 
which all color points are fully enclosed within a 
predefined cylinder. We plan to extend our plug-in 
with a modified transformation process that uses 
freeform and mass-spring model-deformation 
techniques, which will better address this issue.

System implementation
To be practical for use in a creative trial-and-error 
process in which artists try many settings until they 
find one that works, such a system must be interac-
tive. However, the methods we’ve described involve 
considerable computation to obtain the trans-
formed color for each pixel. In our initial software 
implementation, most of the processing cost was 
consumed in finding the intersections between the 

Esrc Psrc

Csrc

Eref Pref

Cref

(a) (b)

Figure	2.		
(a)	Given	the	
position	of	the	
color	point	
Psrc	inside	the	
source	hull,	the	
point	Esrc	is	the	
intersection		
of	the	vector	
Psrc	−	Csrc	with	
the	hull.		
(b)	Using	the	
same	direction	
vector,	we	
can	find	Eref.	
We	can	then	
position	Pref	
on	Eref	−	Cref	
at	a	relative	
distance	from	
the	reference	
hull’s	center.
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ray and the convex hulls, Esrc and Eref, respectively. 
A GPU hardware-accelerated version of the system 
addresses this bottleneck operation by reducing it 
to a single texture lookup in a specially encoded 
cube map. This modification effectively reduces the 
response time to fractions of a second.

The intersection of an arbitrary ray with a convex 
hull (3D polyhedron) requires cycling through all 
the polyhedron’s facets, performing an intersec-
tion test for each. However, all the intersections 
required to calculate Esrc involve rays that pass 
through the hull’s center and span to all possible 
directions. The same is true for Eref in Equation 1. 
Cube maps encode the environment using six pro-
jections onto a surrounding cube’s sides.4 They’re 
easy to index and are currently implemented in 
most graphics hardware accelerators.

In our application, the surrounding scene is the 
convex polyhedron for the current color range. The 
information that must be stored in this structure 
is the distance from the object’s center to the in-
tersecting polygon along every direction. Because 
this distance, Esrc − Csrc, doesn’t change through-
out the color-range polyhedron’s lifetime, the sys-

tem can store it in the cube map data structure 
and use it per pixel. This operation’s lookup key 
is the direction of the Psrc − Csrc vector, which the 
fragment shader computes for every pixel.

To create the cube map, we use a fragment pro-
gram that only computes the distance of every 
point on the surface to the hull’s center. As we 
rasterize each triangle, we pass the coordinates of 
the triangle’s vertices as texture parameters. The 
hardware interpolates these parameters for every 
fragment rasterized. The fragment program sub-
sequently uses them to compute the distance of 
every point of the triangle to the polyhedron’s cen-
ter. To properly render each side of the cube map, 
we draw the structure from six different viewing 
angles. We encode the final result into 32-bit floats 
using the shaders’ pack and unpack utilities (this 
allows compatibility to previous-generation hard-
ware, which doesn’t support rendering to float tex-
tures). Figure 3 illustrates this process.

User environment and features
Our system lets users interactively manipulate 
(through an affine sculpting operation) the 3D 

(a)

(d) (e) (f)

(b) (c)

Psrc
Psrc

Csrc

Csrc

Esrc

Psrc Csrc

Ecube Ecube

Figure	3.	Using	a	cube	map	to	speed	the	intersection	lookups.	We	render	(a)	the	color-range	convex	hull	
onto	(b)	a	set	of	six	panels,	each	representing	a	different	viewing	angle	from	inside	a	cube.	The	fragment	
program	that	we	use	for	rasterization	computes	each	point’s	distance	to	the	hull’s	center	and	encodes	it	into	
the	texture	as	a	32-bit	float,	resulting	in	(c)	the	final	cube	map.	(d)	During	transformation,	we	compute	Psrc	
by	converting	the	current	pixel’s	RGB	color	to	an	L*a*b	point.	(e)	Using	the	direction	of	the	vector	Psrc	−	Csrc	
we	can	look	up	texel	Ecube	from	the	cube	map.	(f)	The	lookup’s	result	will	give	the	distance	Esrc	−	Csrc,	which	we	
plug	into	Equation	1	and	use	to	produce	the	transformed	color.
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color space. Our Color-Space CAD Photoshop 
plug-in interface (detailed in Figure 4) has two 
main components: 

the color-space windows, where the color ranges 
are visualized and manipulated as solid shapes 
in perceptual space through a combination of 
2D orthogonal projections and a 3D perspective 
projection; and 
the image preview window, which provides im-
mediate feedback regarding the user’s actions’ 
effect on the selected image region. 

As the user interacts with the 3D color-space in-
terface, the system applies the transformations 

■

■

directly to the selected image region and renders 
them in real time in the image preview window.

Selection mask
Photoshop invokes the Color-Space CAD plug-in 
after the user selects a region using the advanced 
selection tools. These tools include color-range 
selection, magic-wand, lasso, and magnetic lasso 
tools, in combination with selection modifications 
such as antialiasing, feathering, and smoothing. 
These tools all result in an 8-bit selection mask, 
which our plug-in uses to adjust the selection 
boundaries. Photoshop uses the 8-bit range to 
mark every pixel with tags varying from not se-
lected (mask = 0) to fully selected (mask = 255).

(a) (b)

(c) (e)

(d) (f)

Figure	4.	(a)	The	Color-Space	CAD	plug-in	interface	with	a	selection	for	editing	in	CIELAB	mode.	On	the	left	
is	the	color-space	object	in	a	combination	of	orthographic	and	a	perspective	editor	views	as	in	a	general	CAD	
system.	The	changes	are	immediately	reflected	in	the	preview	image	on	the	right	of	the	window.	The	bottom	
right	section	browses	the	gamut	library	to	activate	gamuts	from	other	images	for	a	color	transfer.	(b)	The	
plug-in	interface	when	working	in	HSV	mode.	Editing	actions	in	the	color-space	domain	include:	(c)	initial	
color	transfer	for	the	background;	(d)	resizing	(contracting)	along	the	z-direction	modifies	the	dynamic	range,	
resulting	in	a	flat	color;	(e)	the	source	(tan)	and	reference	(blue)	hulls	aren’t	aligned,	resulting	in	unpleasant	
artifacts;	and	(f)	an	alternative	approach	rotates	only	the	internal	vectors.
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Color-space visualization
As Photoshop calls the plug-in, the plug-in creates 
a 3D solid representation of the selected region’s 
color gamut. We represent the L*a*b* color space 
in 3D by assigning the L* channel to the z axis 
and the a* and b* channels to the x and y axes, re-
spectively. Fragment programs convert each pixel’s 
coordinates back to the corresponding RGB colors, 
so that the objects visually carve out a 3D color 
volume. We represent the modified HSV color 
space (shown in Figure 4b) using the transforma-
tion discussed earlier, with the V (intensity value) 
component mapped to the z axis, and the HSx and 
HSy components mapped to the x and y axes. We 
divide the color-space visualization display into 
four resizable components, consisting of three or-
thogonal projections and a perspective view of the 
color object. The 2D and 3D views include a host 
of editing features so users can further fine-tune 
the color-transfer process, with support available 
at multiple levels.

The main display (perspective view) handles 
gamut clipping by discarding all nonvisible pix-
els when carving the axial planes, but clamps the 
colors toward their closest boundary in displaying 
the color gamut shapes. In contrast, the 2D or-
thogonal displays extend the out-of-gamut regions 
by drawing the nonvisible colors clamped to their 
closest in-gamut equivalents.

Alternative 2.5D visualization and editing 
To make Color-Space CAD more accessible to users 
familiar with the existing 2D manipulation tools, 
we provide an alternative 2.5D depth-visualization 
capability. This additional display augments the 
existing three orthogonal 2D displays by adding a 
depth-perception layer. This display uses a check-
erboard pattern in which the front- and back-
most layers of the projected color gamut appear 
in alternating squares. A large color difference in 
the front and back layers (caused by a large depth 
difference) becomes immediately apparent in the 
checker display as high contrast, giving a better 
perception of the shape’s actual depth. A more 
homogeneous look would suggest a thin object of 
much less depth.

Basic editing support lets users directly edit the 
selected region’s 3D gamut object. The interface’s 
most intuitive operation is translating the 3D 
color objects. Translating the color object along 
the z axis affects the target image region’s lumi-
nance (CIELAB) or intensity value (HSV). Mov-
ing the object along the xy plane affects the target 
image region’s chroma in both perceptual color 
spaces. The color of the objects in the 3D ma-

nipulation window gives additional hints regard-
ing the final image’s appearance, simultaneous 
to updating the resulting image. Resizing the ob-
jects intuitively affects the color region’s dynamic 
range along the resize direction. For example, we 
can accentuate tone differences within the same 
color by enlarging the color object, or flatten the 
resulting region’s color by contracting the color 
hull (Figure 4d). We perform these operations in 
the orthographic view using a 2D resizer box, or 
in the perspective view using a 3D cube widget. 
We initially adjust the cube’s orientation to the 
minimum enclosing cube for the given object. 
We compute this cube by performing principal 
component analysis (PCA) on the color gamut. 
We can also rotate the resizer cube to allow re-
sizing along arbitrary directions. Finally, the sys-
tem also lets us rotate the gamut around its own 
center or around the color-space center. This op-
eration makes more sense in HSV mode, where 
rotations of the object around the V axis result 
in consistent hue changes.

Import reference gamut
In addition to the free-hand approaches described 
so far, Color-Space CAD also supports example 
images, allowing the direct transfer of the color 
gamut from a separate reference image to the 
current user selection. Users can further modify 
the imported color gamut using the controls de-
scribed previously. The plug-in interface supports 
this functionality by letting users select the de-
sired reference gamut from a library of previously 
processed image regions with their color gamuts. 
Allowing color transfers between any arbitrary 
color gamuts can cause quantization artifacts 
when either the shape or the orientation of the 
source and reference gamuts differ significantly. 
That is, the problem arises when a short axis in 
the source gamut coincides in orientation with a 
longer axis in the reference gamut. In this case, 
a neighborhood of pixels spanning a small range 
of contrast in the original image must map onto 
a larger contrast range in the resulting image. 
The new contrast difference between neighboring 
pixels in the selected image region is now much 
steeper, resulting in the pronounced quantization 
artifacts illustrated in Figure 4e.

Gamut alignment dequantization
The system automatically aligns the selected refer-
ence gamut to the orientation of the image source 
gamut. It does this by performing PCA on both 
gamuts and rotating the major axis of the refer-
ence gamut to match the orientation of the source 
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gamut axes. This approach eliminates the quan-
tization artifacts; however, the resulting rotation 
effectively changes the reference gamut’s color sta-
tistics. Hence, the resulting color transfer doesn’t 
completely represent a transfer to the selected ref-
erence image color region. 

As an alternative to rotating the reference gam-
ut and changing the resulting color mood, we use 
a different rotation in the transformation process, 
which we apply on the reference vectors (Pref − Cref) 
just before using Equation 1. This internal vector 
transformation avoids the quantization artifacts 
explained previously, without rotating or changing 
the reference gamut itself, and effectively preserves 
the intended mood of the target image region. 
Figure 4f illustrates the effect of vector-alignment 
dequantization. This method ensures that a short 
axis’s orientation from the source hull won’t coin-
cide with the orientation of a long axis of the ref-
erence hull by applying an appropriate rotation to 
the reference hull’s coordinate system. We compute 
the rotation using PCA similarly to its use in the 
gamut alignment (the wireframe hull in Figure 4d). 
We then rotate the vectors into the original refer-
ence hull, using the intended color gamut in the 
mapping. This rotation can result in mappings in 
which a source image area of varying hue changes 
to varying luminance in the result image. 

This rotation approach isn’t conceptually wrong; 
in fact, it’s in keeping with the reference gamut 
statistics. It also complies with the approach’s two 
main goals: to preserve the user’s reference gamut, 
and to avoid mapping quantization artifacts. The 
tradeoff associated with our dequantization tech-
nique is similar to the tradeoff associated with 
replacing aliasing with blur in sampling tasks. 
Nevertheless, if the effects of the dequantiza-
tion are unacceptable, yet users want to avoid the 
quantization without severe gamut changes, they 
can alternatively widen or shorten the reference 
gamut using the scaling tools. 

An additional switch lets users convert the re-
gion to gray scale. This instructs the rendering frag-
ment programs to use only the luminance channel 
for the final image. Users can then adjust the re-
gion’s brightness and contrast by manipulating 
the color object’s position and size (stretch) along 
the z-direction to enhance some features. Howev-
er, to preserve subtle features that depend only on 
chromatic contrast, users must pursue a salience-
preserving approach.5

We can also save the system’s entire state, in-
cluding the color gamuts and their associated 
modifications, on disk for later retrieval using 
an extensible XML format. This lets Color-Space 

CAD maintain its library of preprocessed gamuts 
for users, which can include gamuts shared over 
the Internet.

Artistic applications
We tested Color-Space CAD on a standard config-
uration comprising a Pentium 4 processor running 
at 2 GHz with 512 Mbytes RAM and an NVidia 
GeForceFX 6800 graphics board. The hardware-
accelerated implementation’s response time when 
operating on 3-megapixel images is less than 30 
milliseconds, enabling real-time manipulations 
for even large images.

We tested the system in different image-pro-
cessing application scenarios, mostly for artistic 
purposes. One example application is the virtu-
al silkscreen, in which our artistic collaborator 
sought to create enhanced silkscreen-like images 
resembling the style of Andy Warhol’s silkscreens. 
The images in Figure 5 illustrate our attempts to 
create a set reminiscent of Andy Warhol’s 1962 
Marilyn Monroe silkscreen series. He made the 
originals by projecting the positives of black and 
white photos onto a silkscreen. The original pho-
tograph was from Monroe’s 1953 movie, Niagara. 
However, in contrast to Warhol’s original tech-
nique, color-space sculpting capitalizes on the sta-
tistics of color images. To illustrate this capability, 
we used an alternative image of Monroe from the 
same movie in a similar setting and recreated an 

(a) (b)

(c) (d)

Figure	5.	
The	“virtual	
silkscreen”	
Marilyns.		
These	images	
illustrate	how	
we	can	use	
this	method	
to	produce	
extreme	results	
for	fun	and	
as	an	artistic	
tool.	These	
images	were	
the	original	
inspiration	for	
the	Photoshop	
tool.
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enhanced silkscreen-style effect. Transferring an 
entire color gamut onto a region results in full-
er images, which also preserve some texture and 
lighting from the original image. These results 
can’t be reproduced simply by changing some re-
gions’ hue element, because the entire transfor-
mation process also depends on the source’s shape 
and reference color gamuts.

Another application of the color-range transfer 
process involves transferring the color gamut of 
a selected region from one image to the select-
ed region in another image. So, if we’re working 
with portrait or full-body images of individuals 
with different color skin complexions, we could 
transfer only the skin color from one picture to 
another. Figure 6 shows the results of transfer-
ring the skin complexion from a photograph of an 
African woman to a photograph of Monroe. For 
this transfer, we isolated a selection that includes 
the African woman’s face as the reference color 
range, and Monroe’s face and neck as the source 
color range. Both the source face and the refer-
ence selection include a multitude of colors that 
define the blonde Caucasian and the dark African 
complexions. 

Similarly, we can achieve other difficult color 
transfers involving a range of colors to be con-
verted, such as hair color. This ability could be 
useful in modeling and styling applications that 
must provide a convincing preview before a make-
over takes place. The images in Figure 7 illustrate 
similar uses of Color-Space CAD.

Applications in visualization
As Bauer and colleagues demonstrated in their 
fundamental perception study,6 given a set of col-
ors enclosed by their color-space convex hull, ad-
ditional colors only pop out (become noticeable 
pre-attentively) if they fall outside this convex 

(a)

(b)

Figure	7.	Using	color-space	sculpting	to	enhance	selected	image	
features.	We	transformed	selected	features	to	Americana-inspired	colors	
using	Color-Space	CAD	manipulation	and	gamut	imports	from	other	
images.	(We	used	aqualegia	flowers	for	the	purple-bluish	chair	and	
mustard	seeds	for	the	grass.

(a)

(b)
(c)

(d)

(e)

Figure	6.	Using	color-space	sculpting	to	transfer	skin	color:	(a)	reference	image	(African	woman),	(b)	selected	
region	in	reference	image,	(c)	source	image	(Marilyn	Monroe)	with	selected	region,	(d)	Monroe	after	the	
conversion,	and	(e)	original	image	for	comparison.
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hull. Our system provides a natural interface for 
using this fundamental finding. For example, a 
potentially useful application is the semiautomatic 
selection of colors for highlighting and annotating 
color photographs. Figure 8 demonstrates such an 
application. Here, the system first calculates the 
gamut convex hull of the photograph to be high-
lighted or annotated. Next, it lets the user choose 
from a selection of colors situated outside the 
gamut. If the image’s gamut completely fills the 
color space, leaving no apparent choices for colors 
outside the gamut, the user can resize the gamut 
using any of the gamut operations discussed to re-
duce its dynamic range in an arbitrary direction 
to make space for the color of the new feature to 
be introduced.

Comparison to existing packages
Color-Space CAD offers a versatile environment for 
color transformations by letting users manipulate 
3D color shapes and practically sculpt an image’s 
color-space domain. This feature offers an advan-
tage over similar features in the most advanced 
photography processing packages, such as Adobe 
Photoshop. To test our claim, we tried to replicate 
a virtual silkscreen (produced by Color-Space CAD) 
using Photoshop’s layer operations. We started with 
the original color photograph and, after segment-
ing the image, matched the desired colors for each 
layer. We defined the colors as flat color overlays 
over the image’s segmented areas. We assigned each 

layer/overlay a mixing operation with the layer un-
derneath it, which in our case was the original im-
age. These predefined operations included darken, 
multiply, difference, and exclusion. For our exam-
ple, we used Photoshop’s linear dodge operation for 
applying hair color and its hard light operation for 
applying face color. We used the color operation to 
assign the background and other regions. This oper-
ation keeps the original luminance channel and re-
places the chrominance channels with the assigned 
colors. We selected these operations to emulate the 
results of color-space sculpting. 

Figure 9 shows the two images side-by-side. Al-
though we used most of Photoshop’s available op-
tions in our effort to achieve a comparable image, 
these global operations don’t offer enough control 
to fine-tune the results to the extent that color-
space sculpting permits. As the example shows, the 

(a) (b)

(c) (d) (e)

Figure	8.	Photograph-highlighting	and	text-annotation	example.	(a)	The	user	selects	a	purple	color	from	
inside	the	image’s	color	gamut	to	highlight	a	person’s	t-shirt.	(b)	The	plug-in	screen	shows	the	highlighted	
photo.	(c)	We	choose	a	light	green	lying	outside	the	gamut	and	(d)	the	color	highlighted	is	immediately	
apparent.	(e)	We	compare	three	colors	for	text	annotation	as	sampled	from	the	image	color	space.	As	we	
expect,	line	1	has	been	sampled	from	inside	the	gamut	and	line	2	was	sampled	outside	of	the	gamut.

(a) (b)

Figure	9.	
Comparison	
with	layer	
operations	
in	Adobe	
Photoshop:		
(a)	Color-
Space	CAD	
and	(b)	Adobe	
Photoshop.
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image in Figure 9b matches the colors and some 
features of the image in Figure 9a, but it’s still 
less refined. Our system’s flexibility let the art-
ist eliminate the unwanted hair highlights, while 
keeping the overall color assignment. The system 
offers this unexplored level of flexibility by allow-
ing interactive and more direct manipulation and 
sculpting of the color space. 

Of course, other packages could replicate all of 
Color-Space CAD’s functionality through a long 
trial-and-error process, using the provided 1D lay-
er operations. However, our system provides fast 
shortcuts to these functionalities by allowing the 
manipulation to take place in 3D, directly on the 
color object. 

During recent interactions with various art-
ists and color professionals in the context of 

our software demonstrations and an oral sketch 
presentation of an earlier prototype,7 we found 
that such an interface has long been awaited and 
promises to be useful. To provide better accessibil-
ity of our plug-in to the color artists and color 
professionals communities, we’ve extended our 
system to support the HSV color space in addi-
tion to CIELAB. Our current focus is on exploring 
further applications with these professionals and 
investigating additional functionalities specific to 
the perceptual color spaces we use. The current 
version of the plug-in is due for a public release in 
the summer of 2008, in the hope of wider usage 
and feedback. 
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