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Figure 1: Comparasion of Metric MDS, NSGA-II and NSGA-III using 3 datasets with 20, 50 and 100 dimensions respectively.
Pareto-Optimal graph shows the tradeoff between Planarity and Stress

ABSTRACT

Dimensionality reduction techniques play a key role in data pro-
cessing and data visualization. Common dimensionality reduction
techniques such as MDS, PCA, etc. do a decent job in projecting
high-dimensional data into lower dimensions. But in the case of net-
work data, they simply ignore the relationship between nodes which
might result in non-planar graphs with many intersecting edges. In
this paper, we have tried to model dimensionality reduction for net-
work data as a multi-objective optimization problem. We have tried
to draw graph/network in lower dimensions such that planarity is
maximized and stress function is minimized simultaneously. We
have used two genetic algorithms namely, NSGA-II and NSGA-III.
For them, both objectives are equally important and they optimize
them together. These techniques return a set of non-dominated solu-
tions represented by pareto-Optimal front. We observed that genetic
algorithms outperformed MDS for some cases. In other cases, ge-
netic algorithms gave solutions with significantly lower number of
intersections for slight increase in stress value.

Index Terms: Network Visualization, Graph Visualization, High-
Dimensional data, Genetic Algorithms, Dimensionality Reduction
Techniques, Multivariate Data

1 INTRODUCTION

In today’s digital era, Its crucial to use effective information visual-
ization (InfoVis) techniques to make sense of different categories of
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data. In this study, we’ll be focusing on multivariate network/graphs
i.e. each node in the graph/network might lie in n-dimensional space.
Popular dimensionality reduction techniques like MDS [5], PCA, etc.
have been effective in dealing with high-dimensional data. When
applied to multivariate network data, these techniques completely
ignore the relationship between points/nodes. Hence, we might get
a non-planar graph which has large number of edge intersections.
Such a plot might be difficult to understand and analyze the patterns.
In this work, we have tried to address this problem by developing a
new model to reduce network/graph data via genetic algorithms. Our
model takes n-dimensional points along with edges as Input. We
have used NSGA-II [3] and NSGA-III [4] such that resulting graph
resembles original graph while having minimum number of edge
intersections. This is achieved by optimizing planarity and stress
function simultaneously. Our model can be employed in visualizing
numerous real world multivariate networks like communication, so-
cial, financial, internet networks, etc. For example, in social network
each person can be modeled as a node. Each node can have multi-
ple attributes like name, age, gender, number of friends/followers,
number of posts, etc. Nodes can be linked together if one person is
a friend/follower of other. Our model is designed to visualize such
multivariate networks effectively.

2 OBJECTIVE

This problem of dimensionality reduction can be visualized as search-
ing for an optimal configuration of points in lower dimension space.
The term ’Optimal’ here means the configuration which satisfies two
objectives i.e. minimize stress and maximize planarity.

2.1 Stress
Stress is a loss function which quantifies the preservation of relative
distances in higher dimensional space to lower dimension space.
If relative distances between points in lower dimension is exactly
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same as higher dimension space, then stress will be 0. In all other
cases, it will have a positive value which will increase as pairwise
distances deviates from original distances. There are multiple ways
to calculate Stress [6]. In our case, we are using metric MDS as
base model. Hence, we are using metric MDS stress function as
shown in Eq 1.

Stress =
√

∑
i6= j=1,..,N

(Di j−di j)2 (1)

Here, Di j and di j represents the (i,j) element of the dissimilarity
matrix between points in higher dimension and lower dimensional
space respectively. Generally, Euclidean distance is used to cal-
culate the dissimilarity matrix. Since, we are dealing with high
dimensional space, Euclidean distance might not be the most appro-
priate due to curse of dimensionality. Based on the research findings
in [1], we have used Manhattan distance over Euclidean distance for
calculating stress function.

2.2 Planarity

In graph theory, a graph is said to be planar if no two edges intersect.
We have tried to quantify planarity in terms of number of intersec-
tions. In our algorithm, we have tried to maximize planarity by
minimizing number of intersections. Each edge in the graph can
be considered as a line segment with given end points. We found
total number of intersections by comparing each pair of such line
segments [7].

3 METHODOLOGY

Suppose the input graph has n-points with x dimensions each and
we need to reduce them to y dimensions. We have used NSGA-II
and NSGA-III to perform this optimization task 1 using y = 2. We
choose population size P and calculate the dissimilarity matrix D
for n-points in higher dimensional space. Each population member
pi represents a solution in reduced space. Each pi is encoded as
a concatenated set of n-points points in lower dimension space as
shown in Eq 2.

p = {a1,a2,a3, ......,an} (2)

In our case where y = 2, ai will represent a point in 2-D space.
Initially, each pi is assigned a set of points randomly. In every
generation/iteration, we calculate number of intersections(planarity)
and dissimilarity matrix d for each population member. Using d and
D, we calculate the stress value for each pi. Based on stress and
number of intersections, each pi moves in the search space towards
the optimal solution. The algorithm terminates after a pre-defined
number of iterations and returns a set of population members at the
pareto-optimal front. Each of such population members represent a
non-dominated solution in lower dimension space.

4 RESULTS

In Figure 1, we have to tried to compare Metric MDS, NSGA-II
and NSGA-III using 3 self-constructed datasets. Each of the 20D,
50D and 100D datasets are reduced to 2-dimensions. The first 3
columns represent the reduced output graph for MDS, NSGA-II
and NSGA-III. The fourth column tries to compare the 3 algorithms
based on planarity and stress value. In the first case, When there are
no intersections in input graph, Genetic algorithm returns similar
result to MDS. In other words, Since input graph has no intersec-
tions, Genetic algorithms just optimized stress. Hence, they produce
similar result to MDS. In the second case, Our algorithm performed
better on planarity for a slight increase in stress. In the last case,
NSGA-II and III outperformed MDS on both objectives.

1Source Code - https://github.com/bhavyaghai/Visualizing-Network-Data

Figure 2: Pareto-Optimal graph representing the comparasation be-
tween Metric MDS, NSGA-II and NSGA-III for World Soccer Dataset

Apart from our own datasets, we also tested our algorithm on
World Football Dataset [2]. As expected, Genetic algorithms per-
formed fairly well on planarity for slight increase in stress as can be
seen in Figure 2.

5 CONCLUSION

In this work, we have tried to develop a dimensionality reduction
technique for network data inspired by metric MDS model using
Genetic algorithms. We tried to optimize stress and planarity simul-
taneously. Given suitable time and parameter tuning, we observed
that our model performed significantly better than MDS for some
cases (in terms of stress and planarity). In other cases, our model
gave solutions with significantly lower number of intersections for
slight increase in stress value. Based on the requirement, end user is
free to choose any solution from pareto-optimal front.
Genetic algorithms are computationally expensive so we intend to
develop parallelized version of genetic algorithms and execute them
on GPU for better performance. Future work might include ex-
ploring other optimization models which might achieve comparable
accuracy in less time. We would also like to investigate the effective-
ness of this model for different types of graphs. Lastly, we’ll like to
incorporate edge bundling for dense graphs.
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