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Figure 1: The housing dataset for Kings County displayed using Taxonomizer. The user interface consists of six coordinated
views. (a) The semantic space. (b) The data space. (c) The hierarchy built from combining information spaces (a) and (b). (d) The
cophenetic correlation plot which allows users to specify the weight of (a) and (b) to generate (c). (e) The control panel gives the
user various options to manipulate the structure of the hierarchy. (f) The word suggestion panel gives suggestions for labeling the
nodes of the hierarchy.

Abstract— Organizing multivariate data spaces by their dimensions or attributes can be a rather difficult task. Most of the work in
this area focuses on the statistical aspects such as correlation clustering, dimension reduction, and the like. These methods typically
produce hierarchies in which the leaf nodes are labeled by the attribute names while the inner nodes are often represented by just a
statistical measure and criterion, such as a threshold. This makes them difficult to understand for mainstream users. Taxonomies in
science, biology, engineering, etc. on the other hand, are easy to comprehend since they provide meaningful labels at the inner nodes
as well. Labeling inner nodes of taxonomies automatically requires the identification of hypernyms. Our proposed framework, called
Taxonomizer, takes a visual analytics approach to meet this challenge. It appeals to the wisdom of humans to liaise with state of the art
data analytics, neural word embeddings, and lexical databases. It consists of a set of visual tools that starts out with an automatically
computed hierarchy where the leaf nodes are the original data attributes, and it then allows users to sculpt high-quality taxonomies for
any multivariate dataset.

Index Terms—High-Dimensional Data, Data Fusion and Integration, Hierarchy Data, Taxonomy, Neural Embeddings, Lexical Databases

1 INTRODUCTION

In an era of unprecedented data fecundity one of the biggest challenges
is the difficulty of extracting relevant information from these data. Real-
istic datasets often have an abundance of attributes.This is a blessing as
it enables better decision-making based on a more complete depiction
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and modeling of the world. But it is also a curse because having too
many factors around at the same time can be overwhelming to most if
not all humans. There is hence a growing need for developing systems
that can aid human cognition in organizing the attributes and factors in
a way that facilitates pattern discovery, analysis, and characterization.

The most natural way to allow users to navigate a complex attribute
space is via a hierarchy. There are a number of tools available that
can organize multivariate data into hierarchies mostly using statistical
aspects of the data such as correlation clustering, dimension reduction,
and others. In these hierarchical structures, however, while the leaf
nodes bear the real-world attribute names, the inner nodes are often
labeled with criteria related to the statistical measures, such as thresh-
olds or ranges, making them difficult to interpret for mainstream users.
We propose to make the inner nodes more interpretable by using a
taxonomy paradigm to facilitate the exploration of multivariate space.
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Taxonomy is the process of naming and classifying things such as
animals and plants into groups within a larger system, according to
their similarities and differences. Hierarchies are often presented in
visual form (Figure 2 shows the taxonomy of a university dataset). The
internal nodes of a hierarchical tree are labeled to facilitate the storing
and retrieving of items from a repository. The label of each node in the
tree captures the high-level concept expressed by its descendants.

Visualization tools often provide a list of attributes for users to ex-
plore datasets. However, this method is very limiting because it restricts
the exploration process to single attributes. Higher level concepts can
also be explored by combining the attributes of the data. A dataset on
universities has 14 attributes1. Attributes like ’academic’ and ’faculty’
relate to education. Whereas, attributes like ’nightlife’ and ’dining’
relate to the city/area the university belongs to. The exploration pro-
cess may benefit by having access to these higher level abstractions of
the data. We want to use the paradigm of taxonomy to organize the
attributes of a dataset in a way that allows the user to interact with the
data at various levels of granularity. Figure 2 shows a taxonomy for
the university dataset. The attributes of the dataset form the leaves of
the tree. The data for the inner nodes can be estimated by applying a
dimension reduction algorithm on the attributes that are descendants of
that node. The taxonomy structure allows the user to explore different
aspects of the data and it arranges the attributes in a way that makes it
easier for the user to navigate the attribute space.

Creating a taxonomy, for example in biology or engineering, is
usually done by domain experts and evolves over time. Conversely, our
objective is to create a visual analytics tool that allows mainstream users
to construct a taxonomy for the attributes in real-world multivariate
data. To achieve this we need to model the two inherent features of
a taxonomy 1) a hierarchical grouping system to construct the tree
structure and 2) labels for the internal nodes of the tree to facilitate
navigation. Generating a taxonomy for a multivariate dataset presents
the following three challenges:

• Flexibility, since there are several ways to construct a taxonomy and
since the final outcome depends on the user’s preferences we need
to design a tool that is flexible enough to allow the user to shape the
taxonomy in the preferred way.

• Labeling, labeling the internal nodes is a difficult task. Given a
group of attributes the user may find it difficult to think of a word
that can capture the concept expressed in that group. We will borrow
ideas from hypernym generation research to help the user find labels
for the internal nodes (a hypernym is a word whose meaning includes
the meaning of other words, e.g. ”animal” is a hypernym of ”lion”).

• Tree Structure, users must be enabled to construct a hierarchical
structure that is semantically consistent i.e. there should be a common
theme in the groups created by the hierarchal structure (the semantic
meaning of an attribute is expressed by its label). The semantic
structure allows the user to properly label the internal nodes.

There are various data-centric similarity metrics that can be used to
create a hierarchical grouping, such as Euclidean distance, correlation
distance etc. However, it can be difficult to label the internal nodes if we
use only data-centric techniques because these techniques are agnostic
to the semantics of the data. Therefore, they may group attributes that
have different meanings and are not semantically consistent which is
required for a meaningful hierarchy.

To create groups that are semantically consistent we need to find
the semantic distance between two attributes. We use a neural network
based word embedding system to model the semantic distance between
different attributes. However, the semantic space alone is unable to
capture the relationship between the data which is the primary objective
of the taxonomy. The challenge is therefore to design a framework that
allows a human user to help in the process and effectively combine the
data and the semantic aspects to create a semantically consistent hierar-
chical structure. This motivated us to follow a visual analytics approach

1score, academic, faculty, tuition, housing, population, income, safety, trans-
port, location, nightlife, dining, weather, athletic

Figure 2: Taxonomy of the university dataset. The attributes of the
dataset are at the leaves of the taxonomy.

that appeals to humans soliciting their wisdom and commonsense to
merge the two spaces.

In order to create a meaningful hierarchical grouping at a given
level, we need to find a redundancy measure for each pair of attributes.
Redundant attributes are those that vary together in some sense. We
will use both a data centric and a semantic centric distance to estimate
the levels of redundancy between a pair of attributes. Then, having
quantized the levels of redundancy and uniqueness for all pairs we
can construct a dendrogram of these attributes by ways of continually
lowering the threshold required for joining inner or leaf nodes of the
emerging hierarchy. For added manageability, the dendrogram can be
coarsened by pooling some of the nodes into groups. This will flatten
the depth of the hierarchy making it easier to explore the data, but at
the cost of specificity.

The paper is structured as follows. Section 2 presents related work.
Section 3 discusses the theoretical underpinnings of the methods used
to construct the taxonomy. Section 4 shows how our visual tool can
be used to construct a taxonomy. Section 5 describes a usage scenario.
Section 6 discusses both design and results of a user study we conducted
with our visual tool. Section 7 ends with conclusions.

2 BACKGROUND

Taxonomies are essential for many semantic-based tasks such as content
organization, guided navigation etc. There has been an ample amount
of research on automated taxonomy generation. Automatic taxonomy
generation involves three processes: concept mining, concept relation
discovery, and concept hierarchy building. Taxonomies generated in
that way are mostly built for a certain text where the algorithm first
identifies the key concepts of the text and then finds a hierarchical
relationship between these concepts. Similar word contexts are used
to aid the discovery of a relation between concepts [39]. Finally, the
different concepts are arranged into a hierarchical structure. Word
embedding is a popular method for discovering the hierarchal structure
of concepts [11, 15, 39].

2.1 Word Embeddings

An essential component of our system is the language model. Vector
space models can be used to represent words as vectors in high di-
mensional space. Various models have been suggested that learn word
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embeddings from a large text corpus. The central idea behind these
models is that words with similar context have similar meaning. They
use the context of a word to map it to vector space. The position of a
word in vector space represents the context in which the word was used
and the distance between words represents the similarity of their con-
texts. Therefore, words that are near in vector space will have a similar
meaning. In its simplest form, the context of a word can be captured
by using the raw co-occurrence counts of the word and context items.
However, using a raw co-occurrence matrix is prohibitively expensive
in terms of the space and the computational power required [9].

The solution is to use neural networks to map concepts to continuous
space. This idea can be traced back to Hinton [13,14]. Neural networks
have been proven to be much more efficient at learning language models.
Bengio et al. [3] presented a neural language model for learning word
embeddings. Their model outperformed the traditional n-gram based
techniques. Various methods have been proposed that scale and speed
up large neural models [32, 37]. Mikolov et al. [28] proposed skip-
gram models for learning word embeddings and demonstrated that
these models have the capacity to learn linguistic patterns as linear
relationships between vectors [29, 30]. Tsuboi et al. [49] incorporated
word2vec embeddings with GloVe embeddings into a Part of Speech
(POS) tagging system and show that it produces better results compared
to the individual systems. These embeddings have been used for various
Natural Language Processing tasks such as named entity recognition
(NER), information retrieval [25], word sense related tasks [27] and
many others. Appendix A provides more detail on skip-grams.

WordNet

WordNet [31] is a large lexical database of English in which words
are grouped into sets of cognitive synonyms (synsets), each expressing
a distinct concept. Synsets are interlinked by means of conceptual-
semantic and lexical relations. WordNet provides various relationships
between words. Some of the relationships which will be mentioned in
our paper are defined as follows:

• Synsets or synonym set is a group of similar words.

• Lemma, synonyms contained within a synset are called lemmas.

• Meronym, a word that denotes part of something but is used to refer
to the whole, e.g., the word ’wheels’ when referring to a car.

The network structure of WordNet can also be used to quantify the
distance between words. WordNet provides various similarity metrics
such as the Wu-Palmer similarity which returns a score denoting how
similar two word senses are based on the depth of the two words
in the taxonomy and that of their Least Common Subsumer (most
specific ancestor node). WordNet has many other similarity measures
as well, however, we found that the results are not comparable to the
embeddings learned from a neural network [50].

2.2 Semantic Hierarchies and the Derivation of Hyper-
nyms

The taxonomy in Figure 2 shows the semantic hierarchy between the
labels of the tree. In a semantic hierarchy, the semantic field of a node
is included within that of its parent word’s semantic field. There are
various ways in which this relation can be captured, such as hypernym,
meronym etc. Since there is a high amount of research on automatically
extracting hypernyms we will mostly focus on these. The words ’dog;
and ’canine’ have a hyponym-hypernym (”is-a”) relation where ’dog’
is the hyponym of ’canine’ and ’canine’ is the hypernym of ’dog’.

WordNet [31] is one of the most widely used lexical resources in
computer science. While it captures various relationships between
words, it is nevertheless rather limited. On the other hand, many
researchers have also attempted to automatically extract these relation-
ships from text. There are two main approaches for hypernym-hyponym
detection – path-based and distributional. We describe these in more
detail in the following.

2.2.1 Path-based hypernym derivation
The path-based approach to detecting hyponym-hypernymy relation
uses the lexico-syntactic paths that connect the joint occurrences of
word pairs in a large corpus. Hearst [12] uses frequently occurring
lexical and syntactic patterns in a large text corpus to find hypernyms.
Snow et al. [45] use features extracted from parse trees to find hyper-
nyms. Their methods rely on the accurate construction of parse trees
and the precision of automatically generated patterns. A limitation of
this method is that the paths may vary at the lexical level, and as a
result, the recall is low for these methods. For this reason, Nakashole
et al. [34] added a generalized version where for each path a subset
of the words is replaced by Part of Speech tags, their ontological type
or wild cards. Their method increased recall while maintaining preci-
sion. Suchanek et al. [48] extracted an ontology from Wikipedia and
WordNet.

2.2.2 Distribution-based hypernym derivation
In these methods, the hyponym-hypernym relation is based on the
distributional representation of the words. Here the distributional repre-
sentation of a word captures the context within which that word occurs.
These methods assume that the context of the hypernym will be broader
than the context of the hyponym. Kotlerman et al. [20] propose a di-
rectional distributional measure to infer hypernym–hyponym relations
based on the standard IR Average Precision evaluation measure. Fu et
al. [10] propose a method for constructing semantic hierarchies using
word embeddings. They propose that hypernym-hyponyms pairs have
similar semantic properties as the linguistic regularities discovered
by Mikolov et al. [29], for example, v(queen)-v(king) ≈ v(woman)-
v(man). Words can be projected to their hypernyms based on a uniform
transition matrix. That is, given a word x and its hypernym y a transi-
tion matrix φ exists such that y = φx. Other methods use difference
concatenation and dot products [42, 52]. Shwartz et al. [44] propose a
method that pairs path-based methods and distribution-based methods.

Other techniques have been proposed that use large knowledge
graphs to build taxonomies [40]. Ristoski et al. [39] combine class
labels with vector space embeddings to build the taxonomy. Their
method is based on the assumption that instances of a more specific
class should be positioned closer to each other on average than instances
of a broader class. Ponzetto et al. [36] combine network connectivity
with lexico-syntactic patterns to construct the taxonomy. However, both
of these techniques and others of that nature are dependent on labels
and network connectivity and therefore may not be able to capture
relationships for which data is not available. Another approach is to
use mass collaboration amongst users of an ontology [38].

2.3 Hierarchy Visualization
Browsing hierarchical structures to make sense of their content and
organization is an essential activity. Schulz et al. [43] present a survey
of hierarchy visualization techniques. The most common paradigms for
visualizing hierarchies are tree node diagrams [33], tree maps [17] and
icicle plots [19]. There exist many variations of hierarchy visualizations.
Researchers have experimented with 3D designs [1]. Turo et al. [51] use
2D representation for inner nodes and 3D representation for the leaves.
Designers have also experimented with different node designs [2, 35].
Different metaphors are used to capture a hierarchical relationship:

• Edges, edges are used to link nodes. The node-link tree is an example
of this technique [24, 33].

• Proximity, a node is placed next to a larger node to represent a link
between nodes [4].

• Indentation, indentation is used to represent the relationship. This
technique is omnipresent in graphical file browsers [6].

• Containment, in this metaphor the lower level node is contained
within the higher level node [41].

3 THEORETICAL UNDERPINNINGS

The input to our system is a multivariate dataset. Each element (row)
of the data is composed of multiple attributes (columns). Each attribute
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Figure 3: An overview of our system. The input to the system is a
multivariate dataset which is used to generate a semantic space and a
data space. The two spaces are then combined to create a taxonomy.
Word suggestions are generated to help the user label the nodes of the
hierarchy.

in the dataset is defined using a text label. To generate a tree that can
allow meaningful labeling of the internal nodes we need to quantify
the distance between the ”semantics” and the ”data” of different at-
tributes. The semantic distance represents the difference in the meaning
expressed by the attributes. The meaning of an attribute is inferred
using the attribute label.

In order to quantify the semantic distance between different variables
a neural network is trained using a large text corpus to map words to
continuous vector space. We use this vector space to get the word
embeddings for the attribute names. These embeddings are then used
to construct the semantic space and to suggest words suited for labeling
the internal nodes. On the other hand, the data distance represents the
difference in numeric data. We use a similarity metric on the numeric
part of the dataset to construct the data space. The two different spaces
are then combined.

We visualize the combined space using a dendrogram structure. A
dendrogram is a tree diagram frequently used to illustrate the arrange-
ment of the clusters produced by hierarchical clustering (see Figure 1c).
The user is given various options by which to carve and label the hi-
erarchical tree and convert it into a taxonomy. An overview of our
framework is given in Figure 3. More detailed explanations of the
different parts are given in the following.

3.1 Data Space

The data space defines how the different attributes are related to each
other numerically. We represent the data space using a distance matrix
M, which has n x n dimensions with n being the number of attributes
in the dataset. A cell ci, j in the matrix represents the distance between
attribute i and j. We assume that the distance of an attribute to itself is
0 and that the matrix is symmetric. The user can choose a similarity
metric such as correlation, mutual information etc. to represent the data
space.

The data space can help capture relationships that may be difficult
to attain using semantics alone. For example, a dataset on animals2

can have attributes that relate to the class of an animal e.g. mammal,

2http://archive.ics.uci.edu/ml/datasets/zoo

reptile etc. ”Hair” and ”Milk” are predominantly mammalian attributes,
but they do not have a strong semantic relationship. However, the data
shows that they are very strongly correlated. Therefore, the data space
can be helpful in finding relations between the attributes.

3.2 Semantic Space
Like the data space the semantic space is defined using a distance matrix
M. A cell ci, j in the matrix represents the distance between attributes
i and j. The distance between two attributes is defined as the cosine
distance between word embeddings. To learn the word embeddings we
use a skip-gram neural network [29]. The objective of our model is to
return similar results for two words that have similar context (defined
by nearby words). For example, we expect synonyms like ”good” and
”excellent” to have similar context. The context of a word is defined as
the list of words inside a window. For a window of size 2 the context of
a word wt would be wt−2, wt−1, wt+1, wt+2. Our training objective is
to maximize the probability of words wt−2, wt−1, wt+1, wt+2 appearing
in the context of word wt .

In our implementation, we use the gensim 3 implementation of skip-
gram and use the Wikipedia corpus to train the neural network. The
context window size is set to 5 and the size of the word embedding
space dimension d is 128. We use a minimum word count of 100.
Any word that has a frequency of less than 100 is removed from the
vocabulary. To estimate the embeddings of a phrase or of multiple
words we take the average of the words in the text. This is a commonly
used method and has been shown to be competitive when compared
with other techniques [22, 46].

Word embeddings learned using neural networks suffer from the
problem of having a conflation of word senses – a word sense is a
meaning of the word. Each word is represented using only one vector.
If a word has many meanings the vector representation of the word will
be the union over all the different meanings of the word. On the other
hand, it is also possible that there are not enough samples of the word
in the text corpus to learn the embedding of the word properly. Due
to any of these circumstances, the semantic space will be potentially
inaccurate. Another limitation is the model’s vocabulary. Words that
are not in the training corpus will not be part of the model and so we
may not be able to use them. In addition, the labels are also expected
to be not more than a few words long.

Acronyms and jargon words can be both permissible attributes and
valid inner node labels if they are part of the corpus used to train
the neural model. Some acronym and jargon words will be more
common than others. For example, FAQ, LOL, and 9-to-5 are much
more part of everyday English language and corpuses than BP (medical
jargon for blood pressure) and SCOTUS (Supreme Court of the United
States). If the corpus contains a wide selection of medical literature –
to support a taxonomy of medical attributes – or it spans a wide gamut
of political news articles – to support a taxonomy of data that contain
political aspects – then our framework will be applicable to these use
cases. At the heart of the semantic analysis is a neural network that
needs to be trained for the task at hand. In that sense, it is not unlike
an educated human who is endowed with background knowledge of
specific acronym and jargon words commonplace in the human’s area
of expertise.

3.3 Combining Semantic Space and Data Space
Once the semantic space and the data space have been constructed the
next aim is to integrate the two spaces. During our research we found
that there is typically some correlation between the data space and
semantic space. However, it is also possible for the two spaces to be
completely contradictory. In general, the data and semantic space may
conflict in some parts and corroborate in others. In some cases, the data
space may even point the semantic space into the right direction.

Merging the data space with the semantic space has two advantages.
Firstly, certain relationships are better captured in the data space (an
example of this is given in subsection 3.1). Secondly, any data driven
processes that may be performed on the subspace defined by the internal

3https://github.com/RaRe-Technologies/gensim
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nodes, such as dimension reduction, will benefit from having a subspace
that is more consistent. Thus, allowing users to merge the two spaces
in a way that captures the essence of both is desirable.

The data space and the semantic space are represented using a dis-
tance matrix. To merge the two spaces we use a weighted average,
minimum, or maximum operation. Balancing a layout according to
two possibly conflicting aspects by ways of a weighting function has
been a common practice. A recent example is the approach proposed
by Martins et al. [26] who used linear weighting to smoothly arbitrate
two possibly conflicting aspects with respect to node neighborhoods in
a 2D layout, namely the associations coded by a graph imposed on the
nodes and the associations coded by node vector similarity.

Cophenetic Correlation

To give the user a clear understanding of the compromise between
semantic and data space we use the cophenetic correlation. The cophe-
netic correlation [47] is the correlation between the distance obtained
from the dendrogram and the original distance (semantic/data distance).
It is a measure of how faithfully a dendrogram structure captures the
pairwise distances between the original data points. Since a dendrogram
is the basic structure for the taxonomy we are building (see Figure 1(c))
the cophenetic correlation is a natural choice for estimating how distant
the taxonomy is from the original information spaces. The cophenetic
distance is defined as follows:

c =
∑i< j(x(i, j)− x̄)(t(i, j)− t̄)√

[∑i< j(x(i, j)− x̄)2][∑i< j(t(i, j)− t̄)2]
. (1)

Here x(i, j) is the distance between elements i and j in the native
information space (data space or semantic space), while t(i, j) is the
distance between elements i and j in the dendrogram, which is equal
to the height of the lowest common ancestor. x̄ is the average of all
x(i, j) and t̄ is the average of all t(i, j). Figure 1(d) visualizes the
cophenetic correlation. The yellow and blue lines represent the change
in cophenetic correlation with respect to the semantic space and the
data space, respectively. The line chart is created by merging the two
spaces at different weights and calculating the cophenetic correlation.

3.4 Automated Word Suggestions

As mentioned, an important aspect of the hierarchy we wish to construct
is the labeling of the internal nodes. To label an internal node we
want to find a word that captures the meaning expressed by all of its
descendants. To be more precise we want to find a word whose semantic
meaning best captures the semantic meaning of all of its descendants.
We have intentionally kept this definition vague because there can be a
number of relations that might be used to create a hierarchy whereby
the relation need not be limited to hypernyms. Nodes can share a
”part of” relation, ’engine’ is part of a ’car’ or a subcategory relation,
’man’ is a subcategory of ’human’. We will call these words related-
words to distinguish them from hypernyms, meronyms etc. Ideally, we
would want to automatically find the best related-word but this can be
challenging for various reasons:

• The natural language processing algorithms developed so far are not
good enough to capture the semantic space perfectly.

• There might be multiple words that can be used to label the internal
nodes. For example, for the word ’New York’, the terms ’city’ and
’USA’ are both acceptable as each represents a different aspect of the
word.

• Words can be used in multiple senses, However, as discussed in the
previous section the different senses are difficult to model algorith-
mically and resolve automatically.

• We wish to suggest a word that can be representative for multiple
words, but so far algorithms for finding hypernyms only work for
one word.

Bringing the human in the loop
Since automatically generated results are not sufficient for our needs
we use them to aid the user in finding the appropriate labels. We have
designed an interface that presents the user a selection of related words.
From this list, the user can select the word they feel best portrays the
hierarchical structure. Keeping a human in the loop for labeling is
not a new idea. Gupta et al. [11] use human assistance in naming
clusters of concepts. For naming, they check whether some elements
of the concept clusters are present in WordNet [31] and propose the
name to the user. Then they check the corpus for so-called Hearst
patterns (lexico-syntactic patterns for recognizing hyponyms). They
note, however, that the method is only applicable to high-level con-
cepts. Kandogan et al. [18] automatically identify visual features by
detecting clusters, outliers and trends, and annotate them by finding
distinguishing attributes for that feature. Contextifier [16] produces
annotated visualizations of stock behavior using news articles about
a company. The system described by Bryan et al. [5] helps users in
finding points of interest and provides a workflow for annotating the
data.

To find related words our assumption is that for a set of words the
related-word is a word that can be used in a similar context. We will
be giving preference to the word that has the most contextual overlap
with the words in the set. Our method is based on the Distributional
Inclusion Hypothesis (DIH) according to which the context of a narrow
term is also shared by the broad term. We use the vectors learned using
the neural network to estimate the overlap. If a vector representing
word u is semantically narrower than a vector representing word v, then
a significant number of vector weights of u are included in the vector
weights of v as well [52]. In our tool, we implement a variation of the
degree of entailment measure introduced by Lenci and Benotto [23].
Lenci and Benotto show that this method outperforms other distribution-
based methods. We also give more importance to words that have a
higher frequency by multiplying the degree of entailment measure by
the logarithm of the frequency of the word. Appendix B gives more
detail on the background and mechanisms of these concepts.

4 CONSTRUCTING THE TAXONOMY

The objective of Taxonomizer is to aid the user in constructing a valid
taxonomy for multivariate datasets. Taxonomizer consists of an inter-
linked dashboard of two multivariate visualization displays, an interac-
tive hierarchy editor, a curve-based mixing board, and a word selection
interface (see Figure 1). In this section, we will explain both the design
rationale and the use of the dashboard’s components by ways of a
running example – a dataset on the housing available in Kings County
with attributes related to the houses 4. Let us assume a website that
allows visitors to view choropleth maps of the Kings County real estate,
one attribute at a time. Given the many attributes available navigating
the long unordered list can be tedious. To make this task easier, a
first design goal for the Taxonomizer is to construct a hierarchy that
groups the attributes into themes or aspects that can be further explored
by visiting their constituents. A second design goal is to ensure that
attributes in the same theme are similar in their data so that there is
not a huge change in the choropleth map when the user changes to a
different attribute in the same group. To create the taxonomy for the
dataset the user opens Taxonomizer and then uploads the data to the
system.

4.1 Data and Semantic Space
Taxonomizer uses the meta-data learned from the neural embedding
(see Section 3.2) to find the vector representation of each attribute. It
then uses the cosine distance to construct the semantic space. Figure
4(a) shows the scatter plot representation of the semantic space. The
scatter plots are generated by using the Non-metric Multidimensional
Scaling (NMDS) [21] algorithm. We used NMDS because it gives us
the flexibility to add new points to the system. The semantic space

4The attributes of the Kings County dataset are: price, bedrooms, bathrooms,
condition, grade, attic, basement, built, renovated, transportation, landmark,
restaurant, hospital, police, parks, school.
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Figure 4: The workflow for the Kings County housing dataset. (a) Semantic space. (b) Taxonomy based on the semantic space. (c) Data space.
(d) Taxonomy based on the data space. (e) Cophenetic plot. (f-j) Evolution of the taxonomy.

captures the semantic relations between the features – words with
similar meaning locate in close proximity. For example, ’basement’,
’attic’, ’bedrooms’ and ’bathrooms’ are all close together. Other words
like ’school’, ’parks, ’landmarks’ and ’hospital’ also seem to be spread
out in an appropriate manner.

Figure 4(c) shows the data space. The data space is created using
the correlation distance. We see that ’price’ and ’attic’ are strongly
correlated but semantically they are very different. Similarly, there
are other discrepancies between the semantic space and the data space,
for example, ’basement’ is further away from ’attic’, ’bedrooms’ and
’bathrooms’. ’Transportation’, ’landmark’ and ’restaurants’ are closer
together.

Figure 4(b,d) shows the taxonomy structure of the semantic space
and the data space, respectively. The taxonomy structure is based on
a dendrogram of the distance matrices. The color of each node in the
taxonomy represents the quality of the grouping at that node. The left
side of the node shows the quality of grouping in the data space and
the right side of the node shows the quality of grouping in the semantic
space. We use the Dunn Index to estimate the quality of a grouping.

The Dunn Index is a metric for evaluating clustering quality. It is the
ratio of the smallest distance between observations not in the same
cluster to the largest intra-cluster distance. To be more precise it is
defined as follows:

DIm =
miniεm, j6εm |i, j|
maxiεm, jεk |i,k|

. (2)

To calculate the Dunn Index for a node in the hierarchy we treat all
the attributes represented by the child leaf nodes of that node as one
cluster and the remaining attributes as the second cluster. The Dunn
Index is undefined for clusters with a single entity and clusters that
contain the entire set. Therefore, the Dunn index is undefined for the
leaves and the root of the tree, and thus we have colored these gray.
When the user modifies the structure of the taxonomy the Dunn Index
values will act as a guide to help him/her understand how consistent the
tree structure is to the semantic and data space. Figure 4(b) is based on
the semantic space, therefore, the right side of the nodes show higher
Dunn Index values, while the opposite is true for Figure 4(d). It is
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noticeable that the semantic side of the nodes in Figure 4(d) shows low
values. This is because some of the features that are grouped together
are not semantically related. For example, ’grade’ and ’attic’ are part
of the same group.

4.2 Taxonomy View

The construction of the taxonomy is the fundamental objective of
Taxonomizer. We use a tree structure to visualize the taxonomy because
it is the most common method to visualize a taxonomy. Scalability is
an issue with tree structures, however, the problem can be mitigated by
allowing the user to collapse parts of the tree.

We start by creating a very simple binary tree structure where the
inner nodes are unlabeled. This binary tree structure is constructed
using a hierarchical clustering scheme on a combination of the data
and semantic space. The data and semantic spaces are each represented
as a distance matrix and can be combined in multiple ways. The user
can take a minimum or maximum of two corresponding distances or
take a weighted average of the two distance matrices. By default, we
use a weighted average with equal weights. Initially, the user sees the
default binary tree structure. Various tools are available to chisel the
structure of the tree according to the user’s preferences, knowledge,
and requirements.

Taxonomizer provides three ways by which the user can modify the
structure of the taxonomy: (1) merging data space and semantic space,
(2) collapsing the taxonomy, and (3) joining nodes in the taxonomy. We
have also added an undo feature so that the user can undo any changes
made to the tree. The following subsections explain these operations in
closer detail.

4.2.1 Merging Data and Semantic Space

There are three ways to merge the data and semantic space.

Weighted Average

The user can take a weighted average of the two spaces by using a slider
interface. This method merges the two spaces by taking an element-
wise weighted average of the two distance matrices. By adjusting the
weight the user is making a compromise between the two information
spaces and he can decide what weight to use according to his pref-
erences and needs. We use the cophenetic distance to measure the
information lost in creating the tree structure. It gives the user a con-
crete estimate of the gains and losses of the different weighting schemes.
How the cophenetic correlation changes with weight is plotted in a line
chart (see Figure 4 (e)).

Minimum/ Maximum

The data space and the semantic space are merged by taking a point-
wise minimum and maximum between the two distance matrices. Simi-
lar to the weighted average scheme we use the cophenetic correlation
to determine how the taxonomy compares to the original spaces. The
cophenetic correlation for the minimum and maximum merge are repre-
sented using light and dark green circles, respectively, on the cophenetic
graph.

A user who is more interested in the semantic space may choose a
weight of 0.7. The line for the semantic distance flattens out beyond
0.7, meaning that there is little to gain. Whereas, the line for the data
plot shows that there will be significant losses (see Figure 4(e)). If the
user wants to conserve the data space he might decide to use a weight
of 0.5. The cophenetic distance graph allows the user to visualize the
compromise between the data space and the semantic space. In the case
shown here, the user decides to use a weighted average of 0.7. The
taxonomy created by this weighted average is pictured in Figure 4(f).
The overall blue coloring of the nodes shows that both the semantic
space and the data space have been captured quite well. The taxonomy
seems to have a good overall structure. We observe that the attributes
directly related to the structure of the house are in the lower half of the
taxonomy while the attributes related to the locality are on the upper
side.

Figure 5: The word suggestions panel. Shows the list of suggestions
for ’attic’, ’bedroom’, ’bathroom’ and ’basement’.

4.2.2 Collapse

The taxonomy starts as a binary structure. The collapse feature allows
the user to merge child nodes with their parents if their height differ-
ence is within a given threshold. The child node is removed and the
parent node takes over the children of the child node. The collapse
threshold can be controlled by adjusting a slider. Collapsing the tax-
onomy reduces the amount of detail represented. We have two layout
schemes, depth-based (Figure 4(f)) and height-based (Figure 4(g)). In
the depth-based scheme, the x-coordinates of the node are determined
by the height of the node in the tree. Conversely, in the height-based
scheme, the x-coordinates of the node are determined by the distance
between the clusters.

We added these two different layouts because the depth-based layout
is better at spacing out the different nodes giving the user a clear picture
of the structure of the tree. On the other hand, the height-based layout
shows the actual height of the nodes in the dendrogram. This view is
useful when determining the collapse threshold for the tree. The user
sets a collapse threshold of 0.2 to reduce the height of the tree (see
(Figure 4(g)).

4.2.3 Join Nodes

To further chisel the structure of the taxonomy the user has the option
to join nodes together. He can join two nodes by dragging one node to
another. We remove the node that is being dragged and the other node
takes over the children of the dragged node. When the user starts to
drag a node the nearest node is highlighted by changing its color to red.
This facilitates the merging of nodes.

There are two modes for merging – restricted and unrestricted. In the
restricted mode the user is only allowed to merge the node with either
its parent or its sibling. In the unrestricted mode, the user is allowed to
merge a node with any node other than its children. The restricted node
is added to ensure that the user does not stray too far from the original
structure of the tree.

We see this feature at work in Figure 4(h) where we reduced the
depth of the taxonomy using the restricted join features. A user might
notice that ’parks’ is in the same group as ’police’ and ’transport’
and might feel that all entertainment-related attributes (’landmarks’
and ’restaurants’) should be in the same group. The unrestricted join
feature can be used to fix this (Figure 4(i)). The color of the affected
nodes changes to signify the effects of the alterations. We observe
that one node shows better semantic consistency than before while the
other shows less semantic consistency. Both nodes show a loss in data
consistency.
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(a) (b) (c)

(d) (e) (f)

Figure 6: The evolution of the taxonomy for the student performance dataset. (a) Dendrogram of the data space. (b) Dendrogram of the semantic
space. (c) Structure after weighted average merge scheme, with weight 0.31. (d) Sculpting the structure using the join features. (e) Reducing the
height of the tree. (f) The fully labeled taxonomy.

4.3 Node Labeling

Having adjusted the hierarchy the final task is to perform the labeling
of the internal nodes. The user can add labels by double-clicking on the
nodes. To label an internal node Taxonomizer provides the user with
a list of suggestions that can be used for this purpose. In order to find
words that can make good suggestions we use the degree of entailment
method [23] (see section 3.4).

During our experiments, we discovered that adding synonyms to the
list can make it more helpful. Figure 5 shows the list of suggestions for
’attic’, ’bedroom’, ’bathroom’ and ’basement’. The first column shows
the top 10 suggested words retrieved using the Degree of Entailment
method and the second and third column show the synonyms for the
words in the first column (if available). The synonyms are obtained
using WordNet. We use the synonyms with the highest word frequency.
Finding an appropriate label is a difficult task and it is possible that the
word does not exist in the list of suggestions. In this case, the user is
provided with a text box to add a word of their own choice.

Figure 4(j)) The fully labeled taxonomy as generated by one of our

user study participants. In this example, one label was provided by the
user (’recreation’) and one synonym was used (’home’). The remain-
ing labels were all suggestions retrieved by the Degree of Entailment
method.

5 USAGE SCENARIO

We follow Jane who has compiled some data on student performance
in secondary education 5. She wants to create a web tool that allows
users to visualize the data and decides to use Taxonomizer to create a
hierarchical structure where users can explore the data at various levels
of granularity. Jane begins by loading the dataset into the program. As a
first step she visualizes her data using scatterplots to reveal correlations
and she also does some brushing for selection operations. Then she
opens her data in Taxonomizer and uses correlation as the distance
metric for the data space. The hierarchical structure generated using
the data space can be seen in Figure 6(a). We can see that some parts
of the hierarchy are semantically consistent. Figure 6(b) shows the

5https://archive.ics.uci.edu/ml/datasets/Student+Performance
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Figure 7: The results of the user survey, where the interactions of the user with the Taxonomoizer are logged. The patterns related to how the
participants interact with the visual tool can be observed.

dendrogram constructed using only the semantic space. Even though
the hierarchy is semantically consistent there are some deficiencies.

To improve the structure of the hierarchy Jane uses a value of 0.31 in
the weighted average scheme. She uses 0.31 because up to this value the
cophenetic correlation does not show any significant reduction in the
semantic space. Figure 6(c) shows the hierarchical structure generated
by taking a weighted average of the semantic space and the data space.
We can observe that some of the deficiencies in the semantic structure
have been removed. For example, the attributes related to education are
closer to each other.

Jane then proceeds to condense the hierarchy using the collapse
feature and the restricted join feature (see Figure 6(d)). She notices that
the attributes related to education are divided into two subgroups. She
uses an unrestricted join to fix this and makes other minor adjustments
(e.g. the ’going out’ attribute is placed in the subtree related to alcohol
consumption). Then she reduces the height of the tree using the collapse
and restricted join features (see Figure 6(e)). Now that her hierarchical
structure is complete she clicks on the inner nodes to label them. For
each node the word suggestions panel provides some suggestions of
possible words for labeling it. She can use one of these suggestions or
label the node herself (see Figure 6(f)).

Jane, or a person using Jane’s generated labeled hierarchy, can
now select any two labels in the taxonomy to view the scatter plot
for those variables. For a leaf node the program selects the original
values for the corresponding variable. Conversely, for an inner node the
program computes the main Principal Component (PC) of the subspace
formed by its leaf nodes and so determines the most representative
projection for it. As the correlation gets weaker at increasing levels of
the hierarchy the corresponding scatter plots will appear less correlated
as a consequence. With these mechanisms in place the taxonomy
structure enables users to visualize the data at any level of granularity,
and do so with ease.

In the following we offer a few comments on the final structure of
the secondary education taxonomy we just created (see Figure 6(f)).

• The ’nursery’ attribute refers to whether a student attended
preschool. Therefore, it is part of the ’education’ subtree.

• The alcohol-related attributes are in the ’entertainment’ subtree
because they are distractions (from education). Fittingly, they are
also closely connected in the data space.

• The label ’parent’ is an auto-generated word. Therefore, it is
singular. It is part of the ’education’ subtree because it relates
to the education of the parents which plays a critical role in the
upbringing of a child.

• ’Extra-curricular’ is a separate node in the ’academic’ subtree be-
cause it is different from the other attributes, it refers to activities
like cooking, karate, soccer etc.

• The ’relationship’ subtree is part of the ’family’ subtree because
it is strongly related in the data space.

• The ’problems’ subtree could have gone as a direct descendant
of the ’personal subtree but the data space shows that placing it
below the ’miscellaneous’ node is a better fit.

6 USER STUDY

The objective of the user study was to see how users interacted with the
visual tool and if they were able to construct semantically consistent
taxonomies.

6.1 Experiment Setup
The user study was divided into two parts. In the first part, the partici-
pants were asked to construct the taxonomy manually. In the second
part, the participants were asked to construct the taxonomy using the
visual analytics tool.

Manual Taxonomy Generation
In the first part of the user study, the participants were asked to construct
a taxonomy using sticky notes as nodes. We used sticky notes to
construct the hierarchy because it was easier for the participants to
move nodes and alter the structure of the taxonomy. We recruited 15
participants for this experiment (12 males and 3 female) with age of
21-29. Before starting the experiment we took 5 minutes to explain the
concept of a taxonomy and used a dataset to show an example of how
a taxonomy can be created. The example started with the attributes
of the dataset and one root node. Inner nodes were then added to the
taxonomy to create more depth. The final tree had a depth of 4.

The participants were asked to construct a taxonomy for the univer-
sity dataset. They were provided with the sticky notes and a pen to
create and label the inner nodes. The participants did not have access
to the numerical correlation values for each attribute pair. We recorded
the number of times the participants moved a node. There was no time
limit for the participants.

Machine-aided Taxonomy Generation
For the second experiment, we recruited 15 participants of similar
demographics and age range as before. They were first given a demon-
stration of the visual tool where they were shown how to use its different
functions using an example dataset. After the demonstration, the partic-
ipants were given a dataset on which they could practice using the tool
for constructing a taxonomy. Once they reached good aptitude using
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(a) (b) (c)

Figure 8: (a) A scatter plot of the taxonomies generated by the participants. The circles representing machine aided taxonomies are colored
according to the weight used by the participant. The red and blue stars represent trees generated using the data space and the semantic space
only, respectively. (b) The scatter plot of the attributes based on the structure of the manually generated taxonomies. (c) The scatter plot of the
attributes based on the structure of the taxonomies generated using the visual tool.

Figure 9: Scatter plot of the words used to label the inner nodes of the
Taxonomies.

the tool they were given a new dataset and were asked to construct a
taxonomy for that dataset. To observe how the users interacted with the
tool, we logged all of the interactions made by the user in the software.
We kept track of five major activities which are defined as follows:

• Collapse, collapsing an internal node whose height difference
with their parents is within a certain threshold.

• Join Nodes, the node join can be restricted and unrestricted.

• Suggested Word, select the label for an internal node from the
list of suggestions.

• User’s Own Word, the user writes his or her own label.

• Merge Scheme, using a weighted average, minimum or maxi-
mum to merge the data and semantic space.

6.2 Results and Feedback
The user interactions with the visual tool are shown in Figure 7. From
this table, we can see that the participants followed the pattern of first
merging the data space followed by using the join operations and then
adding the labels at the end. Most participants spent some time merging
the data and semantic spaces. However, once they decided on how to
merge the data space and the semantic space they did not adjust it again.
Later on, only three participants decided to re-adjust using the merging
scheme. All participants used the weighted average merging scheme.
The join feature was also used by all participants and they found it
very useful in customizing the structure of the taxonomy. To label the
nodes, the participants used labels from the suggested words 59.0% of
the time, hinting that the suggested words provide useful options for
labeling the internal nodes. We discovered that the collapse option was
not overly popular – it was used by only 4 participants.

The average number of interactions with the visual tool was 27.8 and
the average number of nodes moved in the manual setup was 30.1. The
average depth of a node in the trees constructed using the visual tool
(2.67) was significantly higher in comparison with the trees constructed
using the manual method (2.18). The initial binary tree computed
by the software and displayed in the visual tool was larger in height
compared to the starting point of the manual tree which started in a
state not aided by any computational support, i.e., with all the leaf
nodes directly attached to the root node. This encouraged the users to
construct trees derived from the visual tool with greater depth. As a
result, the taxonomies generated with the visual tool had more detail.

To compare how correctly the participants used the labels we created
a co-occurrence matrix between the labels and the attributes of the
dataset (we use labels that have been used at least two times). A label
and attribute co-occur if that attribute is a descendant of the label node.
We use the cosine distance to create a similarity matrix and visualize it
using an MDS plot (see Figure 9). We can see that words with similar
meanings are closer together indicating that the participants were able
to find the correct words and used the labels in a consistent manner.

We compare the structures of the different taxonomies created by
the participants manually and using the visual tool (see Figure 8(a)
– the actual taxonomies created by the participants are given in the
supplementary material of this paper). The plot is generated using
MDS with cophenetic correlation as the similarity measure. The yellow
triangles represent taxonomies generated with the manual procedure.
Conversely, the circles represent machine aided taxonomies and are
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Figure 10: The Elo rankings of the different taxonomies based on the
results of the rankings generated by the participants. The labels of the
taxonomies are given at the end of each taxonomy. The green lines
correspond to a machine aided taxonomy and red lines correspond to a
manual taxonomy. All the taxonomies are given in the appendix of the
paper.

colored according to the data/semantic space weight used by the par-
ticipant. The red star represents the tree generated from the data space
only, while the blue star denotes the tree generated from the semantic
space only.

The larger spread of the triangles suggests that there is more diversity
in the manually created trees. On the other hand, the still significant
spread of the trees generated using the visual tool (the circles) suggests
that the participants were able to create a fairly wide variety of tax-
onomies. This confirms that Taxonomizer is flexible enough to generate
various kinds of structures from the same dataset. Figure 8(a) shows
that taxonomies with similar weights (indicated by color) are closer
together. It indicates that the starting point of a taxonomy played an
important role in the final outcome. This observation is corroborated
by participants who reported that the cophenetic correlation plot helped
them identify a good starting point for the construction of the taxonomy.
Further, we also observe that the trees with low weights (closer to
the data space) are closer to the tree generated using the data space
only (the red star). Even trees with higher semantic weight (the blue
circles) are still closer to the data space-only tree than to the semantic
space-only tree (the blue star). This indicates that trees generated using
our visual tool tend to adhere more to the data space and so capture
more of the data space similarities while still taking up a good portion
of of the semantic space relationships as well.

To estimate the semantic consistency of the structures generated by
the participants we created a similarity matrix between the attributes
of the dataset. The similarity between two attributes is defined as the
average height of the lowest common ancestor node. Nodes with the
same parent will be closer to each other than nodes with the same grand-
parent. The similarity matrix is visualized using an MDS plot. The plot
for manually generated trees and the machine-aided trees can be seen
in Figure 8(b) and Figure 8(c), respectively. We observe that in both
plots words with similar meanings are closer together. For example,
faculty, score and academic are in close proximity. This indicates that
the participants were able to construct semantically consistent trees in
both experiments. But we also observe that machine-aided trees had a
clearer separation of academic and area attributes which is consistent
with the data.

Figure 11: The distribution of the average rank for the taxonomies
generated using the manual (red) and machine aided methods (green).
Lower rank is better and there is very clear separation of the to distribu-
tions.

6.3 Manual vs Machine Aided Taxonomies
In the final part of our user study, we compared the taxonomies gen-
erated by the machine-aided and the manual methods. At first we
presented them to a linguistics expert, but he found it challenging to
compare all the taxonomies that were generated. He suggested that
since the taxonomies were to be useful to humans they should be eval-
uated by humans (humans with no specific academic background in
linguistics, that is). Following this advice we performed an experiment
in which the participants were given 6 randomly selected taxonomies
(3 generated using the machine aided method and 3 generated using the
manual method). We recruited 15 participants for this test (11 males
and 4 females). The participants were in the age range 23-31. The
participants were explained the concept of a taxonomy using examples.
They were then asked to rank the taxonomies from best to worst.

To combine the results of the rankings generated by the participants
we converted the rankings into a set of pairwise comparisons and used
the Elo ranking algorithm to calculate the final rankings. The Elo rating
scheme was introduced as a chess rating system by Aprad Elo [8]. Vari-
ants of the rating scheme are still used to rate chess players. Similar to
chess matches between two competing players, we use pairwise com-
parisons to rate different designs. Each participant-generated ranking (6
taxonomies) is converted into 15 pairwise comparisons. The taxonomy
with the higher rank is then declared the winner of the comparison.
We asked the participants to rank the taxonomies instead of comparing
them individually because it is more engaging for the participants to
rank among a set than to pick among a pair. Results of the Elo ranking
are shown in Figure 10. We can see that taxonomies generated using
the machine aided method (colored green) are in general rated higher
than the taxonomies generated by the manual method (colored red).

The result of the Elo ranking is dependent on the order of the com-
parisons. This creates ambiguity in the results of the rankings. To make
the results of the Elo algorithm more concrete we calculated the aver-
age rank of the manual and machine-aided taxonomies. This process
was repeated multiple times with random orders of the comparisons.
It generated a distribution of the manual and machine aided methods
which is shown in Figure 11. We observe a clear separation of the two
methods with the machine aided taxonomies having the better rank
distribution.

To show that the difference between two distribution are statistically
significant we disprove the null hypothesis which assumes that there is
no difference between the two methods. To achieve this we performed
the ANOVA test which returned a p-value of 0 which impressively
shows that there is a significant difference between the rankings of the
manual and machine aided methods.

7 CONCLUSION AND FUTURE WORK

We presented Taxonomizer, a visual analytics tool that can be used to
organize the attributes from a multivariate dataset into a meaningful
and fully-labeled taxonomy structure. Specifically, Taxonomizer allows
users to fuse two separate aspects of the data attributes – statistics and
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semantics – to compose a consistent hierarchical representation of the
attribute space. Our visual tool provides a high degree of interactivity
and is flexible enough to create a taxonomy that fits a user’s specific
need and domain understanding. A user study we conducted showed
that the participants were able to create deeper trees using the visual
tool. The visual tool also allowed the study participants to construct
trees that were closer to the data space.

However, there are some caveats. One of them is that the natural lan-
guage models used to model the semantic space have some deficiencies.
Also, we use a tree structure to visualize the taxonomy. Tree structures
have issues with scalability in particular when the tree is deep. Another
limitation is that only single word hypernyms are generated using our
method. Even though these deficiencies put some limitations on the
effectiveness of the system, we believe that they have been mitigated
to a good extent by the tools we added to the system. Both case and
users studies show that despite these adverse circumstances Taxono-
mizer is still able to organize A dataset’s features into a consistent and
meaningful labeled taxonomy.

We believe that statistical analysis of attributes of a structured data
set is an exciting area of research that opens many more avenues. In
future work, we would like to see how taxonomy building can be further
refined. We would like to experiment with learning embedding models
using a more specific corpus, for example, using only those Wikipedia
articles that are related to the dataset labels. It might also be interesting
to explore how the semantic space can be used for other visualization
tasks such as dimensionality reduction. Finally, while in the present
work we do not evaluate the goodness of the taxonomy generated by the
user, in the future we would like to find ways to evaluate how mutually
exclusive and unambiguous the labels are.

APPENDIX

A. The Skip-Gram Model
The skip-gram model [28] uses each word wt as input to a log-linear
classifier with continuous projection layer and predicts the context of
wt i.e. words within a certain window before and after the word wt−2,
wt−1, wt+1, wt+2. Increasing the window size improves the quality
of the resulting word vectors, but it also increases the computational
complexity.

Given a corpus C, our objective is to learn word embeddings φ for a
vocabulary V . We start by randomly initializing the vector representa-
tion for words. Our training objective is to maximize the probability of
words wt−2, wt−1, wt+1, wt+2 appearing in the window of word wt . To
be more precise we are maximizing the following probability function:

Pr(w j|wi) =
ew j .wi

∑wkεV ewk .wi

Here wi and w j are the vector representations for the words(w) and
their contexts. The learning process is made up of multiple iterations,
each iteration is called an epoch. In each epoch, we iterate over each
word in V to minimize the negative log-likelihood of the context words.
The function is defined as follows:

E = ∑
wεC

i+m

∑
j=i−m

−logPr(w j|wi)

Note here that the denominator of equation (7) is a summation
over words from the entire vocabulary |V |. To make this computation
feasible we limit the number of context words that must be updated in
training instance. This is done using the hierarchical softmax method
that uses a binary tree to represent words in the vocabulary. The
vocabulary words are the leaves of the binary tree. For each leaf unit,
there exists a unique path from the root to the unit; and this path is used
to estimate the probability of the word represented by the leaf unit. This
reduces the time complexity of this step from O(|V |) to O(log(|V |)).

B. Finding Related Words
To find related words our assumption is that for a set of words a related-
word is a word that can be used in a similar context. We will be giving

preference to the word that has the most contextual overlap with the
words in the set. Our method is based on the Distributional Inclusion
Hypothesis (DIH) [20]. according to which the context of a narrow
term is also shared by the broad term. We use the vectors learned using
the neural network to estimate the overlap. If a vector representing
word u is semantically narrower than a vector representing word v, then
a significant number of vector weights of u are included in the vector
weights of v as well.

Clark proposed the degree of entailment measure [7] which is based
on DIH. It quantifies the weighted coverage of the vector of the narrower
word by the vector of the broader word . The DIH metric is defined as
follows:

DH(u,v) =
∑ f min(wu( f ),wv( f ))

∑ f wu( f )
. (3)

Here wu( f ) represents the weight at dimension f for the vector of
the word u. In our tool, we implement a variation of the degree of
entailment measure introduced by Lenci and Benotto. which takes into
account the inclusion of u into v as well as the non-inclusion of v in u.
It is defined as follows:

invCL(u,v) =
√

DH(u,v)∗ (1−DH(v,u)). (4)

Lenci and Benotto [23] showed that this method outperforms other
distribution-based methods. We also give more importance to words
that have a higher frequency by multiplying the degree of entailment
measure by the logarithm of the frequency of the word. To implemented
the distribution based method, we used the word embeddings already
learned for finding the semantic space. The distributional method is
that the nearest neighbor of a word can include hypernyms, meronyms
synonyms etc. making it difficult to single out a relationship. In our
case however we are not interested in defining relationships, we want
to identify words that share the context between multiple words.
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Appendix



(1) Semi-automated Taxonomy (2) Semi-automated Taxonomy (3) Semi-automated Taxonomy

(4) Semi-automated Taxonomy (5) Semi-automated Taxonomy (6) Semi-automated Taxonomy

(7) Semi-automated Taxonomy (8) Semi-automated Taxonomy (9) Semi-automated Taxonomy



(10) Semi-automated Taxonomy (11) Semi-automated Taxonomy (12) Semi-automated Taxonomy

(13) Semi-automated Taxonomy (14) Semi-automated Taxonomy (15) Semi-automated Taxonomy

Figure 1. Shows the taxonomies generated by the participants using the semi-automated method.



(1) Manual Taxonomy (2) Manual Taxonomy (3) Manual Taxonomy

(4) Manual Taxonomy (5) Manual Taxonomy (6) Manual Taxonomy

(7) Manual Taxonomy (8) Manual Taxonomy (9) Manual Taxonomy



(10) Manual Taxonomy (11) Manual Taxonomy (12) Manual Taxonomy

(13) Manual Taxonomy (14) Manual Taxonomy (15) Manual Taxonomy

Figure 2. Shows the taxonomies generated by the participants using the manual method.
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