
Visual Simulation of
Heat Shimmering and Mirage

Ye Zhao, Member, IEEE, Yiping Han, Zhe Fan, Feng Qiu, Yu-Chuan Kuo,

Arie E. Kaufman, Fellow, IEEE, and Klaus Mueller, Member, IEEE

Abstract—We provide a physically-based framework for simulating the natural phenomena related to heat interaction between objects

and the surrounding air. We introduce a heat transfer model between the heat source objects and the ambient flow environment, which

includes conduction, convection, and radiation. The heat distribution of the objects is represented by a novel temperature texture. We

simulate the thermal flow dynamics that models the air flow interacting with the heat by a hybrid thermal lattice Boltzmann model

(HTLBM). The computational approach couples a multiple-relaxation-time LBM (MRTLBM) with a finite difference discretization of a

standard advection-diffusion equation for temperature. In heat shimmering and mirage, the changes in the index of refraction of the

surrounding air are attributed to temperature variation. A nonlinear ray tracing method is used for rendering. Interactive performance is

achieved by accelerating the computation of both the MRTLBM and the heat transfer, as well as the rendering on contemporary

graphics hardware (GPU).

Index Terms—Heat transfer, lattice Boltzmann model, thermal flow dynamics, heat shimmering, mirage, GPU acceleration, nonlinear

ray tracing.

Ç

1 INTRODUCTION

VARIOUS natural phenomena involve hot objects, dynamic
flows, and heat transfers, such as melting, dissolving,

shimmering, and mirage, which are of great interest to
researchers in computer graphics and scientific simulations.
For simulating these phenomena, it is imperative to provide
a correct and efficient modeling of the heat transfer as well
as the interaction between the objects and the flow. This
paper presents a physically-based method that provides a
basic framework for modeling these thermal phenomena.

The shimmering effect can be achieved by ad hoc data-
driven methods, such as noise-based approaches. However,
these require a substantial amount of manual work to adjust
the parameters. In contrast, our method simulates the
phenomena physically with thermal air flow effects. The
parameters in our system have real physical meanings and
are easily employed to control the resulting behavior,
especially for realistic 3D scenarios. Our method is particu-
larly valuable as it is not easy for a noise-based model to
implement the shimmering effect once air flows are interact-
ing with internal objects. Finally, although the focus of this
paper is on heat shimmering and mirage, our method also
works well with other thermal flow phenomena. For
example, it can be used to model air flow and contaminant
transport in urban environments with the inclusion of
thermal effects due to surface heating by the sun.

Our method includes conduction, convection, and radia-
tion, which are the three basic types of heat transfer in the
real world. Heat sources are defined as any arbitrarily
shaped objects interacting with the surrounding air. The
temperature distribution on the objects can be calculated
from radiators (e.g., the sun) or defined by the user with
other physical or nonphysical methods. Such temperature
distribution is applied to the surface geometry by a novel
mechanism, termed temperature texture. We model the heat
transfer from the heat sources to the ambient flow.
Although heat transfer modeling has been used before in
computer graphics, to the best of our knowledge, this is the
first physically-based implementation for heat exchange
between arbitrarily-shaped, heated objects and the sur-
rounding air. The different heat exchange behaviors are
determined by material and flow properties, which are
controlled by physically meaningful parameters, such as
thermal conductivity, Prandtl number, and flow velocity. In
the air region, a hybrid thermal lattice Boltzmann model
(HTLBM), which couples the multiple-relaxation-time LBM
(MRTLBM) with a finite difference discretization of an
advection-diffusion equation for temperature, is used for
modeling the thermal flow dynamics.

Heat shimmering and mirage appear when the heated air
has a different refractive index than that of the cooler
surrounding air, resulting in an altered light direction
through the hot air compared to that of the cooler air. Here,
the changes in the index of refraction are attributed to
temperature variation. Once the dynamic temperature dis-
tribution is computed by our physically-based modeling
framework, we apply a nonlinear ray tracing method to
render the resulting visual effects. The local and explicit
operations of the HTLBM make it possible to accelerate both
the physical simulation and the rendering on a contemporary
graphics processing unit (GPU) for interactive performance.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 1, JANUARY/FEBRUARY 2007 179

. Y. Zhao is with the Department of Computer Science, Kent State
University, Kent, OH 44242. E-mail: zhao@cs.kent.edu.

. Y. Han, Z. Fan, F. Qiu, Y.-C. Kuo, A.E. Kaufman, and K. Mueller are with
the Department of Computer Science, Stony Brook University, Stony
Brook, NY 11794.
E-mail: {yhan, fzhe, qfeng, yukuo, ari, mueller}@cs.sunysb.edu.

Manuscript received 19 Dec. 2005; revised 4 May 2006; accepted 17 May
2006; published online 8 Nov. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0219-1205.

1077-2626/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society

In summary, the main contributions of this paper are:
1) proposing the first approach that physically models the
heat transfer from heat sources to the surrounding air,
2) introducing the concept of temperature texture to represent
temperature distributions on heat sources, and 3) implement-
ing thermal flow modeling in an HTLBM framework with
GPU acceleration. Our method is applicable for the visual
simulation of heat shimmering and mirage, and it can be used
to model various other thermal flow phenomena.

2 BACKGROUND

Modeling the temperature evolution in a flow is an essential
step for heat-related phenomena. In earlier work concerned
with the modeling of shimmering and mirage [1], [22], the
temperature or index of refraction is manually established
for particular situations. In another work [25], the tempera-
ture fields are determined by superinterpolated weighted
blobs, which are created at user-specified heat sources with
an initial temperature. The temporal evolution of the blobs
is achieved by advecting their centers through a turbulent
wind field, which is generated by a physically-based
simulation [24].

The temperature evolution in fluid has also been
modeled by others, but not specifically for shimmering or
mirage effects. Over the past decade, a variety of physics-
based approaches have been applied to model fluid
dynamics. In particular, numerical methods for solving
the Navier-Stokes (NS) equations have led to significant
advances in the visualization of gas, fire, and fluids [3], [6],
[8], [9], [23], in which the temperature is considered to affect
the flow dynamics. Usually, an advection-diffusion equa-
tion governs the temperature evolution. By applying
Boussinesq approximations (the density variation only
appears in the force term), a buoyancy force determined
by the temperature is applied to the fluid equations.

Unlike previous work that manually arranges the heat
distribution or calculates it by heated blobs advected in a
wind field, our framework simulates the temperature
evolution by physically modeling the thermal flow dy-
namics. Our method is also different from the fluid
modeling methods that include temperature evolution.
These existing approaches only consider the heat evolution
inside the fluid or implement the heat transfer between the
fluid and the suspended particles by an empirical equation
[7], while ours models the heat transfer between the
arbitrarily shaped heat sources with different material
properties and the surrounding air.

LBM [26] is a relatively new approach in computational
fluid dynamics (CFD) with a simple and parallelizable grid-
based numerical scheme. The fundamental idea of the LBM is
to construct simplified kinetic models that incorporate the
essential physics of microscopic processes such that the
macroscopic averaged properties obey the desired macro-
scopic NS equations. The LBM does not need to iteratively
solve the large linear system produced by the Poisson
equation of the pressure. Therefore, it has the advantage of
being easy to implement and, in addition, it is especially
suitable for GPU acceleration. Furthermore, the LBM scheme
handles complex and moving boundaries very well. How-
ever, the LBM is an explicit solver and requires relatively
small time steps. Multiresolution schemes and adaptive time
step schemes have been applied to the LBM to address this

issue [17]. Generally, the LBM has achieved success in the
world of physics both from the analytical and practical points
of view. It has also been used in graphics for simulating a
variety of fluid phenomena with complex boundary condi-
tions [4], [21], [27], [28], [30]. Comparing our current work
with the former LBM work, we are the first to implement the
thermal LBM in graphics, where the air flow is affected by the
heat and also contributes to the heat evolution.

Some previous research has reported on the rendering of
heat shimmering and mirage. Berger et al. [1] first
implemented ray tracing for mirages. They generated
mirage images by sending rays through multiple air layers
with different refractive indices. Musgrave [19] pointed out
that the primary reason for mirage creation is total
reflection. Groeller [10] developed algorithms to trace
nonlinear rays through a class of force fields. Berger et al.
[1] calculated the trajectory of a light ray by changing the
refractive index gradient parameters. Stam and Languenou
[25] presented a method to trace the rays by integrating the
basic equations from geometrical optics with perturbation.
The equations govern the propagation of rays in a medium
with a continuously varying index of refraction. Recently,
Seron et al. [22] solved the problem of light propagation
through an inhomogeneous medium using a general
equation based on Fermat’s principle. They applied the
method to the distortions of the spherical shape of the sun
during sunsets. Unlike these methods, our approach
computes the index of refraction physically as a function
of the pressure and temperature at a particular position.
Such computation is performed at discrete steps when a
light ray traverses the medium and the ray direction is
changed at each step by applying Snell’s Law to model the
refraction of the ray.

In the next section, we describe our heat transfer model for
heat sources, as well as the temperature texture. We then
describe our thermal flow modeling in Section 4. In Section 5,
the nonlinear ray tracing rendering scheme is discussed. In
Section 6, we describe our GPU acceleration. Finally, several
examples demonstrate the visual results of our method.

3 HEAT TRANSFER

In the real world, there are three ways in which heat may be
transferred between substances that are at different tem-
peratures: conduction, convection, and radiation [12]. The
flow of heat by conduction occurs when a temperature
gradient exists in a body. Different materials transfer heat
between them by conduction at different rates, which is
measured by the material’s thermal conductivity k. Four-
ier’s law describes the heat conduction as

q ¼ �krT; ð1Þ

where q is the heat-transfer rate per unit area and rT is the
temperature gradient.

Convection involves the energy exchange between a
surface and an adjacent fluid. The fluid immediately
adjacent to the surface forms a thin boundary layer. Heat
is conducted into this layer, where the fluid carries the heat
away. A high velocity produces a large temperature
gradient. Thus, the temperature gradient at the wall

180 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 1, JANUARY/FEBRUARY 2007

depends on the flow field. Newton’s law of cooling
expresses the effect of convection as

q ¼ hðTbody � T1Þ; ð2Þ

where h is the convection heat-transfer coefficient which is a
function of the geometry and fluid properties, Tbody is the
temperature of the surface, and T1 is the temperature of the
oncoming fluid.

Radiation is the heat transfer by emission and absorbtion
via electromagnetic waves. It may occur through regions
where no material medium is involved; for example, from
the sun to the earth through mostly empty space. An ideal
thermal radiator (black body) emits energy at a rate
proportional to the fourth power of the temperature T of
the body and directly proportional to its surface area A (� is
the Stefan-Boltzmann constant) as

qemitted ¼ �AT 4: ð3Þ

In our method, heat transfer occurs in three different
situations: 1) in the air (conduction and convection), 2) from
the heat source objects to the ambient air (convection), and
3) on the heat source objects (user defined or radiation from
the sun). The first phenomenon is modeled with a standard
advection-diffusion equation of temperature, which is part
of the HTLBM to simulate thermal flow dynamics and is
discussed in Section 4. Here, we describe our heat transfer
implementation in the other two situations. To the best of
our knowledge, physically-based modeling of heat transfer
from arbitrarily shaped objects to the air with different
material properties, as well as radiation from the sun to the
objects, have not appeared before in computer graphics.

3.1 Heat Transfer from Heat Sources to the Air

Heat exchange between the object surface and the air is
modeled by (2), where h is the key coefficient to be
computed according to flow velocity, material, and geome-
try. Considering a thin thermal boundary layer, with a
characteristic length L, a local Nusselt number (a ratio of
conductive to convective thermal resistance of the fluid) is
defined as

Nu ¼ hL
k
: ð4Þ

For a plate interface, Nu relates to the flow properties as

Nu ¼ 0:332Re
1
2Pr

1
3; ð5Þ

where Pr is the Prandtl number that approximates the ratio
of momentum diffusivity and thermal diffusivity. The value
of Pr for different materials can be found in physics
handbooks. Re is the local Reynolds number at position P

in the thermal boundary layer, which is the ratio of inertial
to viscous forces and is defined as

Re ¼ uL

�
; ð6Þ

where � is the kinematic fluid viscosity, u is the flow
velocity, and L is the distance from P to the plate interface.

For an arbitrary object, the interface between the air and
a small region of itself can be locally simplified as a plate

interface. Therefore, we can combine (4) and (5) to compute
the local heat-transfer coefficient h at a position P , and then
calculate the temperature change by (2). Note that the
radiation from the object to the air is usually very small and,
thus, is neglected.

As shown in Fig. 1, on a blue cutting plane of the LBM
grid (in white lines), a grid point P has a closest distance x
to the red object surface. P has a flow velocity u and
viscosity �. In our simulation, we modify the temperature
values of the LBM grid points that are close to the heat
source surface (i.e., in the thin thermal boundary layer) as
follows:

1. Find the Prandtl number, Pr, of air and the thermal
conductivity, k, of the heat source material in physics
handbooks.

2. Calculate the local Reynolds number, Re, from (6);
let L ¼ x.

3. Combine (4) and (5) to compute the convection heat-
transfer coefficient, h.

4. Use (2) to modify the temperature T1 of point P
from the heat source temperature Tbody.

Following this algorithm, the temperatures of the LBM
lattice points inside the thermal boundary layer are
modified at every computational step. This procedure sets
up the thermal boundary condition of the heat transfer
computation in the air.

In the algorithm above, Tbody of the object surface is the
heat source temperature. Given the temperature distribu-
tion of the object surface, we calculate the average Tbody in a
surface area surrounding the closest point to P . In Fig. 1,
this area is shown as the yellow region on the red object
surface. This mechanism is used because the surface
temperature distribution typically has a higher resolution
than that of the LBM lattice. The temperature distribution of
the heat source is discussed in Section 3.2 and Section 3.3.

3.2 Heat Sources

Our model considers two kinds of heat sources. The first
kind of heat sources are objects that generate heat
themselves, such as room heaters, hot food, grills, etc. We
define the temperature distribution on such object surfaces
using temperature textures, described in Section 3.3. On the
other hand, objects may absorb energies coming from outer
radiators. For outdoor scenes, the sun is the most important

ZHAO ET AL.: VISUAL SIMULATION OF HEAT SHIMMERING AND MIRAGE 181

Fig. 1. Heat transfer surrounding a heat source boundary.

radiator, which is located at infinity and sun-rays that arrive
at the objects are all parallel to each other.

The intensity of solar radiation heavily depends on
atmospheric conditions, time of the year, and the incident
angle for the sun-ray on the surface of the objects. At the
outer limit of the atmosphere, the total solar irradiation is
Ebo ¼ 1; 395W=m2. The actual solar irradiation that can
reach a planar surface on the ground can be calculated as

Ic
Io
¼ e�namsm; ð7Þ

where Io ¼ Ebosin� (� is the angle between the sun-ray and

the surface), m ¼ csc� is the relative thickness of the air

mass, ams ¼ 0:128� 0:054 logm is the molecular scattering

coefficients and n is the turbidity factor [12].
The surface of the heat source objects may not always be

flat. We further project the solar irradiation Ic from a planar

surface onto surface areas at an arbitrary orientation, called

Ix, as shown in Fig. 2. At a radiation equilibrium, the

temperature of the object surface can then be calculated

from the following equation:

Ix
A

� �
sun

�sun ¼ �lowtemp�ðT 4 � T 4
surrÞ; ð8Þ

where A is the area of the surface, �sun is the absorptivity

between the object surface and the sun, and �lowtemp is the

absorptivity between the object surface and surrounding

air. � ¼ 5:669� 10�8W=m2 is the Stefan-Boltzmann con-
stant. �sun and �lowtemp vary between different materials and
can be found in physics handbooks. These two parameters
determine the surface temperature. Therefore, different
materials show different temperature distributions under
the same radiation. Using heat shimmering as an example,
Fig. 3 shows the different shimmering results created by
three materials exposed to the sun: white paint with weak
shimmering, asphalt with moderate shimmering, and
copper with strong shimmering. The absorptivity para-
meters of the white paint is set as �sun ¼ 0:12 and �lowtemp ¼
0:90 [12]. For asphalt, �sun ¼ 0:90, �lowtemp ¼ 0:90 and, for
copper, �sun ¼ 0:18, �lowtemp ¼ 0:03. The sun-ray has an
incident angle of 75 degrees and n is set to 2.0.

In the simulation, we compute the temperature distribu-
tion of an outdoor object as follows:

1. Choose the appropriate parameters for the scene:
environment temperature, incident direction of the
sun-ray, material of the object, etc.

2. Calculate the solar radiation energy on a planar
surface by (7). This planar surface approximates a
large region of the object and is actually formed by
small regions with different orientations.

3. For every small region of this planar surface:

. Calculate the actual heat on the region by
projecting the radiation from the surface.

. Calculate the equilibrium temperature by (8).

3.3 Temperature Texture

Heat sources are modeled as geometric objects inside the
computational volume. Usually, the computational lattice of
the LBM has a lower resolution when considering the
temperature distribution. When we compute the tempera-
ture of one LBM grid point, we cannot use only the closest
point on the object surface. The heat variation between two
neighboring grid points will be lost. We therefore utilize the
idea of texture mapping and propose a temperature texture
to overcome this problem. Temperature textures are
associated with the heat source objects. Instead of mapping
colors to the objects, temperatures are mapped to the
objects. The temperature texture can be computed either by
physical methods (as in Section 3.2) or by user definitions.
During simulation, the temperature of an LBM grid point is

182 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 1, JANUARY/FEBRUARY 2007

Fig. 2. Sun irradiation reaches a nonhorizontal surface.

Fig. 3. A sun-heated surface composed of different materials, resulting in different shimmering effects on a stone wall in the background. (a) White

paint, (b) asphalt, and (c) copper.

computed by interpolating in a region around its closest
heat source point in the temperature texture. Therefore, the
temperature texture provides a good data structure to store
heat distribution for thermal boundary conditions, and it is
straightforward in a GPU implementation.

Fig. 4 illustrates a snapshot of the shimmering effects
over a brick wall from a simplified heated terrain with its
temperature texture rendered over the surface. Different
colors illustrate temperature difference: Red indicates high-
er temperatures, yellow indicates medium temperatures,
and green indicates lower temperatures.

4 THERMAL FLOW MODELING

We model and simulate thermal flow dynamics using a
hybrid thermal lattice Boltzmann model (HTLBM). In this
approach, the heat transfer in the air is modeled with an
advection-diffusion equation coupled to the LBM.

Most of the previous LBM works in graphics [27], [28],
[30] are based on a single-relaxation-time LBM (SRTLBM),
where one constant related to the viscosity, the relaxation
time, is used to control the behavior of the fluid. In
SRTLBM, the thermal effects cannot be easily incorporated
in the flow dynamics. In this paper, a hybrid TLBM
(HTLBM) [14] that couples temperature, modeled by an
advection-diffusion equation, to the multiple-relaxation-
time LBM (MRTLBM) [5] is used for modeling thermal
flows. We have introduced this scheme to the visualization
community [21], where MRTLBM was applied to dispersion
simulation in an urban environment. In this paper, we
implement the HTLBM with graphics hardware accelera-
tion to model the thermal flow dynamics and, specifically,
those related to heat shimmering and mirage.

4.1 Multiple-Relaxation-Time Lattice
Boltzmann Method

LBM models Boltzmann particle dynamics on a 3D lattice.
The Boltzmann equation expresses how the average number
of flow elements or “particles” with a given velocity changes
between neighboring sites due to interparticle interactions
and ballistic motion. The variables associated with each
lattice site are the particle distributions fi that represent the
probability of the presence of a fluid particle with a given

velocity direction ei. Particles stream synchronously along
the lattice links in discrete time steps. Between streaming
steps, they undergo collision.

For our work, we use the 13-velocity 3D lattice denoted
as D3Q13. As illustrated in Fig. 5, this lattice is a structured
grid whose unit cell includes the center cell with zero
velocity and the 12 minor-diagonal neighbor links (the six
axial and eight major-diagonal links are not used). For a
node r at time t, the macroscopic fluid density, �ðr; tÞ, and
velocity, uðr; tÞ, are computed from the velocity distribu-
tions as follows:

� ¼
X
i

fi u ¼ 1

�

X
i

fiei: ð9Þ

In SRTLBM, the Bhatnager, Gross, Krook (BGK) model is
usually used to represent the particle collisions [26]. The
BGK model represents collisions as a statistical redistribu-
tion of momentum, which locally drives the system toward
equilibrium while conserving mass and momentum. In
terms of this model, the Boltzmann dynamics can be
represented as a two-step process of collision and ballistic
streaming:

fiðr; tþÞ ¼ fiðr; tÞ �
1

�
ðfiðr; tÞ � feqi ð�;uÞÞ; ð10Þ

fiðrþ ei; tþ 1Þ ¼ fiðr; tþÞ: ð11Þ

In these equations, r locates a node of the lattice and
fiðr; tþÞ denotes the postcollision distribution. The distribu-
tion denoted as feqi represents a local equilibrium distribu-
tion whose value depends only on conserved quantities—
mass � and momentum �u. Finally, the constant �
represents the relaxation time scale that determines the
viscosity of the flow.

MRTLBM is a newer version of LBM developed by
d’Humiéres et al. [5]. This collision model abandons
SRTLBM to achieve better numerical stability and greater
flexibility in selecting the transport coefficients. The
essential idea is to make a change of basis from phase
space (i.e., the space of the distributions fi) to the space of
hydrodynamic moments (i.e., density, momentum, energy,
etc.) and to perform the collision step in the latter space. As
in the BGK model, collisions are implemented via a
relaxation, but in the moment space, each moment is

ZHAO ET AL.: VISUAL SIMULATION OF HEAT SHIMMERING AND MIRAGE 183

Fig. 4. A snapshot of the shimmering effects from a simplified heated

terrain with its temperature texture rendered in color over the terrain.

Fig. 5. The D3Q13 lattice geometry. The particle distribution fi is

associated with the link corresponding to the ei velocity vector.

allowed to relax individually. Although the relaxation rates
are not all independent, the additional flexibility allows one
to maneuver the model into regions of higher stability while
decoupling some of the transport coefficients. After relaxa-
tion, the inverse transformation is applied to return to phase
space where streaming, boundary update rules, and
additional microphysics are implemented as before.

Mathematically, the change of basis from the space of
distributions to the space of moments is given by:

jmi ¼Mjfi; jfi ¼M�1jmi; ð12Þ
jfi ¼ ðf0; f1; . . . ; f12ÞT ; ð13Þ
jmi ¼ ðm0;m1; . . . ;m12ÞT ; ð14Þ

where T denotes the transpose. Each of the 13 moments
fmijði ¼ 0; 1; . . . ; 12Þg has a physical meaning. For example,
m0 is the mass density �, m1;2;3 are the components of the
momentum vector j, m4 is the energy, and the other higher
order moments are components of the stress tensor and
other high order tensors. The rows of the matrix M relate
the distributions to the moments. For example, since
� ¼

P
i fi, the first row of M consists of all ones. Although

the values of the distributions and the moments vary over
the nodes of the lattice, the matrix M is simply constant for
a given lattice.

In MRTLBM, the two step process of collision and
streaming becomes:

jfðr; tþÞi ¼ jfðr; tÞi �M�1S½jmðr; tÞi � jmeqðr; tÞi�; ð15Þ
jfðrþ ei; tþ 1Þi ¼ jfðr; tþÞi: ð16Þ

The components of the vector jmeqi are the local equilibrium
values of the moments. Among them, the mass density and
the momentum (m0 to m4) are conserved. Expressions for
the nonconserved moments depend only on local values of
the conserved moments [14]. The matrix S in the collision
equation is a diagonal matrix whose elements are the
relaxation rates, fsijði ¼ 0; 1; . . . ; 12Þg. Their values are
directly related to the kinematic shear and bulk viscosities,
� and �, respectively:

� ¼ 1

2

1

s6
� 1

2

� �
; ð17Þ

� ¼ 2

3
� �c2

s0

� �
1

s5
� 1

2

� �
; ð18Þ

where � is the specific heat and cs0 is the isothermal speed
of sound. The user has the freedom to choose the flow
parameters to define characteristics of the fluid being
modeled. This choice then determines the relaxation rates.

MRTLBM can also accommodate a body force due to
gravity or some other external field. This is implemented
by adding the force F to the momentum, j0 ¼ jþ F	t
(typically, 	t ¼ 1). In practice, for stability, the force term
is executed in two steps, one-half before the relaxation
step and one-half after.

Note that SRTLBM can be seen as a special case of
MRTLBM associated with a specific choice of parameter
values in the equilibria of the moments so that only one
single relaxation rate, 1=� , remains free. Although
MRTLBM requires somewhat more computation compared

to SRTLBM, much of the computational cost can be
ameliorated by adopting a simpler lattice such as the
D3Q13, which is made useable by the improved stability of
the MRTLBM. Yet, MRTLBM retains the parallelizability of
SRTLBM.

4.2 Coupling Advection-Diffusion Temperature

To capture thermal effects, temperature is coupled to
MRTLBM through the energy moment that the model
exposes. For the D3Q13 lattice, the energy equilibrium is
modified as

meq
4 ¼ n1ðc2

s0 � n2Þ�þ n3ðn4 � �Þj � jþ q1T: ð19Þ

The new variables in (19) are the temperature T and its
constant coupling coefficient q1. The parameters, n1 to n4,
are constants and their values are determined by linear
stability analysis [14]. The heat transfer here is modeled
separately with a standard advection-diffusion equation,
giving rise to our HTLBM as

@tT þ u � rT ¼
�T þ q2ð� � 1Þc2
s0r � u; ð20Þ

where
 is the thermal diffusivity of the fluid and q2 is
another constant coupling coefficient. This equation is
solved with the following finite-difference equation:

T ðr; tþ 1Þ � T ðr; tÞ ¼ � j � r�T þ
��T

þ q2ð� � 1Þ � c2
s0r� � j;

ð21Þ

where � denotes the corresponding finite-difference opera-
tors. The density is conserved and can be treated as a
constant. By setting � ¼ 1 in HTLBM, the velocity u can be
replaced by the momentum j. Since (20) has no direct
relation with the computation of HTLBM, the thermal
model can be replaced by any plausible thermal model.
However, for stability, the stencils of the finite difference
operators must respect the symmetry of the lattice. Because
the LBM is an explicit fluid solver, here, we adopted the
simple and explicit solver for the temperature evolution
(21), which uses the same small time step and lattice
spacing as in the LBM. Thus, it can be easily accelerated on
parallel machines with the LBM to achieve fast perfor-
mance. In our simulation, both the LBM and the tempera-
ture evolution have the limitation that they can only model
flows with low Mach number. This means that the velocity
of the flow should be small compared to the speed of sound.
However, the air flows in the shimmering and mirage
generally satisfy this requirement.

In some numerical methods [3], [6], [9], the temperature
evolution is modeled and applied to the flow dynamics as a
buoyancy force, which is based on the Boussinesq approx-
imation and the coupling parameters are usually chosen
manually. Our HTLBM can also easily include the body
forces, however, we instead couple the temperature effect
as an energy term, and the coupling parameters are
computed by the physically-based linear analysis [14].
Therefore, our method can be extended to situations where
the Boussinesq approximation is not satisfied, including the
case when temperature-dependent transport coefficients are
used. Second, unlike previous methods, ours has a viscous
dissipation term in the temperature evolution equation (the

184 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 1, JANUARY/FEBRUARY 2007

last term in (20)). This term is set to zero for incompressible
flows. The HTLBM we used simulates weakly compressible
NS equations. Therefore, we include this term which, in
practice, plays an important role in generating the shim-
mering effects.

Fig. 6 illustrates the temperature propagation effects
from a hot bagel. Fig. 6a shows the temperature distribution
surrounding the bagel. The color varies from red to green to
blue as the temperature varies from high to medium to low.
Fig. 6b shows the streamlines of the flow generated by the
temperature variation on a cutting plane.

4.3 Boundary Conditions

Interactions between an LBM flow field and an immersed
object result from the exchange of momentum at their
shared boundaries. The treatment of boundary conditions
in LBM has been discussed in our previous work. In
HTLBM, boundary conditions are also handled in the
discrete velocity space. We implemented periodic, out-flow
and bounce-back conditions [26] for the surrounding walls
of the simulation space, as well as improved bounce-back
rules for curved, moving, no-slip boundaries [18] for the
inside objects.

For modeling thermal flow dynamics, heat exchange at
boundaries is considered as thermal boundary conditions. In
solving the temperature evolution equation (20), the walls of
the computational volume are treated via the adiabatical
thermal boundary condition @n̂T ¼ 0, where n̂ defines the
unit normal outward. To implement this, the temperature is
computed on the same lattice in two steps. First, the
advection-diffusion equation is solved for interior nodes of
the lattice, then the adiabatical condition is applied for the
walls. For heat source objects inside the volume, we apply the
algorithm described in Section 3 to set the temperature of the
nodes close to the object surfaces. This represents another
type of the thermal boundary condition in (20).

4.4 Computational Procedure

To recapitulate, the computation procedure for our HTLBM
simulations involves the following series of steps:

0. Initialize HTLBM with correct initial conditions and
boundary conditions.

1. Perform streaming (16) of fi for i ¼ 0 . . . 12.
2. Transform to moment space mi, for i ¼ 0 . . . 12.
3. Add half of the body forces, j0 ¼ jþ 1

2 F, to m1;2;3.
4. Compute the heat transfer and solve (21) for one

step.
5. Perform collision (15), incorporating the value of T

to m4 (19).

6. Add another half of the body forces, j00 ¼ j0 þ 1
2 F, to

m1;2;3.
7. Transform back from mi to fi, for i ¼ 0 . . . 12.
8. Apply air flow boundary conditions and thermal

boundary conditions.
9. Return to Step 1.

The momentum j0 provides the flow velocity that is the output
at each step. The heat transfer computation in Step 4 is
computed in parallel with the LBM, and is coupled at Step 5.

5 NONLINEAR RAY TRACING

The temperature variation resulting from the interaction
between the heat sources and the surrounding air is
computed from the method described above. The changes
in the index of refraction of the air are attributed to such
temperature variation. Refraction, which produces the
shimmering phenomena, occurs when light rays cross the
interface between regions that have different indices of
refraction. The relation between the angle of incidence �1

and the angle of refraction �2 is described by Snell’s Law:

n1

n2
¼ sin �2

sin �1
; ð22Þ

where n1 and n2 are the corresponding indices of refraction
of the two materials, and the incident ray and the refracted
ray stay in the same plane.

For air, the dependence of the index of refraction on
temperature and pressure can be empirically described by
the following equation [16]:

n ¼ c1 � Pa � ð1:0þ Pa � ð60:1� 0:972 � T Þ � 10�10Þ
1:0þ c2 � T

; ð23Þ

where c1 ¼ 0:0000104, c2 ¼ 0:00366, and n is the index of
refraction of air. The constant pressure of the air, Pa, is
measured in Pascal and the temperature, T , in Celsius.

A light ray traverses the temperature volume with a
small step size. At each step, we calculate the gradient of the
temperature field by trilinear interpolation at the hit point,
which defines the normal N of the interface. Then, the index
of refraction is determined by (23). By bending the light ray
using Snell’s Law (22), the new resulting ray direction is
obtained, and the ray is traversed to the next hit point.
When bending the ray, total reflection may occur, which
causes a mirage. Our algorithm includes this situation:
When calculating �2 in (22), if j sin �2j > 1, total reflection
occurs. As a consequence, the ray direction is changed to
the total reflection direction at the point. Therefore, the
effects of a mirage are naturally included in our model.

A heat source object is voxelized and each voxel is
assigned a segmentation flag: inside or outside. For each
ray, if a sampling point is inside the object, the nonlinear
ray tracing stops and returns the color of the object texture.

6 HARDWARE ACCELERATION

An attractive feature of our model is that the computation is
inherently local and explicitly parallel. This feature allows
us to accelerate our simulation on a low-cost SIMD
processor (GPU) and achieve a performance of several
frames per second. Using the GPU for general-purpose
computation (GPGPU) has become an active field [20]. For

ZHAO ET AL.: VISUAL SIMULATION OF HEAT SHIMMERING AND MIRAGE 185

Fig. 6. Hot bagel. (a) Temperature distribution surrounding the bagel.

(b) Streamlines of the flow on a cutting plane.

fluid simulation, researchers [2], [11], [13] have used the
GPU to implicitly solve the NS equations by ways of finite
difference methods, which iteratively solve linear systems
with Jacobi, Gaussian-Seidel, conjugate gradient, or multi-
grid methods. While achieving interactive performance for
2D flows or simple 3D flows, these methods have not solved
complicated 3D flow simulations with complex inside
objects. Our model, which is based on the local lattice
operations, is naturally suitable for GPU acceleration with
its data parallelism and locality in memory access.

To implement the HTLBM computation on the GPU, we
encode the lattice data as colors and pack them into texture
atlases. The lattice operations described in Section 4.4,
which update the lattice data based on neighboring
attributes, are implemented in fragment programs. For
each data element, the fragment programs retrieve appro-
priate information from the local region, then compute and
update with the new values. This procedure is similar to
what Li et al. [15] have proposed for the GPU-mapping of
the SRTLBM computations. A similar technique also applies
for the GPU implementation of the computations related to
the temperature distribution on heat source objects as well
as for the heat transfer from the heat sources to the air.
However, because these computations are only necessary
for the regions surrounding the objects, we can save storage
and computation time by defining bounding boxes around
the objects and only execute heat transfer computations
within these regions.

For rendering, we have also implemented on the GPU
the procedures required for the nonlinear ray tracing
through the temperature volume. By executing the whole
simulation cycle (including both computation and render-
ing) on the GPU, we do not need to read data from the GPU,
which could be a major bottleneck. For every image pixel, a
ray is shot from the eye to its position. The information of
all rays is stored in a 2D texture (each texel corresponds to
one ray) and is processed by a fragment program. On
current GPUs, the Shader Model 3.0 allows loops, dynamic
branching, and program lengths of up to 65,535 instruc-
tions. Using these facilities, we are able to use only a single
pass of fragment processing to iteratively forward the rays
and compute their refractions until they terminate. This
allows for a much easier GPU implementation than the
previous GPU-based nonlinear raycaster [29] which re-
quired multiple rendering passes.

In Table 1, we report the performance of our GPU-
accelerated simulation for the desert scene in Fig. 7, timed
on an nVidia GeForce 6800 Ultra. The 3D simulation lattice
size is 50� 50� 50, which is moderate for GPU implemen-
tation of both simulation and rendering. To reduce the
possible low frequency artifacts, a higher resolution lattice
may be adopted for the simulation. However, it will

consume a great amount of computational resources (some-
times unbearable for the texture memory on the GPU) to
create more visual details and, hence, cannot fulfill the
performance requirement. A multiresolution LBM simula-
tion method may be adopted to optimize the use of
resources, which will be implemented in our future work.
The numerical model requires 62þ 10 ms for each time-
step. For rendering an image of 400� 400 pixels, with the
step size set to 1.0, our GPU-based nonlinear ray-casting
takes 104 ms for each frame. The total time for one
combined step of modeling and rendering is 176 ms,
resulting in a 5.7 frames per second animation. For
comparison, we list in Table 1 the time for the same
computation implemented on one 3.0GHz Pentium Xeon
CPU with 1GB Memory.

7 RESULTS

We have applied our heat evolution computation and
nonlinear ray tracing methods in several example scenarios.
To better illustrate our methods, we have generated the
visual results from the beginning of the heat transfer from
the heat sources to the air. Therefore, the shimmering has a
startup stage with a dramatic heat spreading trace and
strong trembling effect before reaching a steady state with
only a moderate trembling effect. The startup stage is not
easily observed in the real world due to the more typical
gradual heat build-up. Our animation speeds up this build-
up procedure and allows the visualization of the interesting
behavior of shimmering at both stages.

Fig. 7 illustrates the shimmering effects easily observed in
a desert on a sunny day. The ground is heated up rapidly by
the sun and the heat rises to the air. Due to the nonuniform
and dynamic distribution of the air temperature, the back-
ground landscape appears distorted to the observer. In
Fig. 7b, and in the corresponding zoom-in view in Fig. 7d,
heat comes up from the ground and shimmering is clearly
visible on the bush at the center of the scene. Shimmering
phenomena can also be observed above a truck hood due to
the engine heat. Such an effect is illustrated in Figs. 8a, 8b, and
8c, where one can see the distorted road and hill in the
background, especially in the zoom-in view of Fig. 8d.

186 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 1, JANUARY/FEBRUARY 2007

TABLE 1
Per Step Modeling and Rendering Time (in Milliseconds)

and Frames per Second (FPS) for the CPU, GPU,
and the GPU/CPU Speedup Factor

Fig. 7. Desert shimmering: (a) original scene, (b) heat shimmering,

(c) zoom-in view of (a), and (d) zoom-in view of (b).

One of the benefits of our method is that an arbitrarily-
shaped heat source can be embedded inside the thermal
flow modeling volume. In Fig. 9, we model a hot bagel just
unloaded from an oven. It transfers the heat to the ambient
air and generates a special shimmering effect. In Fig. 9b, the
bagel begins to spread heat upwards and distortion of the
wall behind it is visible. The distortion rises with the heat,
as shown in Fig. 9c. Our method uses the HTLBM to model
flow dynamics, thus, wind can be incorporated into our
example. In Fig. 9d, the shimmering is affected by a wind
blowing from the right.

Mirage occurs when some rays are bent by total
reflection, a situation which is handled naturally in our
algorithm. In Fig. 10, comparing with a static desert scene
(Fig. 10a), a phantom body of water appears in the desert
with shimmering (Fig. 10b) and may become larger
(Fig. 10c). In Fig. 11, we compare a real photo with our
mirage effect. Fig. 11a is a real photo taken in Finland.
Fig. 11b shows an original synthetic scene with no mirage.
Using it as the background and starting our simulation, the
mirage effect similar to the real photo (of Fig. 11a) appears,
as shown in Fig. 11c.

As a lattice-based method, the LBM simulation suffers
from the same problem as other Eulerian methods—the
accuracy of the simulation depends on the size of the
simulation grid. Low frequency noise may appear in a low-
resolution simulation which is required in order to achieve
interactive simulation speed. This problem can be overcome
by using a high-resolution simulation lattice at the expense
of performance. Alternatively, without compromising the
simulation performance, high frequency small-scale details
can be added to the temperature volume that is used for
rendering, thereby, reducing the low frequency artifacts.

8 CONCLUSIONS

We have described a physically-based solution for simulating
and animating heat shimmering and mirage phenomena. It
allowed us to physically model one of the most important
heat exchange scenarios: between arbitrarily shaped heat
objects and the surrounding air. The temperature distribution
on the heat source is defined by a temperature texture. We
have further implemented a hybrid thermal LBM method to

ZHAO ET AL.: VISUAL SIMULATION OF HEAT SHIMMERING AND MIRAGE 187

Fig. 8. Shimmering from a truck hood due to the engine heat. (a) Original scene, (b) heat starts to emanate from the hood, resulting in a distorted

background, (c) heat shimmering rises, and (d) zoom-in view of (b).

Fig. 9. Shimmering from a hot bagel. (a) Original scene, (b) heat starts to emanate from the bagel, resulting in a distorted wall behind it, (c) heat

shimmering rises, and (d) wind blowing from the right.

Fig. 10. Mirage in a desert. (a) Original scene, (b) a phantom body of water appears, and (c) water area becomes larger.

simulate the thermal flow dynamics. By these means, we have
modeled and animated the heat evolution that occurs in the
real world using a physically-based approach. The tempera-
ture variation affects the trajectory of light rays, which
generates the shimmering and mirage phenomena. We have
introduced a nonlinear ray tracing method to render the
visual results of these phenomena. Interactive performance
has been obtained by implementing both the simulation and
rendering on the GPU.

Our method provides a framework for modelling the
thermal interaction between heat sources, objects, and the
thermal flow. In the future, we will extend our framework
to simulate other thermal flow phenomena (melting,
dissolving, boiling, etc.) by incorporating object deforma-
tion, morphing, and phase-changing.

ACKNOWLEDGMENTS

The animation movies of the examples can be down-
loaded from the authors Web site http://www.cs.sunysb.
edu/~vislab/projects/amorphous/ShimmeringMirage.
This work has been partially supported by US National
Science Foundation grants CCR-0306438 and ACI-0093157.
The authors thank Autodesk/Alias and Pixar for provid-
ing them with Maya and Renderman software, which
they have used to render the images. Fig. 11a is courtesy
of Virtual Finland, the Ministry for Foreign Affairs of
Finland. The truck model in Fig. 8 is courtesy of the
Turbo Squid Inc. Ye Zhao was a PhD candidate at Stony
Brook University at the time of this study.

REFERENCES

[1] M. Berger, T. Trout, and N. Levit, “Ray Tracing Mirages,” IEEE
Computer Graphics and Applications, vol. 10, no. 3, pp. 36-41, 1990.

[2] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 917-924, 2003.

[3] M. Carlson, P. Mucha, R. Horn, and G. Turk, “Melting and
Flowing,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer
Animation, pp. 167-174, 2002.

[4] N. Chu and C. Tai, “Moxi: Real-Time Ink Dispersion in Absorbent
Paper,” Proc. ACM SIGGRAPH, pp. 504-511, 2005.

[5] D. d’Humiéres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.
Luo, “Multiple-Relaxation-Time Lattice Boltzmann Models in
Three-Dimensions,” Philosophical Trans. Royal Soc. of London,
vol. 360, no. 1792, pp. 437-451, 2002.

[6] R. Fedkiw, J. Stam, and H. Jensen, “Visual Simulation of Smoke,”
Proc. ACM SIGGRAPH, pp. 15-22, 2001.

[7] B. Feldman, J. O’Brien, and O. Arikan, “Animating Suspended
Particle Explosions,” Proc. ACM SIGGRAPH, pp. 708-715, 2003.

[8] N. Foster and D. Metaxas, “Realistic Animation of Liquids,”
Graphical Models and Image Processing, vol. 58, no. 5, pp. 471-483,
1996.

[9] N. Foster and D. Metaxas, “Modeling the Motion of a Hot,
Turbulent Gas,” Proc. ACM SIGGRAPH, pp. 181-188, 1997.

[10] E. Groeller, “Nonlinear Ray Tracing: Visualizing Strange Worlds,”
The Visual Computer, vol. 11, no. 5, pp. 263-374, 1995.

[11] M. Harris, “Fast Fluid Dynamics Simulation on the GPU,” GPU
Gems: Programming Techniques, Tips and Tricks for Real-Time
Graphics, R. Fernando, ed., chapter 38, pp. 637-665, Addison-
Wesley, 2004.

[12] J. Holman, Heat Transfer, sixth ed. McGraw-Hill, Inc., 1986.
[13] J. Krüger and R. Westermann, “Linear Algebra Operators for GPU

Implementation of Numerical Algorithms,” ACM Trans. Graphics,
vol. 22, no. 3, pp. 908-916, 2003.

[14] P. Lallemand and L. Luo, “Theory of the Lattice Boltzmann
Method: Acoustic and Thermal Properties in Two and Three
Dimensions,” Physical Rev. E, vol. 68 p. 036706, 2003.

[15] W. Li, Z. Fan, X. Wei, and A. Kaufman, “Flow Simulation with
Complex Boundaries,” GPU Gems II: Programming Techniques for
High-Performance Graphics and General-Purpose Computation,
M. Pharr, ed., chapter 47, pp. 747-764, Addison-Wesley, 2005.

[16] D. Lide, Handbook of Chemistry and Physics, 84th ed. CRC Press
LLC, 2003.

[17] C. Lin and Y. Lai, “Lattice Boltzmann Method for on Composite
Grids,” Physical Rev. E, vol. 62, no. 2, pp. 2219-2225, 2000.

[18] R. Mei, S. Luo, and W. Shyy, “An Accurate Curved Boundary
Treatment in the Lattice Boltzmann Method,” J. Computational
Physics, vol. 155, pp. 307-330, June 1999.

[19] F. Musgrave, “A Note on Ray Tracing Mirages,” IEEE Computer
Graphics and Applications, vol. 10, no. 6, pp. 10-12, 1990.

[20] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.
Lefohn, and T. Purcell, “A Survey of General-Purpose Computa-
tion on Graphics Hardware,” Proc. Eurographics State-of-the-Art
Reports, pp. 21-51, Aug. 2005.

[21] F. Qiu, Y. Zhao, Z. Fan, X. Wei, H. Lorenz, J. Wang, S. Yoakum-
Stover, A. Kaufman, and K. Mueller, “Dispersion Simulation and
Visualization for Urban Security,” Proc. IEEE Visualization Conf.,
pp. 553-560, Oct. 2004.

[22] F. Seron, D. Gutierrez, G. Gutierrez, and E. Cerezo, “Visualizing
Sunsets through Inhomogeneous Atmospheres,” Proc. Computer
Graphics Int’l Conf., pp. 349-356, 2004.

[23] J. Stam, “Stable Fluids,” Proc. ACM SIGGRAPH, pp. 121-128, 1999.
[24] J. Stam and E. Fiume, “Turbulent Wind Fields for Gaseous

Phenomena,” Proc. ACM SIGGRAPH, pp. 369-376, 1993.
[25] J. Stam and E. Languenou, “Ray Tracing in Not-Constant Media,”

Proc. Conf. Rendering Techniques, pp. 225-234, 1996.
[26] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and

Beyond, Numerical Math. and Scientific Computation. Oxford
Univ. Press, 2001.

188 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 1, JANUARY/FEBRUARY 2007

Fig. 11. Mirage over water. (a) A real photo pictured in Finland, (b) original synthetic scene, and (c) mirage effect of the scene in (b), similar to the

photo in (a) generated by our simulation.

[27] N. Thurey and U. Rude, “Free Surface Lattice-Boltzmann Fluid
Simulations with and without Level Sets,” Proc. Workshop Vision,
Modelling, and Visualization, pp. 199-208, 2004.

[28] X. Wei, Y. Zhao, Z. Fan, W. Li, F. Qiu, S. Yoakum-Stover, and A.
Kaufman, “Lattice-Based Flow Field Modeling,” IEEE Trans.
Visualization and Computer Graphics, vol. 10, no. 6, 719-729, Nov./
Dec. 2004.

[29] D. Weiskopf, T. Schafhitzel, and T. Ertl, “GPU-Based Nonlinear
Ray Tracing,” Proc. Computer Graphics Forum, vol. 23, no. 3,
pp. 625-633, 2004.

[30] Y. Zhao, L. Wang, F. Qiu, A. Kaufman, and K. Mueller, “Melting
and Flowing in Multiphase Environment,” Computers & Graphics,
vol. 30, no. 4, 2006.

Ye Zhao received the BE and MS degrees in
computer science from the Tsinghua University
of China in 1997 and 2000. He further received
the MS and PhD degrees in computer science at
the Stony Brook University in 2002 and 2006. He
is currently an assistant professor in the Depart-
ment of Computer Science at Kent State Uni-
versity. His research interests include natural
phenomena modeling and visualization, general
purpose computing on graphics hardware, and

volume graphics. He is a member of the IEEE. For more information, see
http://www.cs.kent.edu/~zhao.

Yiping Han graduated from the Computer
Science Department at Stony Brook University.
He received the BS degree in computer science
from Zhejiang University of China in 2001 the
MS degree in computer science from Stony
Brook University in 2005.

Zhe Fan received the BS degree in computer
science from the University of Sciences and
Technology of China in 1998 and the MS degree
in computer science from Chinese Academy of
Sciences in 2001. He is a PhD candidate in
computer science at Stony Brook University. His
research interests include computer graphics,
visualization, physically-based modeling, and
parallel computing. For more information, see
http://www.cs.sunysb.edu/~fzhe.

Feng Qiu received the BS degree in computer
science from the Peking University of China in
1997 and the ME degree in computer engineer-
ing from the Chinese Academy of Sciences in
2000. He is a PhD candidate in the Department of
Computer Science at Stony Brook University. His
current research interests are focused on hard-
ware accelerated rendering. For more informa-
tion, see http://www.cs.sunysb.edu/~qfeng.

Yu-Chuan Kuo received the BS degree in
computer science and information engineering
from the National Taiwan University in 2002. He
is an MS student in the Department of Computer
Science and the Department of Applied Mathe-
matics and Statistics at Stony Brook University.
For more information, see http://www.cs.sunysb.
edu/~yukuo.

Arie E. Kaufman received the BS degree (1969)
in mathematics and physics from the Hebrew
University of Jerusalem, Israel, the MS degree
(1973) in computer science from the Weizmann
Institute of Science, Rehovot, Israel, and the
PhD degree (1977) in computer science from the
Ben-Gurion University, Israel. He is a distin-
guished professor and chair of the Computer
Science Department and the director of the
Center for Visual Computing (CVC) at the State

University of New York at Stony Brook (SBU). He is an IEEE fellow, a
member of the IEEE Computer Society, and the recipient of IEEE
Visualization Career Award (2005). He further received the IEEE
Outstanding Contribution Award (1995), the ACM Service Award
(1998), the IEEE CS Meritorious Service Award (1999), was a member
of the European Academy of Sciences (2002), the State of New York
Entrepreneur Award (2002), the IEEE Harold Wheeler Award (2004),
and the State of New York Innovative Research Award (2005).
Dr. Kaufman was the founding Editor-in-Chief of IEEE Transactions
on Visualization and Computer Graphics (TVCG), 1995-1998. He has
been the cofounder, papers/program cochair, and member of the
steering committee of IEEE Visualization Conferences; cofounder/chair
of Volume Graphics Workshops; cochair for Proceedings of Euro-
graphics/SIGGRAPH Graphics Hardware Workshops, the papers/
program cochair for Proceedings of the ACM Volume Visualization
Symposia. He previously chaired and is currently a director of the IEEE
CS Technical Committee on Visualization and Graphics. He has
conducted research and consulted for more than 35 years specializing
in volume visualization, graphics architectures, algorithms, and lan-
guages, virtual reality, user interfaces, multimedia, and their applica-
tions. For more information, see http://www.cs.sunysb.edu/~ari.

Klaus Mueller received the MS degree in
biomedical engineering in 1991 and the PhD
degree in computer science in 1998, both from
Ohio State University. He is currently an
associate professor in the Computer Science
Department at Stony Brook University, where he
also holds coappointments in the Biomedical
Engineering and Radiology Departments. His
current research interests are computer and
volume graphics, visualization, medical imaging,

and computer vision. He won the US National Science Foundation
CAREER award in 2001 and has served as a program cochair at various
conferences, such the Volume Graphics Workshop, IEEE Visualization,
and the Symposium on Volume Visualization and Graphics. He has
authored and coauthored more than 70 journal and conference papers.
He is a member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHAO ET AL.: VISUAL SIMULATION OF HEAT SHIMMERING AND MIRAGE 189

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

