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ABSTRACT 
 
A significant obstacle in the advancement of Ultrasound Computed 
Tomography has been the lack of efficient and precise methods for 
the tracing of the bent rays that result from the interaction of sound 
with refractive media. In this paper, we propose the use of the Fast 
Marching Method (FMM) to solve the eikonal equation which 
governs the propagation of sound waves. The FMM enables us to 
determine with great accuracy and ease the distorted paths that the 
sound rays take from an emitter to the receivers. We show that 
knowledge of the accurate path proves crucial for an object 
reconstruction at high fidelity and accurate geometry. We employ 
a two-phase approach with an iterative method, SART, to 
faithfully reconstruct two tissue properties relevant in clinical 
diagnosis, such as mammography: speed of sound and sound 
attenuation. We demonstrate our results by ways of a newly 
designed analytical ultrasound breast phantom. 
 
 
 

1.  INTRODUCTION 
 
Ultrasound computed tomography (UCT) has a long history and 
particular promise in the imaging of the breast. However, the 
reconstruction of these images poses significant challenges. UCT 
is susceptible to refraction effects, making it difficult to reconstruct 
images faithfully. The acoustic ray direction is bent when 
ultrasound passes from one medium to another medium with a 
change in the acoustic index of refraction, according to Snell’s law 
for refraction. For example, the large subcutaneous fat layer in the 
breast [17][18] causes a refractive effect that can significantly 
distort the ultrasound ray direction and eventually cause spatial 
distortion and intensity artifacts in the resulting images. 
Diffraction is another complication typically addressed by 
diffraction tomography methods [7] but it is based on the weak 
scattering assumption [12], which is violated by the strongly 
refracting fat layers in the breast. In this work, we focus on 
correcting the artifacts stemming from refraction. Previous work 
has either not modeled bent rays at all or has inadequately 
eliminated bent ray distortion effects and failed to faithfully 
reproduce tissue properties in UCT. Furthermore, prior methods 
have been computationally expensive, limiting their extendibility 
to three dimensions.  

To advance the state of the art in these respects, we introduce 
the concept of wave-based ray propagation models into UCT 

imaging, accurately taking into account the refractive phenomena. 
For this, we model the eikonal equation, which governs the 
movement of a wave front from emitters to receivers, using the 
Fast Marching Method (FMM), described by Sethian [15]. With 
this method, the wave arrival time for each grid point can be 
extracted, and the accurate ray direction for an arbitrary point can 
be derived by searching for the minimum path in the Time-Of-
Flight field between the point and the emitter. The FMM has 
become quite popular in recent years in computer graphics and 
computer vision, enabling accurate distance transforms, 
segmentation shape recognition, and others. In this paper, we 
demonstrate that the FMM also represents a promising method for 
the efficient and accurate modeling of the propagation of acoustic 
waves in a refractive media.    

Our paper is structured as follows. In section 2, we first 
review some related work. Section 3 then provides the theoretical 
background on the models we propose and section 4 describes the 
implementation details of our algorithm for the modeling of non-
linear rays for the reconstruction. Section 5 then presents and 
discusses our experimental results. Finally, we conclude and 
describe future directions of research in section 6. 
 

2.  RELATED WORK 
 
Starting from the late 70’s and early 80’s, experimental work in 
UCT has been driven by the need for real-time data acquisition and 
display. While recent work by Duric [8] shows promise and 
discusses the effect, that a scatter field with reflection and 
refraction properties has, the reconstruction algorithms discussed 
there are still limited to the straight-ray assumption.  

To solve the problems associated with bent rays, Meyer [10] 
proposed a method to correct for the multi-path errors using a 
parametric multi-path modeling and estimation scheme, while Pan 
and Liu [14] proposed methods to correct for refractive errors by 
scanning a small area around the straight line-of-sight and then 
using the maximum, sum or average of the area to measure the 
attenuation. Several researchers [2][11] explored the use of ray-
tracing, via ray-linking, in an iterative reconstruction framework to 
improve the UCT image quality. Andersen [2] proposed a ray 
rebinning method to generate new projection data, while Denis [5] 
compared several methods for ray-tracing, showing that substantial 
improvement over straight ray methods can be achieved for 
moderately refracting fields. There still remains a need for further 
improvement, especially in terms of computational speed and 
accuracy.  



Figure 1. Curved-ray 
(red) and straight ray 
(yellow) with the 
FMM. 

 
3. THEORETICAL BACKGROUND 

 
3.1. Reconstruction Algorithm 
 
Classical tomography reconstruction algorithms using Filtered 
Backprojection are based on the Radon theorem and can not take 
into account bent rays. Therefore, similar to other UCT 
researchers, we employ an algebraic reconstruction approach, 
SART [1].  Given the projection data pi, SART updates a pixel vj 
in iteration k according to the following equation: 
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Here the w-terms relate the pixels to the data and are determined 
by the interpolation function. The correction/update factor ci is 
computed by subtracting the result of a discrete ray integration 
(within the grid constructed at iteration (k-1)) from the physical 
integration acquired at receiver i. In our case, due to the refraction 
effects, the rays are non-linear. SART is a block-based algorithm, 
i.e., a grid update occurs after all rays for a given source (emitter) 
have been traced and the correction factors computed. 
 
3.2. Solving the Eikonal Equation with the FMM 
 
As discussed above, our approach advocates an alternative way to 
solve the bent-ray problem by directly simulating the acoustic 
sound wave propagation. Bent rays can be computed by solving 
the eikonal equation [13]: 

        2 2 2 2( / ) ( / ) ( / ) 1 / ( , , ) t x t y t z F x y z∂ ∂ + ∂ ∂ + ∂ ∂ =  (1) 
on a discretized grid of points. Traditionally, equations such as 
equation 1 are solved by iterative methods, which can be 
computationally expensive. To solve the eikonal equation more 
efficiently, we employ the Fast Marching Method (FMM), 
originally proposed by Tsitsiklis [19]. The FMM is related to 
Dijkstra’s method [6], which is a classical algorithm for 
identifying the shortest path in a network of links. The FMM is a 
single-pass, upwind finite difference scheme, which produces the 
correct viscosity solution to the eikonal equation. It depends on a 
causality condition based on the ordering of the upwinding [15].  

In equation 1, F is called the speed term and is a measure of 
the local sound conductance properties. The FMM computes for 
every voxel (x,y,z) the time T(x,y,z) at which the wave has 
traversed it.  As the wave front proceeds across the grid, the FMM 
selects the voxel (x,y,z) in the narrow band of voxels (situated 
immediately upwind from the current wave boundary) which 
minimizes the time increment, given the values of its neighbors 
and their speed values. The result of the FMM is the Time Of 
Flight (TOF) image. There is one such image for each emitter.  

The original FMM solves the eikonal equation by using only 
first-order finite difference. This will lead to inaccuracies at high 
curvature boundaries. For a more accurate approximation of 
equation 1, we use the High Accuracy Fast Marching Method 
(HAFMM) [4]. It employs a second-order approximation to the 
partial derivative in (1), such as  

/ (3 ( , , ) 4 ( 1, , ) ( 2, , )) / 2t x t x y z t x y z t x y z∂ ∂ = − − + − , 
but it also requires accurate second-order estimates for 
initialization around the propagation seed points (emitter 
locations). 

Once the propagation is complete, we use the resulting TOF 
image to calculate the path of the rays from the receivers back to 

the emitter. The TOF image allows us 
to locally compute the ray direction 
vectors, given by the TOF image 
gradients, ensuring that a given ray will 
not miss the emitter. Our method thus 
eliminates the need for the ray linking 
and path assembly of earlier 
approaches. Figure 1 shows the 
acoustic ray paths from 31 receivers, 
which are distorted when passing 
through the object. White curves 
represent the wave front at different 
times. The yellow lines are the straight 
rays between emitter and receiver and 
the red lines represent the curved-rays 
obtained via HAFMM.  

 
3.3. Ultrasound Breast Modeling  
 
In the area of computational tomography, there are a number of 
existing breast phantoms [3][16]. However, they are usually too 
complex, and some of the structures are not perceptibly 
differentiated in an UCT image. Therefore, a simple, numeric UCT 
breast phantom is proposed, as shown in Figure 2.     

 

 
Our UCT breast phantom is modeled using a half ellipse, and 

is composed of two main layers: an outer thick layer of fat and an 
inner layer of tissue. In the inner layer of the tissue, several lesions 
are shown as small ellipses, and smaller abnormalities modeled as 
tiny spheres are inserted. Keeping the shape unchanged and 
adjusting the values of the phantoms, we can simulate a sound 
velocity (sound conductance) phantom and an attenuation phantom 
separately. See Table 1 for the clinical values used in the 
phantoms. Both the sound velocity and the attenuation properties 
of tissue provide valuable diagnostic information. The analytical 
geometric description of the elliptical primitives allows for easy 
analytical modeling of refracted ray paths and their path 
integration in the simulation of projection data. We have not used 
real data at this time, in order to isolate the aliasing and distortion 
effects purely due to the non-linear, refracted rays (as opposed to 
higher-order scattering noise).  

Table 1. Our phantom’s breast ultrasound properties 
 

4.  METHODOLOGY 
 
Our novel contribution is to combine SART with FMM to find the 
accurate ray directions by wave propagation. In this way, we can 
avoid the complicated bent-ray computations that previous UCT 

Ultrasound 
Properties 

Tissue Fat Large 
Lesions 

Small 
Lesions 

Velocity 1475 m/s 1375 m/s 1560 m/s 1530 m/s 
Attenuation 50 15 60 or 30 70 

(b) phantom (left: vertical slice; 
right: horizontal slice.) 

(a) anatomy (from 
info.med.yale.edu) 

Figure 2. Breast anatomy and phantoms. 



Initialize image 
Until convergence, loop 
       Randomly select an emitter E 
       Propagate waves using sound velocity image SV 

- Record TOF at each pixel, including receivers 
- Trace back from receivers to E with TOF gradient 
- Compute the ray length L 

        Compute correction factors 
          -        TOF∆  = ( TOFsimulated - TOFcollected )/L 
        Back project TOF∆  along ray direction 
        Update SV image according to TOF∆  at each pixel.      

reconstruction algorithms had to deal with, replacing them with the 
simple and linear computations embodied by the FMM.  

In this research, we implemented both FMM and HAFMM. 
We use a binary heap to quickly find the voxel with the smallest 
postulated wave arrival time in the narrow band of the advancing 
wave front. This voxel’s wave arrival value is then written to the 
Time-Of-Flight (TOF) image, its neighbors and their arrival times 
are updated in the heap. Note that a translation table with double 
pointers, as is further described in [15][4] is used in order to 
quickly map the spatial domain voxels to the heap voxels. 

Our framework itself can be decomposed into a two-phase 
algorithm. In phase 1, we iteratively reconstruct the sound velocity 
(SV) image from the TOF data collected at the receivers, and in 
phase 2, we use this SV image to guide the non-linear rays for the 
iterative reconstruction of the sound attenuation (SA) image from 
the attenuation data collected at the receivers. Both phases use 
SART as the iterative reconstruction engine. Note that the SA 
image is easy to reconstruct once an accurate SV image is 
available to guide the distorted rays, provided the gradients are 
faithfully reconstructed using good interpolation filters. Our 
algorithm proceeds as follows: 

Figure 3. the pipeline of the FMM-based-SART. 
 

For the SV update step, we use the relationship /v d t= . 
Here, d is the diameter of a spherical pixel (we assume spherical 
pixel to achieve direction independence and use d = 1). The 
following equation is employed:  

1 /( / )
rays
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One iteration completes after all emitters have been processed 
once, and the iterations continue until the difference between the 
TOF image at the receiver positions and the collected TOF data 
there becomes smaller than a threshold. Usually, this requires 3 to 
4 iterations. The reconstruction of SA image is similar, only now 
the SV image remains constant and with it the ray paths and their 
lengths. Note, the algorithm requires the estimation of good 
gradients. For this, we employ B-splines, which have previously 
shown to work well in refractive media [5][9]. 

 The velocity of a grid point, stored in the SV image and used 
in the wave propagation step of the reconstruction, depends 
heavily on the reconstructed value at that point obtained from the 
previous iterations. To obtain the accurate speed value, we 
investigated two different approaches: fixed speed update and 
data-driven speed update.  

Fixed speed update means that the speed update is applied 
directly to the pixel, without further scaling.      (2)F k SV= i   

Data-driven speed update means that the speed update is 
normalized in the following equation:  
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In equations 2 and 3, k is a constant scale factor, 

mincurSV − and maxcurSV − are the speed extrema of current 

iteration, minF and maxF are the inherent speed extrema of the 
object, and F is the resulting propagation speed. 

The fixed speed update strategy is intuitive, considering the 
fact that the values in the SV image represent material properties, 
and acoustic rays always have the same speed in a specific 
material. However, it can suffer from the problem that the shape of 
the organ is distorted by the first few iterations’ speed value, when 
the correct value has not been constructed yet. 

Data-driven speed update is introduced to solve this problem 
in the iterative reconstruction algorithm. In this method, we 
assume that in the initial iterations the pixel’s absolute value may 
not be accurate but the overall geometric information has been 
quickly formed and recorded in the grid point’s relative values. 
The normalization ensures a fast ascent of the solution at early 
iterations when SV values are small. 

For the construction of the SA image, the TOF image can 
either be computed beforehand, or on the fly when storage is 
excessive, using the FMM on the reconstructed SV image. The 
input data are now the collected attenuation data, one set for each 
emitter, and SART proceeds as usual for each randomly chosen 
emitter position, using the rays guided by the corresponding TOF 
image, but now updating the attenuation volume. 
 

5.  EXPERIMENTS AND RESULTS 
 

  
(a) (b) 

Figure 4. Breast phantom 
 (a) ultrasound velocity; (b) ultrasound attenuation. 

 
Our experiments are based on a simulated computer phantom with 
a matrix size of 128x128, and the quantitative parameters are given 
in Table 1. The phantoms are shown in Figure 4, holding lesions 
with diameters from 2 to 8 pixels. The ultrasound TOF and 
attenuation phantoms share the same geometry. Our simulation 
assumes a spherically radiating sound emission, using 256 
emitter/receiver positions in a circle. The resolution of the 
reconstructed image matches the size of the phantom images. More 
emitter/receiver pairs enable higher resolution. Reconstruction 
costs about 60 seconds for 3 iterations using a 2.8GHz Pentium 4. 

 



(a) (b) 
 

(c) (d) (e) 

Figure 5: Reconstructed images: (a) straight ray SV image, HAFMM; (b) nonlinear ray SV with fixed speed, HAFMM;  
(c) nonlinear ray SV with relaxed speed, FMM; (d) nonlinear ray SV with relaxed speed, HAFMM; (e) attenuation image.

For the velocity phantom, the reconstruction results are given 
in Figure 5 (a)-(d). With HAFMM, the reconstructed image 
obtained with linear rays is shown in (a) and non-linear rays in (b) 
and (d). For the non-linear ray reconstruction, we further compare 
the results obtained for the different speed strategies: fixed speed 
in (b) and data-driven speed in (d). We calculate the error as the 
average absolute intensity difference for all grid points between 
the reconstructed image and the original phantoms. The use of 
only straight rays distorts the image with an error of 25%. Because 
refraction is ignored, the size of the phantom’s regions grows or 
shrinks dramatically. When correcting for refraction, the speed 
strategy has a large impact on the resulting image accuracy. The 
data-driven relaxed speed results in a better estimation of the 
original image (error of 3%), while the fixed speed strategy over-
corrects for refraction with an error of 19%.  

The image achieved using FMM is shown in Figure 5(c), with 
the error of 10%. HAFMM in (d) is more accurate than FMM in 
(c), since the HAFMM includes second-order curvature 
information when solving the eikonal equation. This means that 
boundaries where refraction occurs are better determined.  

Finally, the attenuation phantom reconstruction results are 
presented in Figure 5(e). It is based on the nonlinear ray paths 
determined in the SV phantom reconstruction shown in 5(d), using 
the HAFMM. The attenuation image recovers both intensity and 
shape accurately with an error of less than 7%.  
 

6.  CONCLUSIONS AND FUTURE WORK 
 
In this paper, a new method for UCT image reconstruction taking 
into account refraction was proposed. The key observation behind 
this method is that the up-winding Fast Marching Method (FMM) 
can determine the first-arriving phase in a continuous medium. It 
also provides computational efficiency in determining the accurate 
paths of the non-linear rays. We proposed two speed mechanisms 
for the FMM to trace the refractive rays: fixed speed and data-
driven relaxed speed. Our method is applicable in any UCT 
imaging situation in a moderate refractive media. UCT 
simulations, using a synthetic breast phantom, have demonstrated 
that the continuous wave propagation in HAFMM with data-driven 
relaxed speed achieves an accurate determination of the non-linear 
ray paths and provides much better fidelity in the image 
reconstruction. The reconstructed image quality improves by an 
order of magnitude compared to the pure straight ray method.  

In the future, we plan to exploit these novel technologies 
using real UCT data and extend them to a 3-dimensional refraction 
reconstruction.   
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