This material is based upon work supported
by the US National Science Foundation under Grant
No 1527200
Award ttitle: III: Small: Collaborative Research: ANTE - A Four-Tier
Framework to Boost Visual Literacy for High Dimensional Data
Project director: Dr.
Klaus Mueller, Professor, Computer Science Department, Stony Brook University
The award is in collaboration with project co-director: Dr.Kristina
Striegnitz, Associate Professor, Computer Science Department, Union College
under NSF
Grant No 1527112. Efforts particular to the collaboration are reported on this webpage
The start date of the award was September
1, 2015 and the duration is 3+1 years until August 31, 2019
|
Taxonomizer: Interactive Construction of Fully Labeled Hierarchical Groupings from Attributes of Multivariate Data
S. Mahmood, K. Mueller
IEEE Trans. on Visualization and Computer Graphics
to appear, 2020 |
|
|
|
PeckVis: A Visual Analytics Tool to Analyze Dominance Hierarchies
in Small Groups
D. Coelho, I. Chase, K. Mueller
IEEE Trans. on Visualization and Computer Graphics
to appear, 2020 (won best paper award at VDS 2019) |
|
|
|
ICE: An Interactive Configuration Explorer for High Dimensional Parameter Spaces
A Tyagi, Z. Cao, T. Estro, E. Zadok, K. Mueller
IEEE Visual Analytcs Science and Technology (VAST)
Vancouver, Canada, October 2019 |
|
|
|
Exploratory Visual Analysis of Anomalous Runtime Behavior in Streaming High Performance Computing Application
C Xie, W Jeong, G Matyasfalvi, H Van Dam, K. Mueller, S Yoo, W. Xu
International Conference on Computational Science (ICCS)
pp. 153-167, Faro, Portugal, June 2019 |
|
|
|
Graphs Are Not Enough: Using Interactive Visual Analytics in Storage Research
Z Cao, G Kuenning, K. Mueller, A Tyagi, E Zadok
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage)
Renton, WA, July 2019 |
|
|
|
Analytics of Heterogeneous Data using Hypergraph Learning
C. Xie, W, Zhong. W. Xu, K. Mueller
ACM Trans. on Intelligent Systems and Technology
10(1), 1-26, 2019 |
|
|
|
PUMA-V: Optimizing Parallel Code Performance Through Interactive Visualization
E. Papenhausen, M.H. Langston, B. Meister, R. Lethin, K. Mueller
IEEE Computer Graphics & Applications
39(1): 84-99, 2019 |
|
|
|
ColorMapND: A Data-Driven Approach and Tool for Mapping Multivariate Data to Color
S. Cheng, W/ Xu, K. Mueller
IEEE Trans. on Visualization and Computer Graphics
25(2): 1361-1377, 2019 |
|
|
|
A Visual Analytics Framework for the Detection of Anomalous Call Stack Trees in High Performance Computing Application
C. Xie, W. Xu, K. Mueller
IEEE Trans. on Visualization and Computer Graphics
25(1): 215-224, 2019 |
|
|
|
Visualizing the Topology and Data Traffic of Multi-Dimensional Torus Interconnect Networks
S. Cheng, W. Zhong, K. Isaacs, K. Mueller
IEEE Access
6, 57191-57204, 2018 |
|
|
|
PetalVis - Floral Visualization for Communicating Set Operations
A. Kumar, M. Burch, D. Kurbanismailova, U. Kloos, K. Mueller
Workshop on Visualization for Communication (co-located with IEEE VIS)
Berlin, Germany, October 2018 |
|
|
|
Subspace Shapes: Enhancing High-Dimensional Subspace Structures via Ambient Occlusion Shading
B. Wang, K. Mueller
IEEE Visualization (Extended Abstracts)
Berlin, Germany, October 2018 |
|
|
|
A Scale-Space Filtering Approach for the Multi-Resolution Illustrative Visualization of Multivariate Data
J. Lee, K. Mueller
IEEE Visualization (Extended Abstracts)
Berlin, Germany, October 2018 |
|
|
|
MultiSciView: Multivariate Scientific X-ray Image Visual Exploration with Cross-Data Space Views
W. Zhong, W. Xu, K. Yager, G. Doerk, J. Zhao, Y. Tian, S. Ha, C. Xie, Y. Zhong, K. Mueller, K. Kleese Van Dam,
Visual Informatics
2 (1), 14-25, 2018 |
|
|
|
An Exploded View Paradigm to Disambiguate Scatterplots
S. Mahmood, K. Mueller
Computers & Graphics
73, 37-46, 2018 |
|
|
|
RadViz Deluxe: An Attribute-Aware Display for Multivariate Data
S. Cheng, W. Xu, K. Mueller
Processes
5(4): 75-94. 2017 |
|
|
|
Big Data Management with Incremental K-Means Trees–GPU-Accelerated Construction and Visualization
J. Wang. A. Zelenyuk, D, Imre, K. Mueller
Informatics
4(3): 24-38, 2017 |
|
|
|
The Subspace Voyager: Exploring High-Dimensional Data along a Continuum of Salient 3D Subspaces
B. Wang, K. Mueller
IEEE Trans. on Visualization and Computer Graphics
24(2): 1204-1222, 2018 |
|
|
|
Graphoto: Aesthetically Pleasing Charts for Casual Information Visualization
J. Park, A. Kaufman, K. Mueller
IEEE Computer Graphics & Applications
38(6):67-82, 2018 |
|
|
|
Big Data Management with Incremental K-Means Trees–GPU-Accelerated Construction and Visualization
J. Wang. A. Zelenyuk, D, Imre, K. Mueller
Informatics
4(3): 24-38, 2017 |
|
|
|
Visual Causality Analysis Made Practical
J. Wang, K. Mueller
IEEE Visual Analytics Science and Technology (VAST)
Phoenix, AZ, Ocober 2017 |
|
|
|
Visualization of Multivariate Data with Network Constraints using Multi-Objective Optimization
B. Ghai, A. Mishra, K. Mueller
EEE Visualization (Extended Abstracts)
Phoenix, AZ, Ocober 2017 |
|
|
|
Applying Multi-Player Rating Schemes to Manage User Studies of Visual Analytics Designs
S, Mahmood, K. Mueller
IEEE Visualization (Extended Abstracts)
Phoenix, AZ, Ocober 2017 |
|
|
|
Progressive Clustering of Big Data with GPU Acceleration and Visualization
J. Wang, E. Papenhausen. B. Wang. S. Ha, A. Zelenyuk, K. Mueller
New York Scientific Data Summit (NYSDS)
New York, NY, August 2017 |
|
|
|
Evolutionary Visual Analysis of Deep Neural Networks
W. Zhong. C. Xie, Y. Zhong, Y. Wang, W. Xu, S. Cheng, K. Mueller
Workshop on Visualization for Deep Learning (co-located with International Conference on Machine Learning, ICML)
Sidney, Austraila, August 2017 |
|
|
|
A Visual Analytics Approach for Categorical Joint Distribution Reconstruction from Marginal Projections
C. Xie, W. Zhong, K. Mueller
IEEE Trans. on Visualization and Computer Graphics (won an Honorary Mention Award)
23(1): 2017 |
|
|
|
Analyzing Hillary Clinton’s Emails
V. Dehiya, K. Mueller
IEEE VIS Poster Abstracts
Baltimore, MD, 2016 |
|
|
|
Extending Scatterplots to Scalar Fields
S. Cheng, P. Cui, K. Mueller
IEEE VIS Poster Abstracts (won an Honorary Mention Award)
Baltimore, MD, 2016 |
|
|
|
Google Glass for Personalized Augmentations of Data Visualizations
D. Zhang, D. Coelho, K. Mueller
IEEE VIS Poster Abstracts
Baltimore, MD, 2016 |
|
|
|
A Data-Driven Approach for Mapping Multivariate Data to Color
S. Cheng, W. Xu. W. Zhong, K. Mueller
IEEE VIS Poster Abstracts
Baltimore, MD, 2016 |
|
|
The findings we gained in this grant gave rise to two specific broader impact areas. One deals with the visualization of eye tracking data obtained from eye tracking experiments. The visualization of these data helps researchers and practitioners to gain insight on focus patterns and understanding of imagery observed by the human participating in the experiment.
|
Task Classification Model for Visual fixation, Exploration, and Search
A Kumar, A Tyagi, M Burch, D Weiskopf, K. Mueller
Proc. ACM Symposium on Eye Tracking Research (ETRA)
Denver, CO, June 2019 |
|
|
|
Visually Comparing Eye Movements over Space and Time
A Kumar, M Burch, K. Mueller
Proc. ACM Symposium on Eye Tracking Research (ETRA)
Denver, CO, June 2019 |
|
|
|
Clustered Eye Movement Similarity Matrices
A Kumar, N Timmermans, M Burch, K. Mueller
Proc. ACM Symposium on Eye Tracking Research (ETRA)
Denver, CO, June 2019 |
|
|
|
Finding the Outliers in Scanpath Data
M Burch, A Kumar, K. Mueller, T. Kervezee, W. Nuijten, R. Oostenbach, L. Peeters, G. Smit
Proc. ACM Symposium on Eye Tracking Research (ETRA)
Denver, CO, June 2019 |
|
|
|
Eye Tracking for Exploring Visual Communication Differences
A. Kumar, M. Burch, I. van den Brand, L. Castelijns, F. Ritchi, F. Rooks, H. de Smeth, N. Timmermans, K. Mueller
Workshop on Visualization for Communication (co-located with VIS)
Berlin, Germany, October 2018 |
|
|
|
Visual Analysis of Eye Gazes to Assist Strategic Planning in Computer Games
A Kumar, M Burch,, K. Mueller
Workshop on Eye Tracking and Visualization
Warsaw, Poland, June 14-17, 2018 |
|
|
|
The Hierarchical Flow of Eye Movements
M Burch, A Kumar, K. Mueller
Workshop on Eye Tracking and Visualization
Warsaw, Poland, June 14-17, 2018 |
|
|
|
Visual Multi-Metric Grouping of Eye-Tracking Data
A. Kumar, R. Netzel, M. Burch, D. Weiskopf, K. Mueller
Journal of Eye Movement Research
10 (5), 11-27, 2018 |
|
|
|
Color Bands: Visualizing Dynamic Eye Movement Patterns
M. Burch, A. Kumar, K. Mueller, D. Weiskopf
Workshop on Eye Tracking and Visualization (ETVIS) (held in conjunction with IEEE VIS)
Baltimore, MD, 2016 |
|
|
|
Multi-Similarity Matrices of Eye Movement Data
A. Kumar, R. Netzel, M. Burch, D. Weiskopf, K. Mueller
Workshop on Eye Tracking and Visualization (ETVIS) (held in conjunction with IEEE VIS)
Baltimore, MD, 2016 |
|
|
Another use and application of the developed machine learning tools and visual interfaces has been in the areas of computer vision, image processing, and medical imaging where we have focused on involving human users in tasks related to these areas. The research artifacts emerging from these efforts are listed below.Some of the code was made publicly available on github where indicated.
There are several further papers under review at journals and conferences. Once accepted
they will be posted and linked to here.