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ABSTRACT
We present a novel framework to train a recurrent neural net-
work for early recognition of human actions, which is an im-
portant but challenging task given the need to recognize an
on-going action based on partial observation. Our frame-
work is based on knowledge distillation, where the network
for early recognition is viewed as a student model. The stu-
dent is trained using knowledge distilled from a more knowl-
edgeable teacher model that can peek into the future and in-
corporate extra observations about the action in considera-
tion. This framework can be used in both supervised and
semi-supervised learning settings, being able to utilize both
the labeled and unlabeled training data. Experiments on the
UCF101, SYSU 3DHOI, and NTU RGB-D datasets show the
effectiveness of knowledge distillation for early recognition,
including when we only have a small amount of annotated
training data.

1. INTRODUCTION

Early recognition of human action (e.g., [1–12]) refers to the
problem of classifying an ongoing action, and it is different
from the recognition problem, e.g., [13–22]. The former re-
quires classifying partial action sequences, while the latter
makes classification decisions based on full observation of the
action sequence. Early recognition is crucial in applications
that require timely responses, especially for applications in
surveillance and human robot interaction.

Training classifiers over partial action sequences is dif-
ficult because of the inherent ambiguity in partial action se-
quences, especially in the early stages of an action where only
a small fraction of the action has been performed. Without a
proper training procedure, the obtained classifier might not
have the right knowledge to extract the relevant information
about the ongoing action.

In this paper, we propose a novel knowledge distillation
framework to train a partial-action classifier, guiding it to at-
tend to the relevant information about the ongoing human ac-
tion. Under our framework, the partial-action classifier is a
recurrent neural network that is trained with distilled knowl-
edge from a teacher network that has superior discriminative
power. The teacher is an action recognition network trained
on full video sequences or the partial-action classifier itself
but with a longer observed action sequence as the input. Our
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Fig. 1: Knowledge distillation for early recognition of hu-
man actions. An early classifier can be trained by distilling
the knowledge from another or even the same classifier that
has privileged access to additional observations about the ac-
tion in consideration.

framework is developed based on the intuition that a longer
action sequence is less ambiguous than a shorter action se-
quence, as illustrated in Figure 1, so a network with more
observations about the action can act as the teacher. Previous
works have attempted to recognize partial actions data using
teacher-student framework [19]. However, our framework is
more comprehensive with the inclusion of an approach for
self-supervised knowledge distillation from a single model.

In our knowledge distillation framework, the target that
the student network should output is the probability vector
produced by the teacher network, not the binary annotation
vector. There are several advantages of using knowledge dis-
tillation for early recognition. First, the probability vector
produced by the teacher network is a soft target that contains
some information about the degree of similarity and correla-
tion between the action categories. This type of information is
not encoded in the binary annotation vector. Second, by not
defining the training loss on the annotation vector, the stu-
dent network can be trained without ground truth annotation.
Thus, when unlabeled data is available, we can leverage it to
improve the performance of the student network. Finally, the
soft targets have higher entropy, they contain much more in-
formation in a single training sample. As a result, the student
network can be trained with much less labeled data.

In summary, the contributions of this paper are three
fold. First, we present a general framework for early action
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Fig. 2: Our proposed knowledge distillation framework
for early action recognition.

recognition based on knowledge distillation. Second, we
incorporate a novel self-distillation loss into the framework.
Finally, we show that the proposed knowledge distillation
framework improves the performance of an early recogni-
tion network on three human action datasets: UCF101 [23],
SYSU 3DHOI [24], and NTU RGB-D [25]. Especially, our
proposed method works effectively even with only small
amount of labeled training data. With knowledge distillation,
we achieve the state-of-the-art early recognition performance
on all three datasets.

2. KNOWLEDGE DISTILLATION FRAMEWORK

In this section, we describe the proposed knowledge distilla-
tion framework for early recognition of human action.

2.1. Network Architectures

Our framework is based on knowledge distillation, where the
desired network for early recognition is the student, and it is
trained with the distilled knowledge from a teacher model and
also the self-distilled knowledge from the student model when
it is allowed to observe more frames, as illustrated in Fig. 2.

We use a one-directional Recurrent Neural Network
(RNN) as the student model for early recognition. RNN
is particularly suitable for early recognition given its ability
to integrate new observations and make predictions at every
time step. In particular, we use a one-layer Gated Recurrent
Unit (GRU) [26] network as the student model. We do not use
a bidirectional GRU (BiGRU), or any bidirectional RNN in
general, for early recognition because a bidirectional network
is more computationally expensive and cumbersome than an
unidirectional network.

Following [19], we use an one-layer BiGRU network as
the teacher model. The BiGRU/BiRNN has been widely used
for action recognition in videos [19–22]. There are two ben-
efits in using BiGRU as the teacher model. First, it provides
a feature representation at each progression level similar to

the one directional GRU. Second, since this is bidirectional,
the hidden state vector at each time step incorporates both for-
ward and backward information about the action. This hidden
vector contains features from both the past and the future at
each time step.

2.2. Knowledge Distillation

We use knowledge distillation for training an early recog-
nition network in a novel setting where knowledge distilla-
tion does not flow from a complex to a simple model, but
from a model with privileged access to more observations to
a model with fewer observations. We propose two distillation
schemes, one based on the distillation between two separate
networks and one based on the self-distillation.

2.2.1. Teacher-Student Distillation.

An input video sequence can be represented as a feature
sequence X = (x1,x2, · · · ,xN ) of N progression levels,
where xn ∈ <d. We use the teacher network T and the stu-
dent network S to compute the prediction outputs at each time
step as T (xn) and S(xn), where T (xn) and S(xn) ∈ <c
and c is the number of action classes. Using these prediction
outputs, the teacher-student distillation loss for each sequence
is then computed as the Kullback–Leibler (KL) divergence
between the student and teacher:

Lts(S, T ) =
1

N

N∑
n=1

KL(T (xn)||S(xn)). (1)

Here, we define the knowledge distillation loss based on the
KL divergence between two output probability vectors. An
alternative approach is to define the distillation loss based on
the discrepancy between the two latent representation vectors.
However, this requires that the teacher T and the student S to
have the same latent space, which means we cannot exploit
different architectures for T and S as we do here.

2.2.2. Self Distillation.

The second distillation scheme comes from the intuition that
the recognition accuracy should increase as the ongoing ac-
tion becomes more complete and the model has more obser-
vations about the action. Hence, the recognition output of the
model at a later time step can be used as a supervision signal
for the recognition output at an earlier time step. We refer
to this as the self-distillation loss, which we compute using
the KL divergence between the output distributions for a time
step n and a later time step n+ τ :

Lself (S) =
1

N − τ

N−τ∑
n=1

KL(S(xn+τ )||S(xn)), (2)

where τ is the lead time for peeking into the future.



2.3. Combined Training Loss

The student model should also output the action category that
corresponds to the ground truth label. The loss for the pre-
dicted output is defined as:

Lcls(S, y) =
1

N

N∑
n=1

`(S(xn), y), (3)

where `(S(xn), y) is the cross-entropy between the output
probabilities S(xn) at time n and the action label y. Finally,
the combined loss for training the early recognition network
S defined as:

L(S, y) = Lcls(S, y) + αLts(S, T ) + βLself (S), (4)

where α and β are tune-able hyper parameters that control the
impact of each knowledge distillation component.

3. EXPERIMENTS

We perform experiments on three datasets and consider both
supervised and semi-supervised settings. We compare the
proposed method with the direct baseline method that does
not use knowledge distillation as well as the other state-of-
the-art methods.

3.1. Datasets

We evaluate the proposed knowledge distillation frame-
work for early recognition on three benchmark datasets:
UCF101 [23], SYSU 3D Human Object Interaction (SYSU
3DHOI) [24], and NTU RGB-D [25]. Each video is divided
into N = 10 segments in both training and evaluation. Top-1
accuracy for different observational ratios are reported.

UCF101 dataset comprises of 13,320 action clips from 101
categories collected from YouTube. Following [12, 19], we
use the first 15 groups for training, the next three groups for
validation, and the rest for testing. Temporal Shift Module
(TSM) network [27] model pretrained on the Kinetics [28]
dataset is used to extract video features.

SYSU 3DHOI dataset contains 12 activity classes with 480
RGB-D video sequences with 3D skeleton data aptured by a
Kinetics camera. We use both RGB (TSM) [27] and skeleton
(VA-CNN) [29] features.

NTU RGB-D dataset contains 60 human activities with
56,000 skeleton sequences performed by 40 subjects. We
follow [12, 25] and perform experiments on cross-subject set-
tings. VA-CNN [29] is also used to extract skeleton features.

Implementation details. For our early recognition model,
we use a one-layer one-directional GRU [26] with hidden size
512 to recognize the action at each time step. The teacher
model is a one-layer BiGRU of size 256 in each direction and

Observational ratio

20% 40% 60% 80% 100% AUC

On the SYSU 3DHOI dataset
Without distillation 65.4 76.7 81.7 84.2 85.0 76.5
With distillation 67.1 79.2 84.2 85.8 87.1 78.8

On the UCF101 dataset
Without distillation 90.1 92.0 92.6 92.9 93.1 91.7
With distillation 90.5 92.0 92.9 93.3 93.5 92.0

Table 1: The benefits of knowledge distillation for early
recognition on the SYSU 3DHOI and UCF datasets.

Observational ratio

20% 40% 60% 80% 100% AUC

RankLSTM [8] 16.5 37.7 55.9 64.4 66.0 43.1
DeepSCN [11] 21.5 39.9 54.6 60.2 58.6 43.2
KNN [12] 9.6 16.0 26.0 34.5 37.0 21.9
MSRNN [12] 20.3 41.4 59.2 67.4 69.2 46.6
TS-LSTM* [19] 22.8 55.3 76.2 85.6 87.8 61.8

Ours 24.6 57.7 76.9 85.7 88.1 62.8

Table 2: Results on NTU RGB-D dataset.

is trained on fully observed sequences. All models are op-
timized with SGD of learning rate 0.01. We set α = 0.5,
β = 0.5 for UCF101 and β = 1.0 for SYSU 3DHOI and
NTU RGB-D datasets.

3.2. The benefits of knowledge distillation

We first evaluate the benefits of knowledge distillation on the
SYSU 3DHOI and UCF101 datasets. We compare the mod-
els trained with and without knowledge distillation. As can
be seen from Tab. 1, training an early recognition model with
knowledge distillation improves the early recognition perfor-
mance at every observation ratio. The overall early recogni-
tion performance AUC for both datasets are also improved,
from 91.7% to 92.0% on the UCF dataset and from 76.5% to
78.8% on the SYSU 3DHOI dataset. We also find that both
types of knowledge distillation provide benefits. Without the
self-distillation loss, the early recognition AUC on the SYSU
3DHOI and UCF datasets are 77.6% and 91.8%, respectively.
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Fig. 3: Results on UCF101 and SYSU 3DHOI dataset.



Observational ratio

Training data 20% 40% 60% 80% 100% AUC

On the SYSU 3DHOI dataset
Baseline (w/o knowledge distillation) 10% labeled 43.3 54.6 61.3 63.3 60.0 54.8
TS-LSTM* 10% labeled, 90% unlabeled 41.7 55.0 61.3 60.8 57.9 54.3
Ours 10% labeled, 90% unlabeled 50.0 59.6 66.7 69.2 73.8 61.0

On the UCF101 dataset
Baseline (w/o knowledge distillation) 10% labeled 83.5 84.8 85.6 86.2 85.6 85.0
TS-LSTM* 10% labeled, 90% unlabeled 84.3 86.4 87.0 87.5 87.5 86.1
Ours 10% labeled, 90% unlabeled 86.6 88.6 89.6 90.4 91.2 88.8

Table 3: Results on the UCF101 and SYSU 3DHOI datasets with limited amount of labeled training data. We assume
only 10% of the training data is labeled, while the majority 90% of the data is unlabeled. Baseline is the method that only uses
classification loss, it does not use knowledge distillation and it cannot utilizes unlabeled data.

3.3. Comparison to the state-of-the-art methods

We also compare our method to the recent state-of-the-
art methods on the UCF101 and SYSU3 DHOI datasets.
The comparison results are shown in Fig. 3. The proposed
method outperforms the other methods significantly on the
UCF101 dataset. We improve the state-of-the-art AUC by
2.4% (89.6% → 92.0%). The trend is similar on the SYSU
3DHOI dataset. Considering the area under the performance
curve (AUC), the proposed method outperforms the other
methods by a wide margin. The AUC of the proposed method
is 78.8%, which is significantly higher than 75.4% AUC of
the second best method TS-LSTM. The performance gains
are higher for the smaller observation ratios.

Finally, we compare the proposed method with the state-
of-the-art methods on NTU RGB-D dataset. Our model
significantly improves the prediction performance on this
dataset. The full results are shown in Table 2. Overall, con-
sidering the AUC, our method still outperforms TS-LSTM
even though TS-LSTM has privileged access to RGB-D fea-
tures. Our method achieves the new state-of-the-art AUC
result of 62.8% on the NTU RGB-D dataset.

3.4. Knowledge distillation with unlabeled data

As mentioned earlier, one benefit of our framework is the abil-
ity to leverage unlabeled data. In this experiment, we evaluate
the early recognition performance under a semi-supervised
learning setting. For this experiment, we pretend that only
10% of the training data comes with annotation, while the
majority 90% of the training data is unlabeled. On the la-
beled portion we can compute both the prediction and dis-
tillation losses, while on the portion where the labels are re-
moved, we only compute distillation losses. In this setup,
we lower the contribution of the prediction loss Lcls(S, y)
so that we can investigate the effectiveness of the distilla-
tion losses during training. We compare the proposed method
with the direct baseline method where knowledge distillation

is not used and also TS-LSTM*, our reimplementation of
TS-LSTM [19] using the feature representation and experi-
mental setup as our method. It can be seen from Tab. 3, the
proposed method performs early recognition effectively even
with a small amount of labeled training data. On the UCF101
dataset with TSM [27] features, our method has a 3.8% im-
provement over the direct baseline without distillation and is
about 2–3% better than TS-LSTM* at all observational ratios.
Similarly, we also observe improvements at all observational
ratios in the SYSU 3DHOI datasets. The proposed method
achieves the best AUC in both datasets.

4. CONCLUSIONS

We have introduced a framework to improve the training of an
early action recognition system using two types of knowledge
distillation. The first type of knowledge distillation comes
from an external teacher, a bidirectional recurrent neural net-
work with access to the future. The second one is achieved
by progressively transferring the knowledge from the same
network but with longer observation input sequences. The
proposed knowledge distillation framework improves the per-
formance of the early recognition network.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio, “Learning phrase rep-
resentations using RNN encoder–decoder for statistical
machine translation,” in Proc. EMNLP, 2014.

[27] Ji Lin, Chuang Gan, and Song Han, “Tsm: Temporal
shift module for efficient video understanding,” in Proc.
ICCV, 2019.

[28] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Vi-
ola, Tim Green, Trevor Back, Paul Natsev, Mustafa Su-
leyman, and Andrew Zisserman, “The kinetics human
action video dataset,” arXiv:1705.06950, 2017.

[29] Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun
Zeng, Jianru Xue, and Nanning Zheng, “View adaptive
neural networks for high performance skeleton-based
human action recognition,” IEEE PAMI, 2019.


