
Improving Human Action Recognition

using Score Distribution and Ranking

Minh Hoai1,2 and Andrew Zisserman1

1Visual Geometry Group, Dept. Engineering Science, University of Oxford.
2Department of Computer Science, Stony Brook University.

Abstract. We propose two complementary techniques to improve the
performance of action recognition systems. The first technique addresses
the temporal interval ambiguity of actions by learning a classifier score
distribution over video subsequences. A classifier based on this score
distribution is shown to be more effective than using the maximum or
average scores. The second technique learns a classifier for the relative
values of action scores, capturing the correlation and exclusion between
action classes. Both techniques are simple and have efficient implemen-
tations using a Least-Squares SVM. We demonstrate that taken together
the techniques exceed the state-of-the-art performance by a wide margin
on challenging benchmarks for human actions.

1 Introduction

Action recognition is an active research area. Recent research focuses on realistic
datasets collected from TV shows [1], movies [2, 3], and web videos [3]. However,
there exists an inherent ambiguity for actions in realistic data: when does an
action begin and end? Consider the action “handshake.” When is the precise
moment that two people begin to shake hands? When they start extending their
hands or when the two hands are in contact? Moreover, when does the action
end? For TV shows and movies, this is even more difficult to determine due to
the existence of shot boundaries. Should we consider the action has ended when
the camera cuts to a different shot? What if the action extends over multiple
shots? Many works in action recognition ignore this temporal ambiguity problem,
and simply classify the entire video clip, e.g., [1–4]. However, as shown in [5, 6],
refining the temporal extent of actions can improve the recognition performance.

So, how should we handle this ambiguity? A possible approach is to treat
the temporal extent of an action as a latent variable (e.g., [7–11]) and embed
the problem in a Multiple Instance Learning (MIL) framework such as [12, 13].
MIL [14] is a generalization of supervised classification in which class labels are
associated with sets of samples (called bags) instead of individual samples (called
instances). For action recognition, a bag is a video clip, and the instances in each
bag can be generated by varying the temporal extent of sequences within the
clip (e.g., all subsequences of a video).

However, the efficacy of MIL for solving the temporal ambiguity of action in
video is unproven. Moreover, the underlying assumptions and design principles
of MIL are often violated. For example, the MIL algorithms of [15, 16] implicitly

2 M. Hoai & A. Zisserman

!"#$%#&'()"*(%&(+&")*(%&,-.$(&)'-/&

B-11&1)(2$1&

3"4/'$.&

1561$75$%)$1&

0.4,−0.9, · · · , 1.2, · · ·

1.2, · · · , 0.4, · · · ,−0.9, · · ·

3(2#&

:4/2(;$.&9-11&1)(2$&

<-1#2-65*(%=6"1$.&)'"11->)"*(%&

A"1$&9-11&)'"11->$2&

(a) Using subsequence-score distribution

0.9B-11&&

1)(2$&

3)(2$1&+(2&

(#?$2&&

")*(%1&

0.2, · · · ,−0.9, · · · , 0.4 · · ·

,-.$(&)'-/&

0.4, · · · , 0.2, · · · ,−0.9, · · ·0.9

3(2#&

:4/2(;$.&9-11&1)(2$&

C(%#$D#=6"1$.&)'"11->)"*(%&

A"1$&")*(%&)'"11->$21&

E"#& F5G&

(b) Using relative class scores

Fig. 1. Complementary techniques to improve recognition performance. (a):
improved action score is computed based on the score distribution of video subse-
quences. (b): an improved action score is computed based on the relative action scores

assume that instances are drawn i.i.d. (independently and identically distributed)
from some distribution and randomly placed into bags. This is not valid for
action recognition where there exist temporal correlation between subsequences
of a video. Another basic assumption of MIL is that a bag is positive if at least
one of its instances is positive. This leads to a practical procedure adopted by
most MIL algorithms (e.g., MI-SVM [12]): an instance classifier is learned (or
iteratively learned) and the maximum classifier score is used to find the positive
instance of a bag (for prediction during testing or for iterative update during
training). In practice using only the maximum score is not robust, especially in
action recognition where the state-of-the-art classifiers are far from perfect [4].

Empirical evidence also suggests the inadequacy of using the maximum sub-
sequence score for video classification. In many test cases of our experiments,
which will be seen in Sec. 5, we observe that using the average score of video
subsequences is better than using the maximum score. In another context of
MIL beyond action recognition, this observation has also been reported [17]. For
example, [18] observed that MIL algorithms could be outperformed by a simple
approach that used supervised learning together with label inheritance, which
simply assigned the bag label to its instances.

On the other hand, the mean is not always better than the max. The mean
works well when the influence of negative instances in positive bags is low. This
does not hold if the percentage of positive instances in a positive bag is small. In
that situation, the mean score is inferior to the maximum score, which will be
empirically confirmed in Sec. 3.2 and Sec. 5. Note, if we consider the instances of a
bag as the output of a generative process with a latent variable, the comparison
between the max and the mean is equivalent to the comparison between the
maximum and marginal likelihoods. Others have used measures between the
mean and the max, or defined set kernels for bags of multiple instances [19–27].

In this paper, we propose to use the distribution of classifier scores, rather
than just the max or mean, to improve action recognition. We first train a
base classifier and then use the scores of all subsequences of a video clip to
predict its label (Fig. 1(a)). The scores of video subsequences are ordered and

Action recognition using score distribution and ranking 3

combined using a weight vector, which can be learned from the same set of
training data that is used to train the base classifier. We will show that the
ordered score distribution preserves more information than both extreme (i.e.,
max) and summary (i.e., mean) statistics, and it is more effective in practice.

Complementary to using the score distribution, this paper addresses another
fundamental drawback of many current action recognition systems that action
classes are recognized independently. In the second part of the paper, we propose
an approach to learn the correlation and exclusion between action classes. In
particular, we learn a classifier that reweights the action score based on the
ordered scores of other classes, as illustrated in Fig. 1(b).

The rest of this paper is structured as follows. Section 2 reviews related
prior work. Section 3 shows that using the score distribution is more effective
than using the maximum and average scores (and shed some light on the poor
performance of using maximum score for action recognition and MIL in gen-
eral). Section 4 presents a learning formulation to capture the correlation and
exclusion of the actions to improve the performance of action classifiers. Subsec-
tion 5.1 details the experimental setup on Hollywood2, TVHI, and HMDB51,
which are among the most challenging datasets for human action recognition.
Subsection 5.1 also describes another technical contribution of our work, which
is the use of data augmentation to obtain stronger performance. Since a video
and its left-right mirrored video depict the same action, we propose to learn a
classifier that is invariant to flipping by data augmentation. This is related to
several works that use virtual samples [28, 29]. Subsection 5.2 demonstrates that
our proposed techniques significantly improve the state-of-the-art performance.
This is achieved using standard, publicly available, features and encodings.

2 Reviews of Related Work and Least-Squares SVM

The need for considering the temporal extent of actions in training or testing
has been studied before. Duchenne et al. [6] and Satkin & Hebert [5] observed
that temporal boundaries of actions in training videos are not precisely defined
in practice. They proposed methods to crop training videos using discriminative
clustering and cross-validation performance. Nowozin et al. [30] and Nguyen et

al. [31] presented algorithms that sought discriminative subsequences in video.
Yuan et al. [32] proposed a branch-and-bound algorithm for 3D bounding-box
cropping, by maximizing the mutual information of features and actions. Hoai et
al [33] performed joint segmentation and classification. Gaidon et al. [34] learned
actoms for modeling and localizing actions. Accurate temporal localization, how-
ever, is not a focus of this paper. Instead, our effort is to improve the classifier
performance based on the distribution of classification scores.

The inadequacy of using the maximum score in MIL has been observed be-
fore. Cheung & Kwok [35] suggested combining bag and instance feature vec-
tors to improve the classification performance. Hu et al. [17] considered both
the maximum and the average scores, and reported better classification perfor-
mance for the average score in many experiments. In this paper, we propose

4 M. Hoai & A. Zisserman

to consider the classifier scores of all instances instead. It will be seen that the
distribution-based decision is more effective than both the extreme (max) and
summary (mean) statistics.

A part of this work is related to Ordered Weighted Averaging (OWA) [36, 37],
which is an aggregation operator for multiple criteria. Our work is also based on
ranking and aggregation, but it considers a single criterion of multiple instances
instead. There are also some multiple instance learning formulations that use
OWA or a similar fusion operator [38, 39].

High-level representation from the outputs of multiple classifiers have been
shown to help object detection and image classification. Aytar et al. [40] com-
bined the outputs of multiple concept detectors to improve retrieval results.
Rabinovich et al. [41] incorporated semantic object context to improve a cate-
gorization model. Torresani et al. [42], Li et al. [43], and Sadanand & Corso [44]
proposed classemes, object bank, and action bank, respectively, which are generic
classifiers for generating high-level feature vectors. Bourdev et al. [45] obtained
attribute classifiers from poselet outputs. Song et al. [46] proposed Context-
SVM that provided mutual benefits for object detection and image classification.
Felzenszwalb et al. [13] re-scored a detector based on the scores and locations of
multiple detectors. Unlike the aforementioned approaches that consider a fixed
order of classifiers, our methods ground the decisions on the distribution and
ordering of action scores. As will be seen, this is crucial for action recognition.

Least-Squares SVM. We propose to use Least-Squares Support Vector Ma-
chines (LSSVM) [47]. LSSVM, also known as kernel Ridge regression [48], has
been shown to perform equally well as SVM in many classification benchmarks [49].
LSSVM has a closed-form solution, which is a computational advantage over
SVM. Furthermore, once the solution of LSSVM has been computed, the solu-
tion for a reduced training set obtaining by removing any training data point
can found efficiently. This enables reusing training data for further calibration
(e.g., used in [50, 51]). This section reviews LSSVM and the leave-one-sample-out
formula.

Given a set of n data points {xi|xi ∈ ℜd}ni=1 and associated labels {yi|yi ∈
{1,−1}}ni=1, LSSVM optimizes the following:

minimize
w,b

λ||w||2 +

n
∑

i=1

(wTxi + b − yi)
2. (1)

For high dimensional data (d ≫ n), it is more efficient to obtain the solution
for (w, b) via the representer theorem, which states that w can be expressed as
a linear combination of training data, i.e., w =

∑n

i=1 αixi. Let K be the kernel
matrix, kij = xT

i xj . The optimal coefficients {αi} and the bias term b can be
found using closed-form formula: [αT , b]T = My. Where M and other auxiliary
variables are defined as:

R =

[

λK 0n

0T
n 0

]

,Z =

[

K

1T
n

]

,C = R+ ZZT ,M = C−1Z,H = ZTM. (2)

Action recognition using score distribution and ranking 5

If xi is removed from the training data, the optimal coefficients can be computed:

[

α(i)

b(i)

]

=

[

α

b

]

+

(

[αT b]zi − yi
1− hii

)

mi. (3)

Here, zi is the ith column vector of Z and hii is the ith element in the diagonal
of H. Note that R,Z,C,M, and H are independent of the label vector y. Thus,
training LSSVMs for multiple classes is efficient as these matrices need to be
computed once. A more gentle derivation of the above formula is given in [52].

3 Subsequence-Score Distribution (SSD)

To handle the ambiguity of the temporal extent of an action in a video clip, we
sample subsequences of the video clip at multiple locations and scales. We com-
pute the improved action score for the video clip based on the score distribution
of the subsequences.

3.1 Formulation

Assume we have learned a base classifier for a particular action. Given a video
clip x, we sample l subsequences x1 · · ·xl of x with replacement, compute their
action scores, and sort the scores in descending order to obtain a vector d,
i.e., d = [sort(f(x1), · · · , f(xl))]T . Here, sort is the function that reorders the
inputs in descending order. With a sufficiently large l, d represents the score
distribution of subsequences from x. In practice, for computational efficiency, it
is unnecessary to sample from the set of all video subsequences because of strong
temporal correlation between nearby frames. We therefore restrict our consider-
ation to a subset of video subsequences. In particular, we divide a video clip into
several intervals, and only consider the subsequences that can be obtained by
concatenating a set of adjacent intervals. For example, if a video is divided into
10 intervals, then there are l = 55 possible subsequences. Details of how a video
is divided into intervals and the number of subsequences are given in Sec. 5.1.

Given n video clips {xi}
n
i=1, each represented by the distribution feature

vector di, we learn an SSD classifier by optimizing the following objective:

minimize
s,b

n
∑

i=1

max(1− yi(s
Tdi + b), 0) (4)

s.t.

l
∑

j=1

sj = 1, and s1 ≥ s2 ≥ · · · ≥ sl ≥ 0. (5)

The above optimization problem seeks a weight vector s and the bias term b for
separating between score distribution vectors of positive and negative data. The
objective in Eq. (4) is the sum of Hinge losses, as used in the standard SVM
objective. Constraint (5) requires the weights to be non-negative, monotonic,

6 M. Hoai & A. Zisserman

and have unit sum. Recall that di are classification scores sorted in descending
order. The weights should be non-negative and monotonic to emphasize the
relative importance of higher classification scores. The weights should have unit
sum because we are learning the weights for score distributions. The feasible set
of s subsumes two special cases:

1. s1 = 1, s2 = · · · = sl = 0. This corresponds to using the maximum score.
2. s1 = s2 · · · = sl =

1
l
. This corresponds to using the average score.

The optimization problem (4) is linear. It can be efficiently solved by any
linear programming tool, e.g., Cplex1. Once s, b have been learned, we compute
the improved recognition score for a test video x as follows. First, sample l
subsequences x1, · · · ,xl of x. The improved classifier is defined as: f∗(x) =
sT [sort(f(x1), · · · , f(xl))]T + b. This technique is illustrated in Fig. 1(a).

The same set of training data can be used to learn the base classifier f and
the improved classifier f∗. To avoid overfitting, we compute di using the leave-
one-out versions of f . Let f ′ be the base classifier by removing xi from the
training data, di = [sort(f ′(x1

i), · · · , f
′(xl

i))]
T . If LSSVM is used, the leave-one-

out classifiers can be computed efficiently with closed form formula, as shown in
Sec. 2. Nevertheless, the technique proposed here can be applied to any type of
classifiers.

3.2 Controlled Experiments on Synthetic Data

When would it be beneficial to use SSD and how much improvement should we
expect? To answer this question, we perform a set of controlled experiments on
synthetic data. We vary two important factors that affect the difficulty of action
recognition: (i) the separation between positive and negative descriptors; and
(ii) the proportion of the target action in each video clip.

We generate 200 positive and 2000 negative video clips, half of them are
used for training and half for testing. Each positive video contains the action of
interest, however, only a portion of the video depicts the action. The percent-
age of the video that corresponds to the action is a controlled parameter of the
experiment, which will be referred as the action percentage. For simplicity, we
assume the action part is contiguous, and its location is randomly distributed.
Each video is represented by a sequence of 1000 synthetic descriptors; these
descriptors are analogous to dense trajectory descriptors for real videos [4] (ex-
plained in Sec. 5.1). Negative descriptors (for negative videos or outside the
non-action parts of positive videos) are generated from a 10-dimensional Nor-
mal distribution. Positive descriptors (for the action parts of positive videos)
are also generated from a 10-dimensional Normal distribution, except for the
first dimension which is shifted by a value µ. µ is a controlled parameter of this
experiment, and it inversely correlates with the difficulty of separating between
positive and negative descriptors. We use Fisher vector [53] with two Gaussians
to encode descriptors. Each video is divided into 10 intervals, and 55 possible

1 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Action recognition using score distribution and ranking 7

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100
Action percentage: 10%

µ

A
P

Whole
Mean
Max
SSD

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100
Action percentage: 30%

µ

A
P

Whole
Mean
Max
SSD

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100
Action percentage: 50%

µ

A
P

Whole
Mean
Max
SSD

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100
Action percentage: 100%

µ

A
P

Whole
Mean
Max
SSD

Fig. 2. Average precision as a function of: i) the action percentage, which is the per-
centage in each positive video that depicts the action; and ii) the separation between
positive and negative descriptors. SSD (red solid curves) outperforms competing ap-
proaches, but the relative advantage depends on these two factors

video subsequences are considered, each is represented by a Fisher vector. As
will be seen in Sec. 5, except for using synthetic data, the experiment setup here
is the same as the setup for real data.

For each setting of the controlled parameters, we repeat the experiment 50
times and average the results. We compare SSD with Whole, Max, and Mean.
Whole is the method that is trained on the whole video clips and tested on the
whole video clips. Whole is the base classifier for Max, Mean, and SSD. Max
is the method that uses the maximum subsequence score, while Mean uses the
average score. SSD is the method that is based on the entire score distribution.

Fig. 2 plots the Average Precision (AP) for action recognition as a function
of: i) the action percentage; and ii) the offset between positive and negative
descriptors. The four subplots correspond to four different action percentages,
which are 10%, 30%, 50%, 100%. The black solid lines are the performance curves
of Whole, which correlate with the action percentage and µ. In general, using the
maximum score of video subsequences (Max) is better than using the average
score when the the separation between positive and negative descriptors is easy
(high µ) and when the action percentage is low. Conversely, it is better to use
the mean when the base classifier is less accurate and the action percentage is
higher. The proposed approach outperforms both the max and the mean, but
the relative advantage depends on the action percentage and the separability

8 M. Hoai & A. Zisserman

between positive and negative descriptors. For more experiments and further
analysis, please see the supplementary material.

4 Relative Class Scores (RCS)

To capture the correlation and exclusion among action classes, we learn a clas-
sifier for the ranked list of action scores. This section describes this technique.

Consider a particular action and suppose we have learned a base classifier f .
Given a video clip x, f(x) is the score for the given action. Suppose we also have
m classifiers f1 · · · fm for m other action classes. For each training video clip xi,
we construct a Relative Class Score (RCS) vector (Fig. 1(b)) as follows:

ai = [f(xi), sort(f1(xi), · · · , fm(xi))]
T . (6)

We train a linear SVM to separate between RCS vectors of positive data from
RCS vectors of negative data, obtaining a weight vector v and bias term b. The
improved classifier for the target action is defined as:

f∗(x) = vT [f(x), sort(f1(x), · · · , fm(x))]T + b. (7)

The same set of training data can be used to learn the base classifiers f, f1, · · · , fm
and the improved classifier f∗. To avoid overfitting, we compute ai using the
leave-one-out classifiers f ′, f ′

1, · · · , f
′

m, obtained by removing xi from the train-
ing data. This technique is applicable to any type of classifiers. However, if
LSSVM is used, the leave-one-out classifiers can be computed efficiently using
closed form formula, as shown in Sec. 2.

An alternative to the above is to calculate the RCS vector keeping the order
of classes: ai = [f(xi), f1(xi), · · · , fm(xi)]

T (without sorting), as is often done.
However, this performs poorly for action recognition, as will be seen in Sec. 5.2.

5 Experiments on Real Data

5.1 Experimental setup

Datasets. This section describes Hollywood2, HMDB51, TVHI, which are three
datasets used in our experiments. These challenging datasets are widely used for
benchmarking human action recognition methods.

The Hollywood2 dataset [2] has 12 action classes and contains 1707 video
clips collected from 69 different Hollywood movies. The videos are split into a
training set of 823 videos and a testing set of 884 videos. The training and testing
videos come from different movies.

The TVHI dataset [1] consists of 300 video clips compiled from 23 different
TV shows. There are four classes, corresponding to four types of human inter-
action: Handshake, Highfive, Hug, and Kiss. Each of these interactions has 50
videos. There are 100 negative examples, which do not contain any of the above
interactions. We keep the training/testing split of the dataset [1].

Action recognition using score distribution and ranking 9

The HMDB51 dataset [3] contains 6766 video sequences for 51 action cate-
gories. The videos are collected from various sources including digitized movies
and YouTube videos. We follow the suggested protocol for three train-test splits [3].
For every class and split, there are 70 videos for training and 30 videos for testing.
We report the mean performance over the three splits as the overall performance.
Note that we use the original videos and not the stabilized ones.

We measure performance using Average Precision (AP), which is an accepted
standard for action recognition [2, 1, 54–58]. We only compute Accuracy (ACC)
for HMDB51 to compare with published results [4, 59, 3]. In this paper, the
default reporting performance is in AP, if not stated otherwise.

Trajectory features. The feature representation is based on improved Dense-
Trajectory Descriptors (DTDs) [4]. DTD extracts dense trajectories and encodes
gradient and motion cues along trajectories. Each trajectory leads to four feature
vectors: Trajectory, HOG, HOF, and MBH, which have dimensions of 30, 96, 108,
and 192 respectively. We refer the reader to [4] for more details.

The procedure for extracting DTDs is the same as [4] with two subtle modifi-
cations: (i) videos are normalized to have the height of 360 pixels, and (ii) frames
are extracted at 25 fps. These modifications are added to standardize the feature
extraction procedure across videos and datasets. They do not significantly alter
the performance of the action recognition system, as verified in our experiments.

Fisher vector encoding. To encode features, we use Fisher vector [53]. Fisher
vector encodes both first and second order statistics between the feature de-
scriptors and a Gaussian Mixture Model (GMM). In [4], Fisher vector shows an
improved performance over bag of features for action classification. Following
[53, 4], we first reduce the dimension of DTDs by a factor of two using Principal
Component Analysis (PCA). We set the number of Gaussians to k = 256 and
randomly sample a subset of 1,000,000 features from the training sets of TVHI
and Hollywood2 to learn the GMM. There is one GMM for each feature type.
A video sequence is represented by a 2dk dimensional Fisher vector for each de-
scriptor type, where d is the descriptor dimension after performing PCA. As in
[53, 4], we apply power (α = 0.5) and L2 normalization to the Fisher vectors. We
combine all descriptor types by concatenating their normalized Fisher vectors,
leading to a single feature vector of 109, 056 dimensions.

Video subsequences. We divide each video clip into roughly 10 intervals and
only consider video subsequences that can be composed by concatenating adja-
cent intervals. The division into intervals is based on shot boundaries and shot
lengths. We first run a shot boundary detection algorithm (explained below)
to obtain all shot boundaries. We divide the video clip into intervals such that
intervals either include or do not include shot boundaries. The video clip is di-
vided into a sequence of intervals that alternate between those straddling shot
boundaries (which are restricted to about 0.6s in duration) and those in be-
tween. This division is unique and can be constructed deterministically. If the

10 M. Hoai & A. Zisserman

number of intervals is more than or equal 10, we terminate the interval division
procedure. If the number of intervals is less than 10, we partition the longest
intervals (those within shots) to create a total of 10 intervals. Thus, a video clip
is normally divided into 10 intervals except when the video clip has many shot
boundaries. The number of intervals can be smaller than 10 if the clip length
is less than 25 frames (1s). If a video clip is divided into k intervals, the total
number of different subsequences is k(k + 1)/2. Regardless of k, we sample a
fixed l number of subsequences with replacement. We found l = 1100 sufficiently
large for the sample set to represent the true distribution of subsequences. Note
that if k was constant, it would be sufficient to use l = k(k + 1)/2, i.e., to use
all subsequences. But since k varies around 10, we use l = 1100 (≫ k(k+1)/2)
for the sample set for the sample set to be a stable fixed length vector (i.e., not
too sensitive to randomness in the sampling process).

For shot boundary detection, we develop an algorithm based on normalized
color histograms, HOG, and SIFT. Based on normalized color histograms and
HOG, the algorithm produces a set of candidate shot boundaries by thresholding
the difference between pairs of consecutive frames. Subsequently, SIFT matching
is used to remove false candidates. Evaluated on the TVHI dataset, this shot
boundary detection algorithm has 0 false positive and 1 false negative.

5.2 Experimental results

SVM, LSSVM, and the validity of feature extraction. To validate our
video processing and feature extraction procedure, we compare the baseline per-
formance with published results [4]. We evaluate LSSVM and SVM on the Fisher
vectors computed for the entire video clips of the Hollywood2 dataset. These
classifiers achieve APs of 64.63% and 64.71%, respectively. These numbers are
comparable to the AP of 64.30% published by [4]. On HMDB51, LSSVM and
SVM achieve ACCs of 56.3 and 57.0, which are comparable to ACC of 57.2
published by [4]. On the TVHI dataset, LSSVM and SVM yield APs of 61.94%
and 61.92%, respectively. From this experiment, we conclude that: i) the fea-
tures are properly extracted and consistent with [4], and ii) LSSVM and SVM
perform similarly. In subsequent experiments, we choose LSSVM because of its
computational advantage.

Data augmentation. Based on the observation that a video and its left-right
mirrored video depict the same concept, we propose data augmentation to im-
prove the performance. We double the amount of training data by adding videos
obtained by left-right flipping. In testing, we average the classification scores of
a test video and its mirrored version. This leads to a few percent improvement in
AP. Specifically, on Hollywood2, TVHI, and HMDB51 datasets, the APs increase
from 64.63%, 61.94%, 57.53% to 66.68%, 66.6%, 59.70%, respectively. These im-
proved results will serve as the new baselines in subsequent experiments.
Discussion of results. Tab. 1 displays the APs of various methods on three
datasets. Overall, the proposed methods (SSD, RCS, SSD+RCS) significantly
outperform the improved baseline (Whole+). On the HMDB51 dataset, RCS and

Action recognition using score distribution and ranking 11

Table 1. Average Precisions on three datasets. Whole: the classifier is trained on
the whole video clips and tested on the whole video clips. Whole+: same as Whole, but
with data augmentation. Other methods in the table use Whole+ as the base classifier.
Mean, Max: using either the mean or maximum score. SSD: learned classifier for the
score distribution of video subsequences. RCS: improved classifier based on scores of
multiple action classes. SSD+RCS: combined method

With proposed data augmentation

Baseline New baseline Proposed

Class/Mean Whole Whole+ Mean Max SSD RCS SSD+RCS

Hollywood2-Mean 64.6 66.7 68.1 64.8 69.1 69.9 72.7

TVHI-Mean 61.9 66.6 69.1 65.0 69.5 67.0 70.6

HMDB51-Mean 57.5 59.7 58.4 55.9 58.3 63.1 62.2

H
o
ll
y
w
o
o
d
2

AnswerPhone 29.0 33.9 34.0 23.8 32.7 44.6 45.4

DriveCar 94.7 94.5 94.9 92.4 94.7 95.1 96.0

Eat 65.2 65.8 69.3 66.4 69.6 63.9 68.6
FightPerson 84.8 86.1 85.7 86.0 87.4 88.4 89.1

GetOutCar 62.4 67.6 70.7 63.1 70.9 72.4 74.3

HandShake 44.7 48.0 50.3 57.1 57.1 56.9 65.0

HugPerson 51.5 53.4 51.0 48.7 52.8 57.8 58.6

Kiss 65.5 66.2 67.8 61.4 66.3 67.0 68.7

Run 86.1 87.4 87.7 86.2 88.6 88.7 90.4

SitDown 78.3 79.0 81.4 75.6 80.8 82.9 84.6

SitUp 35.4 38.6 41.1 38.0 44.2 39.2 46.4

StandUp 77.8 79.8 82.8 79.2 84.0 81.6 85.4

SSD+RCS outperform Whole+, but SSD does not. On this dataset, Mean and
Max also yield lower performance than Whole+. This is due to the idiosyncrasy
of HMDB51 as it consists of very short video clips (2-3s), which are well clipped
to the target actions.

For a more detailed analysis, Tab. 1 also reports the APs for individual
action classes of Hollywood2. This reveals some notable facts. Max generally
performs poorly, leading to inferior results than Whole+ and Mean. This is per-
haps because human action recognition is a hard problem, so the base classifier
is far from perfect and the maximum subsequence score is unreliable. However,
Max can sometimes outperforms both Whole+ and Mean, e.g., for HandShake.
Among Whole+, Mean, Max, and SSD, the proposed method SSD performs
the best or close to the best in all cases. The combination of SSD and RCS is
consistently outstanding.

The results provided in Tab. 1 are obtained with the base classifiers trained
on the whole video clips. We consider an alternative way of training the base
classifiers as follows. We represent a training video clip by the average of Fisher
vectors computed for its subsequences. We train the base classifiers for this fea-
ture representation. These base classifiers improve the performance of all meth-
ods on Hollywood2 and TVHI datasets, but yield lower results on HMDB51.

12 M. Hoai & A. Zisserman

Table 2. Comparison with previously published results. The proposed methods
(last row) outperform state-of-the-art approaches on Hollywood2 and TVHI datasets.
The second last row is our reproduction results for Wang et al [4]. These methods and
ours use exactly the same features

Hollywood2 AP TVHI AP HMDB51 ACC AP

Vig et al. [54] 59.4 Marin et al. [55] 39.2 Kliper et al. [59] 29.2 –
Jiang et al. [56] 59.5 Patron et al. [1] 42.4 Jiang et al. [56] 40.7 –
Mathe et al. [57] 61.0 Gaidon et al. [58] 55.6 Jain et al. [61] 52.1 –
Jain et al. [61] 62.5 Yu et al. [62] 55.9 Wang et al. [4] 57.2 –
Wang et al. [4] 64.3 Hoai et al. [63] 56.3 Peng et al. [60] 66.8 –

DTD-SVM [4] 64.7 DTD-SVM [4] 61.9 DTD-SVM [4] 57.0 57.8

SSD+RCS 73.6 SSD+RCS 71.1 TempoPyra+RCS 60.8 65.9

On the Hollywood2 dataset, the APs for Whole+ (tested on the whole video
clips), Mean, Max, SSD, RCS, SSD+RCS are 67.6, 68.9, 66.0, 70.0, 72.4, 73.6,
respectively. On TVHI dataset, the APs for Whole+, Mean, Max, SSD, RCS,
SSD+RCS are 66.5, 68.6, 65.8, 69.9, 70.0, 71.1, respectively.

Tab. 2 compares the performances from SSD+RCS to previously published
results. It is evident that the performance exceeds the previous state of the art
results by a wide margin. Very recently, after the completion of this work, the
state-of-the-art accuracy on HMDB51 was reestablished to be 66.8 [60]. However,
[60] used different feature representation and encoding, which may also gain
benefit from SSD and RCS.

A complementary technique to the proposed methods is to use temporal pyra-
mid. Following this direction, we develop a method with a 2-layer pyramid: (i)
divide a video clip into two halves, (ii) compute the Fisher vectors for both halves
and the whole video clip, and (iii) represent the video clip by concatenating the
three Fisher vectors. We will refer to this method as TempoPyra. TempoPyra
(with data augmentation) outperforms Whole+ on Hollywood2 and HMDB51,
but not on TVHI. Specifically, the APs of TempoPyra on Hollywood2, TVHI,
and HMDB51, are 68.7, 66.0, and 62.4, respectively. These results are lower
than the performance of the proposed methods. Furthermore, it is important to
emphasize that TempoPyra and the proposed methods are complementary, as
video clips and video subsequences can be represented using a temporal pyramid.
For example, the combination of TempoPyra and RCS yields an AP of 65.9 on
HMDB51, which outperforms the state-of-the-art results, as shown in Tab. 2.

Analysis of SSD classifiers. Fig. 3 shows the weight distribution of SSD clas-
sifiers for several actions of the Hollywood2 dataset. Recall that the scores are
sorted in descending order and the weights decrease monotonically. For Answer-
Phone, our algorithm suggests to aggregate the scores from the top 80 percentile.
Meanwhile, for HandShake, the algorithm suggests to consider the top 35 per-
centile only. These results are intuitively consistent with the analysis in Sec. 3.2.
For a handshake in Hollywood movies, the temporal extent of the actual hand-

Action recognition using score distribution and ranking 13

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3
AnswerPhone

W
e

ig
h

t

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3
HandShake

W
e

ig
h

t

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3
FightPerson

W
e

ig
h

t

Fig. 3. Weights for SSD classifiers for Hollywood2 dataset. Each subplot de-
picts the weights for the score distribution. Weights decrease monotonically, and the
area under the curve is always 1. AnswerPhone aggregates scores from 80% of video
subsequences, while HandShake only uses the top 35 percentile

0 1 2 3 4 5 6 7 8 9 10 11

−2

−1

0

1

2

3

4

5

W
e
ig
h
t

AnswerPhone

0 1 2 3 4 5 6 7 8 9 10 11

−2

−1

0

1

2

3

4

5

W
e
ig
h
t

HandShake

0 1 2 3 4 5 6 7 8 9 10 11

−2

−1

0

1

2

3

4

5

W
e
ig
h
t

FightPerson

Fig. 4. RCS weights for actions of Hollywood2 dataset. In each subplot, the
first bar is the weight for the base classifier of the target action. The remaining bars
show the weights for the sorted scores of other classes. All RCS classifiers penalize the
top-rank score of other classifiers (negative weights)

shake is usually brief, and it could possibly interrupted when the camera switches
to showing other people watching the handshake. In contrast, a video clip for
AnswerPhone often shows one or two actors talking on the phone for a period
time, as long as the length of the phone conversation. Empirical evidence in
Tab. 1 also confirms this intuition. Mean outperforms Max for AnswerPhone,
and Max outperforms Mean for HandShake. SSD learns from data, and it per-
forms close to the best of Max and Mean in both cases. For some other actions
such as FightPerson and SitUp, SSD outperforms both Max and Mean.

Analysis of RCS classifiers. Fig. 4 shows the RCS weights for the combined
SSD+RCS classifiers on the Hollywood2 dataset. For all actions, the RCS classi-
fier emphasizes the score of the target class by using a high positive weight, and
it penalizes the highest scores of the other classes (negative weights). The spread
of the penalty weights depends on the action, which is learned from the data. The
use of RCS drastically improves AP (e.g., from 32.7 to 45.4 for AnswerPhone,
and from 57.1 to 65.0 for HandShake).

It is crucial to sort the scores of other action classes when constructing the
feature vectors to train the RCS classifier. If not, the RCS classifier brings no
benefit. Specifically, if the scores are kept based on the order of the classes, the
APs for SSD+RCS on Hollywood2 and TVHI are 69.3 and 69.4. These APs are

14 M. Hoai & A. Zisserman

similar to the APs of not using RCS; SSD alone achieves APs of 69.1 and 69.5
on these two datasets. We also experimented with applying the sigmoid function
on the raw SVM scores before learning the RCS classifier with unsorted scores,
but this also performs poorly.

Parameter setting. The proposed methods require tuning few parameters.
LSSVM has only a single parameter (λ in Eq. (1)), and its classification perfor-
mance is not too sensitive to λ. In all of our experiments, we set λ = 10−3 × n,
where n is the number of training examples. The formulation for learning SSD
classifiers has no parameter.

6 Conclusions, Discussions, and Future Work

We have proposed several techniques for human action recognition, improving
the state-of-the-art performance on three challenging benchmark datasets. First,
we used data augmentation to learn a flipping invariant classifier. Second, we
replaced SVMs by Least-Squares SVMs, which performed equally well and are
more computationally efficient. Moreover, Least-Squares SVM enabled reusing
training data for further tuning and calibration. Third, we proposed distribution-
based classifiers to address the temporal ambiguity of actions, proving its advan-
tage over using maximum and average scores. Fourth, we showed action recog-
nition can benefit from exploiting the correlation and exclusion between action
classes, by learning a classifier for the relative action scores.

We have applied the aforementioned techniques to improve the performance
of base classifiers. In this paper, we simply obtained the base classifiers by train-
ing them on the whole video clips. We have not considered updating the base
classifiers after improvement. A direction for future work is to investigate an iter-
ative scheme for updating and improving the base classifiers, as in MI-SVM [12].

Empirical evidence in this paper suggests that using the maximum score
leads to poor performance in many cases. On the one hand, this is consistent
with empirical observation reported earlier [35, 17]. On the other hand, it seems
to conflict with the success of several weakly-supervised learning systems such as
the Deformable Part Model (DPM) [13] for object detection. There are several
possible reasons for the good performance of DPM. First, it is trained on super-
vised data, where the object location is given. Second, the location of a part of a
DPM is heavily regularized by a quadratic function enforcing the part to remain
close to an anchor point. This prevents the model selecting the part location
using the maximum score alone. If this is indeed a reason for the success of the
DPM, we could possibly adapt it for action recognition by putting regularization
on the location of the action. This is another direction for future investigation.

Acknowledgements.

This work was supported by the EPSRC grant EP/I012001/1 and a Royal So-
ciety Wolfson Research Merit Award.

Action recognition using score distribution and ranking 15

References

1. Patron-Perez, A., Marszalek, M., Reid, I., Zisserman, A.: Structured learning of
human interactions in TV shows. IEEE Transactions on Pattern Analysis and
Machine Intelligence 34 (2012) 2441–2453

2. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. (2009)

3. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: A large video
database for human motion recognition. In: Proceedings of the International Con-
ference on Computer Vision. (2011)

4. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceed-
ings of the International Conference on Computer Vision. (2013)

5. Satkin, S., Hebert, M.: Modeling the temporal extent of actions. In: Proceedings
of the European Conference on Computer Vision. (2010)

6. Duchenne, O., Laptev, I., Sivic, J., Bach, F.R., Ponce, J.: Automatic annotation
of human actions in video. In: Proceedings of the International Conference on
Computer Vision. (2009)

7. Buehler, P., Everingham, M., Zisserman, A.: Learning sign language by watching
TV (using weakly aligned subtitles). In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2009)

8. Niebles, J.C., Chen, C.W., Fei-Fei, L.: Modeling temporal structure of decompos-
able motion segments for activity classification. In: Proceedings of the European
Conference on Computer Vision. (2010)

9. Lan, T., Wang, Y., Mori, G.: Discriminative figure-centric models for joint action
localization and recognition. In: Proceedings of the International Conference on
Computer Vision. (2011)

10. Shapovalova, N., Vahdat, A., Cannons, K., Lan, T., Mori, G.: Similarity con-
strained latent support vector machine: An application to weakly supervised action
classification. In: Proceedings of the European Conference on Computer Vision.
(2012)

11. Prest, A., Schmid, C., Ferrari, V.: Weakly supervised learning of interactions
between humans and objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence 34 (2012) 601–614

12. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for
multiple-instance learning. In: Advances in Neural Information Processing Sys-
tems. (2003)

13. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part based models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32 (2010) 1627–1645

14. Dietterich, T., Lathrop, R., Lozano-Pérez, T.: Solving the multiple-instance prob-
lem with axis-parallel rectangles. Artificial Intelligence 89 (1997) 31–71

15. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In:
Advances in Neural Information Processing Systems. (1998)

16. Zhang, Q., Goldman, S.A.: EM-DD: An improved multiple-instance learning tech-
nique. In: Advances in Neural Information Processing Systems. (2002)

17. Hu, Y., Li, M., Yu, N.: Multiple-instance ranking: Learning to rank images for
image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2008)

18. Ray, S., Craven, M.: Supervised versus multiple instance learning: an empirical
comparison. In: Proceedings of the International Conference on Machine Learning.
(2005)

16 M. Hoai & A. Zisserman

19. Wohlhart, P., Köstinger, M., Roth, P.M., Bischof, H.: Multiple instance boosting
for face recognition in videos. In: Proceedings of the International Conference on
Pattern Recognition. (2011)

20. Gartner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In:
Proceedings of the International Conference on Machine Learning. (2002)

21. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded in-
stance selection. IEEE Transactions on Pattern Analysis and Machine Intelligence
28 (2006) 1931–1947

22. Kwok, J.T., Cheung, P.M.: Marginalized multi-instance kernels. In: International
Joint Conference on Artificial Intelligence. (2007)

23. Ping, W., Xu, Y., Wang, J., Hua, X.S.: FAMER: Making multi-instance learning
better and faster. In: International Conference on Data Mining. (2011)

24. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as
non-i.i.d. samples. In: Proceedings of the International Conference on Machine
Learning. (2009)

25. Ping, W., Xu, Y., Ren, K., Chi, C.H., Shen, F.: Non-i.i.d. multi-instance dimension-
ality reduction by learning a maximum bag margin subspace. In: AAAI Conference
on Artificial Intelligence. (2010)

26. Li, W., Duan, L., Xu, D., Tsang, I.W.H.: Text-based image retrieval using pro-
gressive multi-instance learning. In: Proceedings of the International Conference
on Computer Vision. (2011)

27. Hajimirsadeghi, H., jinling Li, Mori, G., Sayed, T., Zaki, M.: Multiple instance
learning by discriminative training of markov networks. In: Proceedings of the
Conference on Uncertainty in Artificial Intelligence. (2013)

28. Poggio, T., Vetter, T.: Recognition and structure from one 2D model view: Obser-
vations on prototypes, object classes and symmetries. Technical Report AIM-1347,
MIT (1992)

29. Vedaldi, A., Blaschko, M., Zisserman, A.: Learning equivariant structured output
svm regressors. In: Proceedings of the International Conference on Computer
Vision. (2011)

30. Nowozin, S., Bakir, G., Tsuda, K.: Discriminative subsequence mining for action
classification. In: Proceedings of the International Conference on Computer Vision.
(2007)

31. Nguyen, M.H., Torresani, L., De la Torre, F., Rother, C.: Weakly supervised dis-
criminative localization and classification: a joint learning process. In: Proceedings
of the International Conference on Computer Vision. (2009)

32. Yuan, J., Liu, Z., Yu, Y.: Discriminative subvolume search for efficient action de-
tection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (2009)

33. Hoai, M., Lan, Z.Z., De la Torre, F.: Joint segmentation and classification of human
actions in video. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2011)

34. Gaidon, A., Harchaoui, Z., Schmid, C.: Actom sequence models for efficient ac-
tion detection. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2011)

35. Cheung, P.M., Kwok, J.T.: A regularization framework for multiple-instance learn-
ing. In: Proceedings of the International Conference on Machine Learning. (2006)

36. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Transactions on Systems, Man and Cybernetics 18 (1988)
183–190

Action recognition using score distribution and ranking 17

37. Yager, R.R., Filev, D.P.: Induced ordered weighted averaging operators. IEEE
Transactions on Systems, Man and Cybernetics 29 (1999) 141–150

38. Hajimirsadeghi, H., Mori, G.: Multiple instance real boosting with aggregation
functions. In: Proceedings of the International Conference on Pattern Recognition.
(2012)

39. Li, F., Sminchisescu, C.: Convex multiple-instance learning by estimating likeli-
hood ratio. In: Advances in Neural Information Processing Systems. (2010)

40. Aytar, Y., Orhan, O.B., Shah, M.: Improving semantic concept detection and
retrieval using contextual estimates. In: ICME. (2007)

41. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects
in context. In: Proceedings of the International Conference on Computer Vision.
(2007)

42. Torresani, L., Szummer, M., Fitzgibbon, A.: Efficient object category recognition
using classemes. In: Proceedings of the European Conference on Computer Vision.
(2010)

43. Li, L.J., Su, H., Xing, E.P., Fei-Fei, L.: Object bank: A high-level image represen-
tation for scene classification and semantic feature sparsification. In: Advances in
Neural Information Processing Systems. (2010)

44. Sadanand, S., Corso, J.J.: Action bank: A high-level representation of activity in
video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. (2012)

45. Bourdev, L., Maji, S., Malik, J.: Describing people: A poselet-based approach to
attribute classification. In: Proceedings of the International Conference on Com-
puter Vision. (2011) 1543–1550

46. Song, Z., Chen, Q., Huang, Z., Hua, Y., Yan, S.: Contextualizing object detection
and classification. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. (2010)

47. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers.
Neural Processing Letters 9 (1999) 293–300

48. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm
in dual variables. In: Proceedings of the International Conference on Machine
Learning. (1998)

49. Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., DeMoor, B., Vandewalle, J.: Least
Squares Support Vector Machines. World Scientific (2002)

50. Tommasi, T., Caputo, B.: The more you know, the less you learn: From knowledge
transfer to one-shot learning of object categories. In: Proceedings of the British
Machine Vision Conference. (2009)

51. Hoai, M.: Regularized max pooling for image categorization. In: Proceedings of
the British Machine Vision Conference. (2014)

52. Cawley, G.C., Talbot, N.L.: Fast exact leave-one-out cross-validation of sparse
least-squares support vector machines. Neural Networks 17 (2004) 1467–1475

53. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale
image classification. In: Proceedings of the European Conference on Computer
Vision. (2010)

54. Vig, E., Dorr, M., Cox, D.: Space-variant descriptor sampling for action recognition
based on saliency and eye movements. In: Proceedings of the European Conference
on Computer Vision. (2012)

55. Marin-Jimenez, M.J., Yeguas, E., de la Blanca, N.P.: Exploring STIP-based models
for recognizing human interactions in TV videos. PRL 34 (2013) 1819–1828

18 M. Hoai & A. Zisserman

56. Jiang, Y.G., Dai, Q., Xue, X., Liu, W., Ngo, C.W.: Trajectory-based modeling
of human actions with motion reference points. In: Proceedings of the European
Conference on Computer Vision. (2012)

57. Mathe, S., Sminchisescu, C.: Dynamic eye movement datasets and learnt saliency
models for visual action recognition. In: Proceedings of the European Conference
on Computer Vision. (2012)

58. Gaidon, A., Harchaoui, Z., Schmid, C.: Recognizing activities with cluster-trees of
tracklets. In: Proceedings of the British Machine Vision Conference. (2012)

59. Kliper-Gross, O., Gurovich, Y., Hassner, T., Wolf, L.: Motion interchange patterns
for action recognition in unconstrained videos. In: Proceedings of the European
Conference on Computer Vision. (2012)

60. Peng, X., Zou, C., Qiao, Y., Peng, Q.: Action recognition with stacked fisher
vectors. In: Proceedings of the European Conference on Computer Vision. (2014)

61. Jain, M., Jégou, H., Bouthemy, P.: Better exploiting motion for better action
recognition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2013)

62. Yu, G., Yuan, J., Liu, Z.: Propagative hough voting for human activity recognition.
In: Proceedings of the European Conference on Computer Vision. (2012)

63. Hoai, M., Zisserman, A.: Talking heads: Detecting humans and recognizing their
interactions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. (2014)

