
A Flexible Framework for SharedPlans

Minh Hoai Nguyen and Wayne Wobcke

School of Computer Science and Engineering
University of New South Wales
Sydney NSW 2052, Australia

{minhn,wobcke}@cse.unsw.edu.au

Abstract. SharedPlans is an agent teamwork model that provides a formaliza-
tion of the conditions under which a group of agents has a collaborative plan.
This paper describes a general framework for implementing SharedPlans theory
that addresses the computational issues of team formation,group plan elabora-
tion and plan execution, involving coordination, communication and monitoring.
The framework includes a team-oriented programming language for specifying
recipes for SharedPlans, and an extension to a BDI architecture with several meta-
plans for interpreting the plan language. We indicate how the formal requirements
for the establishment of SharedPlans are fulfilled within the framework.

1 Introduction

Agent teamwork models have been shown to be suitable in a range of applications,
such as simulating air combat in a military training environment, Tidhar, Heinze and
Selvestrel [19], and investigating Robot-Agent-Person teams in rescue domains, Scerri
et al.[16]. Teamwork is characterized by a high degree of communication, collaboration
and cooperation. A team of agents not only work together to achieve common goals,
but maintain an ongoing commitment to the team, helping one another when necessary,
keeping others informed of relevant information, etc. In addition, agents working in
teams must maintain mutual beliefs about the world (beliefsnot only about the world
but about other agents’ beliefs), joint goals (goals the team has collectively agreed to
adopt), and joint intentions (commitments not only to the agent’s own actions but to
those of the team). Underpinning this team behaviour must bemechanisms to support
team formation, communication between agents, synchronization and monitoring of the
execution of joint plans, and the fulfilment of obligations to inform the team of relevant
facts or notify the team when it is appropriate to abandon a team plan. Thus teamwork
applications are complex, both theoretically and computationally.

There is a substantial “gap” between theory and practice forcomputational mod-
els of teamwork. For example, the theory of joint intentionsdeveloped by Cohen and
Levesque [4] presents a formalization of joint persistent goals, goals such that all team
members have that goal, and in addition, a commitment that ondropping the goal, to
notify the other team members that the goal is no longer mutually held. This obligation
to inform others on abandoning the team goal captures only one basic computational
aspect of teamwork. The more complex theory of SharedPlans developed by Grosz and
Kraus [7] shows how structured team plans can be modelled. SharedPlans theory aims



to formalize the conditions on the mental attitudes an agentmust have to engage in
collaborative activities, similar to the approach of Bratman [2] in which cooperative
activity results from an interlocking set of intentions held by multiple agents. Shared-
Plans theory captures some complex constraints on the beliefs of agents participating
in a team, but does not address computational issues surrounding the formation and
execution of SharedPlans.

In contrast, existing computational approaches to teamwork, e.g. Tidhar [18], Kinny
et al. [11], Tambe [17], Pynadathet al. [13] and the JACKTeams model [10], are fo-
cused on the need for efficient architectures, languages andplatforms for developing
applications, and are not well-motivated theoretically. This makes team-based applica-
tions built using those approaches difficult to understand.Hence we believe there is
a need for a more theoretically sound implementation of a teamwork model that also
addresses computational concerns.

In this paper, we present a general, flexible, approach to implementing the Shared-
Plans theory of Grosz and Kraus [7, 8] using as a basis a PRS-type architecture, Rao and
Georgeff [14]. The approach, implemented using JACK Intelligent AgentsTM, allows
programmers to specify team plans that are executed using the standard BDI interpreter.
The approach addresses the computational concerns of team-oriented programming,
such as how agents in a team agree on the form and structure of the team, how they
synchronize their actions with one another, how and when they communicate with one
another, how they monitor the execution of their joint plansand activities, and how they
agree to abandon infeasible joint activities – in a manner consistent with SharedPlans
theory. Our framework thus goes much further than the work ofGrosz and Kraus [8],
who describe an implementation of SharedPlans in a “Truckworld” environment, and
that of Grosz and Hunsberger [5], who propose a SharedPlans extension (unimple-
mented) to the IRMA architecture of Bratman, Israel and Pollack [3], as both these ap-
proaches present general-purpose algorithms, but which are domain independent only
for the formation of SharedPlans. The main contribution of our approach is a team-
oriented programming language for specifying team plans, and domain-independent
mechanisms, inherited from JACK, for SharedPlan executionand monitoring.

It should be noted that there are also several other implementations of SharedPlans.
These include an electronic commerce system, Hadad and Kraus [9], a collaborative
interface for distance learning (DIAL), Ortiz and Grosz [12], and a multi-agent system
for collaboration of heterogeneous groups of people and computer systems (GigAgent),
described in Grosz, Hunsberger and Kraus [6]. SharedPlans theory is also used as the
basis of the Collagen dialogue system, Rich and Sidner [15].However, all these systems
are special-purpose implementations of the theory for specific problems and do not
provide a general implementation of SharedPlans, whereas our framework provides an
architecture for implementing SharedPlans independent ofany specific application.

The remainder of this paper is organized as follows. Section2 contains a sum-
mary of the main definitions of SharedPlans theory. In Section 3, we present MIST, our
framework for implementing SharedPlans, describing the language for team-oriented
programming and the internal architecture of MIST agents. In Section 4, we indicate
how the basic definitions of SharedPlans theory are satisfiedin MIST. Finally, we com-
pare MIST to other general team-oriented programming platforms.



2 SharedPlans Theory

SharedPlans theory is a formalization of the mental attitudes of agents engaging in
group activities. In SharedPlans theory, a group of agents have a collaborative plan when
they each hold certain beliefs, desires and intentions. Thus the formalization attempts
to define some complex concepts, such as full SharedPlans andpartial SharedPlans,
based on these basic mental attitudes. The formalization isgiven in first-order logic
enhanced with several primitive predicates, modal operators, meta-predicates and action
functions. Some axioms also govern the commitments and behaviour of agents. This
section provides a brief summary of the main definitions of SharedPlans theory.

SharedPlans theory distinguishes between two kinds of intentions: intentions to per-
form an action (IntTo) and intentions that a proposition holds (IntThat). An agent in-
tending to do an action must commit to doing that action, and must hold appropriate
beliefs about its ability to perform the action, Grosz, Hunsberger and Kraus [6]. Int-
That is used to represent an agent’s expectation that some proposition will hold or some
actions will be performed (possibly by other agents). An agent intending that a propo-
sition holds must be committed to doing what it can to help make the proposition hold.
However, unlike IntTo, with IntThat, it is not necessary forthe agent to do or to be able
to do anything.

A group of agents are said to have a SharedPlan for doing an action if they mutu-
ally believe that all members of the group are committed to having the action done. In
addition, there exists a recipe such that the group mutuallybelieve the need to perform
all subactions in the recipe. Furthermore, the group must mutually believe that every
subaction is catered for by a capable agent or subgroup of agents.

A more formal definition of a full SharedPlan, adapted from Grosz, Hunsberger
and Kraus [6], is as follows. LetFSP(Gr, α, Rα) denote that a groupGr has a full
SharedPlan to do actionα using recipeRα. FSP(Gr, α, Rα) holds if and only if the
following conditions are satisfied:

1. Gr has a mutual belief that each member ofGr intend thatGr doα.
2. Gr has a mutual belief thatGr has a full recipeRα for doingα.
3. For each subactionβ in Rα, (i) there is an agentAβ in Gr having an individual

plan or a subgroupGr′ of Gr having a full SharedPlan to doβ, (ii) Gr has a
mutual belief thatAβ /Gr′ has an individual plan/full SharedPlan to doβ and is
able to doβ – note that agents who are not members ofGr′ are not required to
know the recipe involved, and (iii)Gr has a mutual belief that each agent inGr

intends thatAβ /Gr′ be able to doβ.

Note that the theory is typically understood as providing conditions on the attribu-
tion of SharedPlans to a group of agentsat the time of plan formation. It is unclear what
SharedPlans a group of agents has during execution (e.g. whether they continue to have
the whole SharedPlan or only the part remaining to be executed). This is because the
notion of individual intention used in SharedPlans theory is not precisely defined (one
might go further, in that if the theory of Bratman [1] is followed, an agent would no
longer intend to do an action already completed; in such a case, the SharedPlans held
by the agents are constantly changing as execution proceeds).



SharedPlans theory also provides a definition of a partial SharedPlan. Partial Shared-
Plans are plans in which the recipes for the actions might be incomplete or in which
some subactions have not been assigned to any agent or any subgroup of agents. In
the case of a partial SharedPlan, the group must have a full plan for elaboration of the
partial plan into a full plan.

A more formal definition of a partial SharedPlan (with the amendments to the full
SharedPlan definition highlighted) is as follows. LetPSP(Gr, α, Rα) denote that a
groupGr has a partial SharedPlan to do actionα using recipeRα. PSP(Gr, α, Rα)
holds if and only if the following conditions are satisfied:

1. Gr has a mutual belief that each member ofGr intend thatGr doα.
2. Gr has a mutual belief thatGr has a full recipeRα for doingα or that Gr has a

partial recipeRα that may be extended into a full recipe and a full SharedPlan for
selecting such an extended recipe.

3. For each subactionβ in Rα, either (i) there is an agentAβ in Gr having an indi-
vidual plan or a subgroupGr′ of Gr having a partial SharedPlan to doβ, (ii) Gr

has a mutual belief thatAβ /Gr′ has an individual plan/partial SharedPlan to doβ

and is able to doβ, and (iii) Gr has a mutual belief that each agent inGr intends
thatAβ /Gr′ be able to doβ, or (iv) Gr has a mutual belief that there is some agent
in Gr or subgroupGr′′ of Gr that can doβ and that there is a full SharedPlan to
select such an agent/subgroup.

The formalism of Grosz and Kraus [8] makes clearer some subtle points in the
definition, e.g. with “Gr′ is able to doβ” each agent inGr′ must know a recipe that
the group can use to doβ (but the notion of group ability is not analysed any further),
hence with the corresponding mutual belief ofGr, each agent ofGr must believe, for
some candidate subgroupGr′, that that subgroup can doβ, butGr need not know (at
the time of forming the partial SharedPlan) which subgroupGr′ will be selected. Now
since SharedPlans theory is unclear about the SharedPlans held during plan execution,
it is not clear whether, at the time thatGr′ is selected, all agents inGr are required
to know the identity ofGr′. However, we believe that this condition would need to be
satisfied in any practical implementation.

3 MIST: Minimal Infrastructure for SharedPlans Theory

This section describes MIST, our general implementation ofSharedPlans theory using
the JACK agents platform. First, MIST provides a specification language for recipes;
recipes, once adopted by a group of agents that form the relevant beliefs and intentions
then become SharedPlans held by the group. Second, MIST extends the JACK archi-
tecture with particular JACK plans (from now on calledprocessesto avoid confusion
with SharedPlans or domain plans) that embody the mechanisms for a group of agents
to form teams, settle on a team plan, then execute a team plan (each agent synchro-
nizing with and communicating relevant information to other agents in the team, while
monitoring events in the environment that affect the success or failure of the team plan).
MIST provides a generic platform for SharedPlans theory in that recipes are specified in
a general “team-oriented programming” language independent of the JACK plans used



to form and execute SharedPlans (these JACK plans act more like meta-plans in taking
SharedPlans as arguments). In MIST, the JACK platform is used for the implementa-
tion of the individual agents, for event processing and inter-agent communication, and
to implement the MIST infrastructure processes for team plan formation and execution.
MIST agents also use the JACK plan library for representing individual agent plans.

3.1 Team-Oriented Programming in MIST

Each agent system contains a set of agents and their capabilities (actions that can be
executed by an agent). The main part of the agent is the recipelibrary. Each recipe is
a hierarchical plan, containing a list of subactions and a list of actions it supports (can
be used to fulfil). In addition, the recipe includes the interdependencies between sub-
actions. As in the approach of Kinnyet al. [11], each recipe also contains information
about the roles in the recipe. Finally, each recipe containsa definition of its success and
failure conditions. Each recipe is of the following form.

recipe => supports-action1, ..., supports-actionn (1)
SUBACTIONS : subaction1, ..., subactionm (2)
SUCCEEDS WHEN : Dependency-Expression (3)
role :: subaction1, ..., subactionl (4)
subaction := Dependency-Expression (5)

The first three lines are followed by any number of lines of theformat (4) or (5). A
line in format (4) gives a role name followed by the subactions carried out by agents in
filling that role. This use of roles provides a convenient wayto express constraints that
some subactions must be performed by the same agent. A line informat (5) describes
the start condition for a subaction. The formula means that the subaction on the left
hand side should start when the conditions in the right hand side are met. The depen-
dency expressions on the right hand side can be any boolean combinations of atomic
conditions of the formCondition+Time, where an optional+Time is a numeric
offset andCondition is of the formEvent (meaning successful termination of an
action or some condition in the world) orEvent@FAILURE (meaning termination
of an action execution with failure). MIST uses communication between agents, where
possible, to synchronize execution using these conditions, so as to minimize the amount
of monitoring required of the individual agents (this communication is also minimized).

As an example, consider a scenario involving a team of three scouting helicopters
and an infantry platoon. The mission is to get the majority ofthe infantry platoon to the
battlefield; it is considered successful even if some scouting helicopters or individual
soldiers are shot down. The team can use aScoutMoveRec recipe, defined as follows,
with Scouting2 as an alternative plan to be used whenScouting fails.

ScoutMoveRec => MoveToBattleField
SUBACTIONS : Scouting, Scouting2, Move, BuildBridge, PumpFuel
SUCCEEDS WHEN : Move
MainTroopRole :: Move, BuildBridge
ScoutingRole :: PumpFuel, Scouting
Move := BuildBridge+5 AND (Scouting OR Scouting2)
Scouting := PumpFuel AND Sunrise
Scouting2 := Scouting@FAILURE



3.2 MIST Agent Architecture

The basis of MIST is an extension to JACK providing processesfor team formation,
group plan elaboration and SharedPlan execution. There arefour types of processes:
group-related elaborator processes (GREPs), group-related intention processes (GRIPs),
single-agent processes (SAPs) and permanent monitor processes (PMPs). GREPs and
GRIPs are responsible for coordinating group activities based on SharedPlans theory,
and are similar to the processes used in Grosz and Kraus [8] (in turn similar to the
algorithms of Kinnyet al. [11]), while SAPs and PMPs are responsible for executing
domain specific actions. Figure 1 depicts the internal architecture of a MIST agent in
terms of the messages sent and received by the agent’s processes.

Group-related
Elaborator
Processes

Single-agent
Processes

launch

Group-related
Intention

Processes

Other agents

Environment

Permanent
Monitor

Processes

Desires
Interested events

Intention hierarchies
Actions’ status

Beliefs about others
Facts/Rules/Others

JACK
Plans

Group 
Recipe
Library

launch

actions

 events

messages messages

messages

messages

messages

messages

Status of actions
& group activities

events
interested in

messages

Beliefs & Desires

Message
Receiver

Fig. 1. MIST Internal Agent Architecture

Team Formation: When a message is sent to an agent requesting it to execute a
group action, the agent invokes a GREP, which computes a listof all groups possibly
able to perform the action (based only on a predefined list of agent capabilities). From
this list, one group and a group leader are randomly chosen, and the GREP sends a
message to every agent in the chosen group asking them to execute the group action.
From this time onwards, the group leader is responsible for coordinating the group
activities. If some agents refuse to participate or fail to respond before the timeout,
the leader broadcasts termination messages. If the leader receives messages from every
agent confirming their commitment to the action, it broadcasts this information to every
member and the team is considered formed. Intuitively, the group now mutually believes
that it is working towards an intention to do the group action, though it is yet to commit
to that intention until a recipe for doing the group action isdetermined.



Group Plan Elaboration: GREPs are used for forming and elaborating group
plans. After a team is formed to execute a group action, GREPsare used to identify
a recipe for the action. The team leader sends messages to each team member request-
ing them to propose a recipe for the group action. The plan to execute the action fails
if no replies are received, otherwise the leader selects oneof the proposed recipes and
requests each team member to commit to the chosen recipe. Therecipe will only be
adopted if all agents respond with such a commitment, and in this case, the team leader
informs each team member of their commitment to the selectedteam plan.

The team leader now initiates a role assignment phase. The leader requests bids
from each team member concerning the roles in the recipe theyare prepared to fill,
then computes a role assignment consistent with the bids. This does not guarantee the
SharedPlan is executable, so next the team leader proposes the role assignment to each
team member, requesting confirmation of the assigned role(s). The agent confirms only
if it believes the whole role assignment is feasible. Again,the group action fails if there
is no agreement on the role assignment. But if agreement is reached, intuitively the team
now has a mutual belief that they have an intention to do the group action and a recipe
for executing it (conditions (1) and (2) in the definition of apartial SharedPlan).

SharedPlan Execution: After a SharedPlan has been established, agents must fulfil
their allocated roles by executing their part of the team plan. For this purpose, GRIPs
are launched for each subaction in the plan. Moreover, as there might be interdependen-
cies between these subactions, the group action and environmental conditions, agents
need to keep track of these dependencies in order to execute their subactions at the ap-
propriate time. The GRIP that corresponds to the intention to executeα first waits for
the start condition of the super-action ofα to be satisfied, then waits for the start con-
dition of α to be satisfied, then executesα, and finally notifies all agents that need to
know about the success or failure ofα. Let us examine these steps in more detail. First,
since each GRIP must wait for the start condition of its super-action, rather than having
the GRIP itself monitor this condition, in MIST an agent relies on the team leader to
notify it when this condition is satisfied. The team leader therefore needs to monitor
this condition. Second, agents know the start conditions oftheir subactions by looking
at the containing recipe. Third, actions are executed by launching either a SAP, in the
case of an individual plan, or a GREP, in the case of a group action. Finally, the agents
needing to know about the status ofα can be determined from the recipe and the assign-
ment of roles to agents. An agent only reports the execution result of an action to the
responsible agents of dependent actions. The responsible agent of a group action is the
team leader, and for an individual action is the agent executing the action. By using this
mechanism, agents in the team are able to synchronize their execution of the team plan
through communication, minimizing the individual monitoring done by each agent.

Permanent monitoring processes (PMPs) are domain-specificprocesses invoked
only once when the agent is created. PMPs constantly monitorthe environment for
events the agent is currently interested in (determined from the agent’s belief set). If a
PMP detects such an event, it sends appropriate messages to the message receiver which
is responsible for invoking the relevant processes to handle the event, for example, to
execute an action. PMPs, therefore, can be used to initiate the whole process of team
formation, group plan elaboration and SharedPlan execution.



4 Satisfying SharedPlans Theory

In this section, we discuss informally how MIST satisfies therequirements of Shared-
Plans theory in attributing a partial SharedPlan to a group of MIST agents – focusing
on the time at which a team plan is formed by the group as the standard case.

First note that though the basis of SharedPlans theory is mutual belief, the theory
provides no indication of how mutual beliefs can be attainedin practice. In MIST, agents
have beliefs annotated by a set of agent names, so each agent can explicitly represent
beliefs about other agents. The basic mechanism for a set of agents to reach mutual be-
lief is communication. Here we make some standard assumptions about the truthfulness
of agents and the reliability of the communication channel that guarantee that mutual
belief can be attained. More precisely, it is assumed that anagent will only send a mes-
sage that it believesα if it does believeα, and that any message sent will eventually be
received (correctly) by its recipients within a known finiteamount of time.

The beliefs required by SharedPlans theory are not explicitly represented in MIST
agents, but instead are derived from their intention structures. In particular, a belief in
the intention to doα is attributed to a MIST agent if it contains GRIPs to execute its
part of a recipeRα for doingα. The team formation and group elaboration procedures
described above result in each agent in the team instantiating appropriate GRIPs, and
moreover, each agent also knows that all agents in the team instantiate their appropri-
ate GRIPs. So the mutual beliefs for conditions (1) and (2) ofthe partial SharedPlans
definition obtain. For condition (2), it is also required that there be a mutual belief that
the recipeRα, if partial, can be extended into a full recipe forα, and that there is a
full SharedPlan for selecting such an extended recipe. Hereagain, it is assumed that the
GREP for group elaboration provides a mutually known mechanism for extending and
selecting a full recipe forα extendingRα. However, note that MIST agents (like JACK
agents) do no computation to determine whetherRα can in fact be extended to a full
SharedPlan forα (doing so would require predicting the state of the world when Rα

needs to be extended), but simply accept this, which is sufficient for condition (2), since
SharedPlans theory requires only thebelief thatRα can be extended to a full recipe.

Consider now condition (3) on partial SharedPlans. For individual actions, clauses
(i)–(iii) are satisfied, whereas for group actions, clause (iv) is satisfied. First, for an
individual action, the existence of a plan for the subactionfollows from the role assign-
ment phase of the group plan elaboration procedure. Each agent is explicitly required
to check its assigned subactions against its capabilities,and only commit to the team
plan if there is no conflict (however, MIST agents, again as inJACK, do not look for
potential conflicts between different team plans). This procedure also establishes clause
(ii), mutual belief in the relevant agent having an appropriate recipe to fulfil its role(s)
in the team plan, and, in the case of group actions, clause (iv), however, only on the un-
derstanding that agents assume that for any group subactionβ, a subsequently invoked
GREP (the mutually known mechanism) will succeed in elaborating that action into a
full SharedPlan forβ. Clause (iii) involves IntThat. Here it is unclear what SharedPlans
theory formally requires (see the discussion in Grosz and Kraus [8]), but we take it that
any agent intends that the agent or group assigned to an action do that action. Appro-
priate communicative actions are included in the GRIPs for executing the SharedPlan
to enable synchronization of action execution and abandonment of the SharedPlan.



Finally, note that although we have focused on the definitions of full and partial
SharedPlans, SharedPlans theory also includes “rationality axioms” about the agents,
such as that agents do not adopt conflicting intentions, Grosz and Kraus [7]. We have
made no attempt to satisfy these axioms, as this would require highly complex reasoning
by the agents that would at best undermine the efficiency of the computational model
of teamwork, or at worst be impossible to compute, especially as agents are typically
operating under a high degree of uncertainty in a dynamically changing environment.

5 Related Work

In this section, we discuss related general computational approaches to modelling team-
work and supporting team-based applications. First, Kinnyet al. [11] presented a BDI-
style approach to representing and executing team plans, which introduced the use of
roles needed to be filled by the agents in a team. Synchronization amongst team mem-
bers occurs through rewriting the team plan to include communicative actions between
agents informing them when a synchronization point has beenreached.

In the STEAM architecture, Tambe [17], each agent has a copy of a plan in which
certain steps are designated as team plans (requiring coordinated execution). For each
team plan, the team leader sends a synchronizing message to establish a joint persis-
tent goal. Once messages from each team member have been broadcast confirming the
establishment of the joint goal, execution can commence. Having the team plan as a
joint persistent goal places obligations on team members toinform the team when that
goal is dropped. The work of Pynadathet al. [13] extended STEAM to a more general
framework for team-oriented programming using TEAMCORE.

Finally, the JACKTeams model released as part of the JACK platform [10] presents
an extension of this approach, based on the work of Tidhar [18]. In the JACKTeams
framework, (software) team agents are treated on a par with individual agents in having
explicit team beliefs, goals and intentions. Team agent beliefs are both derived from, and
propagate to, the beliefs of the individual agents in the team, and the team agent medi-
ates the interaction between team members and acts as a central point of control. Thus
the agents in the team do not need to be aware of one another, whereas SharedPlans
theory requires teams with more autonomous agents which must know one another in
order to negotiate and participate in team activities.

6 Conclusion

In this paper, we presented a general framework for implementing the SharedPlans the-
ory of collaborative action, addressing computational issues such as team formation,
group plan elaboration, and SharedPlan execution, which involves communication, co-
ordination, synchronization and monitoring. The framework includes a team-oriented
programming language for the specification of recipes for SharedPlans, and uses the
JACK platform and BDI architecture for implementing the framework and interpreting
SharedPlans expressed in the recipe language. Our overall aim has been to develop a
generic computational teamwork model that is theoretically well-motivated and more
directly related to the supporting theory.



References

1. Bratman, M.E. (1987)Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, MA.

2. Bratman, M.E. (1992) ‘Shared Cooperative Activity.’The Philosophical Review, 101, 327–
341.

3. Bratman, M.E., Israel, D.J. & Pollack, M.E. (1988) ‘Plansand Resource-Bounded Practical
Reasoning.’Computational Intelligence, 4, 349–355.

4. Cohen, P.R. & Levesque, H.J. (1991) ‘Teamwork.’Noûs, 25, 487–512.
5. Grosz, B.J. & Hunsberger, L. (2004) ‘The Dynamics of Intention in Collaborative Activity.’

Paper presented at the Conference on Collective Intentionalty IV, Siena, Oct, 2004.
6. Grosz, B.J., Hunsberger, L. & Kraus, S. (1999) ‘Planning and Acting Together.’AI Maga-

zine, 20(4), 23–34.
7. Grosz, B.J. & Kraus, S. (1996) ‘Collaborative Plans for Complex Group Action.’Artificial

Intelligence, 86(2), 269–357.
8. Grosz, B.J. & Kraus, S. (1999) ‘The Evolution of SharedPlans.’ in Wooldridge, M. &

Rao, A.S. (Eds)Foundations of Rational Agency. Kluwer Academic Publishers, Dordrecht.
9. Hadad, M. & Kraus, S. (1999) ‘SharedPlans in Electronic Commerce.’ in Klusch, M. (Ed.)

Intelligent Information Agents. Springer-Verlag, Berlin.
10. Howden, N., Rönnquist, R., Hodgson, A. & Lucas, A. (2001) ‘JACK Intelligent AgentsTM–

Summary of an Agent Infrastructure.’ Paper presented at theSecond International Workshop
on Infrastructure for Agents, MAS, and Scalable MAS, Montreal, May, 2001.

11. Kinny, D.N., Ljungberg, M., Rao, A.S., Sonenberg, E.A.,Tidhar, G. & Werner, E. (1994)
‘Planned Team Activity.’ in Castelfranchi, C. & Werner, E. (Eds)Artificial Social Systems.
Springer-Verlag, Berlin.

12. Ortiz, C.L. & Grosz, B.J. (2002) ‘Interpreting Information Requests in Context: A Collabo-
rative Web Interface for Distance Learning.’Autonomous Agents and Multi-Agent Systems,
5, 429–465.

13. Pynadath, D.V., Tambe, M., Chauvat, N. & Cavedon, L. (1999) ‘Toward Team-Oriented
Programming.’ in Jennings, N.R. & Lespérance, Y. (Eds)Intelligent Agents VI. Springer-
Verlag, Berlin.

14. Rao, A.S. & Georgeff, M.P. (1992) ‘An Abstract Architecture for Rational Agents.’Pro-
ceedings of the Third International Conference on Principles of Knowledge Representation
and Reasoning (KR’92), 439–449.

15. Rich, C. & Sidner, C.L. (1998) ‘COLLAGEN: A Collaboration Manager for Software Inter-
face Agents.’User Modeling and User-Adapted Interaction, 8, 315–350.

16. Scerri, P., Pynadath, D., Johnson, L., Rosenbloom, P., Si, M., Schurr, N. & Tambe, M. (2003)
‘A Prototype Infrastructure for Distributed Robot-Agent-Person Teams.’Proceedings of the
Second International Joint Conference on Autonomous Agents and Multiagent Systems, 433–
440.

17. Tambe, M. (1997) ‘Agent Architectures for Flexible, Practical Teamwork.’Proceedings of
the Fourteenth National Conference on Artificial Intelligence (AAAI-97), 22–28.

18. Tidhar, G. (1993) ‘Team-Oriented Programming: Preliminary Report.’ Technical Note 41,
Australian Artificial Intelligence Institute, Apr, 1993.

19. Tidhar, G., Heinze, C. & Selvestrel, M. (1998) ‘Flying Together: Modelling Air Mission
Teams.’Applied Intelligence, 8, 195–218.


