
Temporal System Call Specialization
for Attack Surface Reduction

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, Michalis Polychronakis
Stony Brook University

Abstract
Attack surface reduction through the removal of unnecessary
application features and code is a promising technique for
improving security without incurring any additional overhead.
Recent software debloating techniques consider an applica-
tion’s entire lifetime when extracting its code requirements,
and reduce the attack surface accordingly.

In this paper, we present temporal specialization, a novel
approach for limiting the set of system calls available to a
process depending on its phase of execution. Our approach
is tailored to server applications, which exhibit distinct ini-
tialization and serving phases with different system call re-
quirements. We present novel static analysis techniques for
improving the precision of extracting the application’s call
graph for each execution phase, which is then used to pinpoint
the system calls used in each phase. We show that require-
ments change throughout the lifetime of servers, and many
dangerous system calls (such as execve) can be disabled
after the completion of the initialization phase. We have im-
plemented a prototype of temporal specialization on top of the
LLVM compiler, and evaluated its effectiveness with six pop-
ular server applications. Our results show that it disables 51%
more security-critical system calls compared to existing li-
brary specialization approaches, while offering the additional
benefit of neutralizing 13 more Linux kernel vulnerabilities
that could lead to privilege escalation.

1 Introduction

Modern software is complex. Applications typically support
a wide range of functionalities for different use cases [28,49],
as evidenced by the existence of multiple features, options,
and configuration settings. To support these different features,
programs typically require access to a vast range of privileged
operations from the OS kernel (e.g., allocating memory, creat-
ing new processes, and accessing files or the network), which
are made available through the system call interface.

Some of these capabilities, however, are used by the ap-
plication only once during startup, and are never used again

during the lifetime of the program. This is especially true for
server applications, which once launched, remain running and
serving requests for a long period of time. This means that
all kernel capabilities (i.e., system calls) remain available to
a potentially vulnerable process, and can thus be used as part
of exploitation attempts.

Software debloating and specialization has recently gained
popularity as a technique for removing or constraining un-
used parts of applications, with the goal of reducing the
code and features available to attackers. While some ap-
proaches use static analysis to identify unused parts of shared
libraries [12, 51], others rely on dynamic analysis and train-
ing to identify unneeded parts of the application [13, 21, 48].
Similar techniques have also been applied on containers to
constrain the set of system calls available to the hosted pro-
grams [22, 38, 59]. A key shared characteristic of the above
approaches is that they consider the entire lifetime of a pro-
gram as part of the scope of their analysis.

In this paper, we explore software specialization from a
different perspective, and present temporal system call spe-
cialization, a novel attack surface reduction approach for lim-
iting even further the set of system calls that are available
to a process, depending on its phase of execution. Instead of
treating each application as a single, monolithic entity with
an unchanging set of requirements, temporal specialization
takes into consideration the changes in an application’s re-
quirements throughout its execution lifetime. In particular,
we focus on server applications, which typically exhibit two
distinct initialization and serving phases.

Our main motivation is that many dangerous system calls,
such as execve, which are frequently used as part of exploit
code, are often not removed by existing code debloating and
specialization techniques, because they are required by the
application for legitimate purposes. Crucially, however, oper-
ations such as spawning new processes or creating listening
sockets are typically only performed during the very first
moments of a server’s lifetime—the initialization phase. Tem-
poral specialization automatically derives the set of system
calls required by each execution phase, and restricts the set of

available system calls once the server enters its stable serv-
ing phase. This significantly reduces the set of system calls
available to an attacker.

A crucial requirement for pinpointing the system calls
required in each phase is to construct a sound and precise
call graph. As most server applications are developed using
C/C++, which support indirect function invocations, we must
rely on static code analysis to resolve the possible targets
of indirect call sites. Unfortunately, the state-of-the-art im-
plementations of points-to analysis algorithms suffer from
severe imprecision and overapproximation, which eventually
results in the inclusion of many spurious system calls that
are not actually used. To address this challenge, we propose
two pruning mechanisms that remove spurious edges from
the derived call graph, significantly improving its precision
while retaining its soundness. After identifying the system
calls needed in each phase, we use Seccomp BPF to block any
system calls that are not needed anymore after the completion
of the initialization phase, thereby removing them from the
process’ attack surface.

We implemented a prototype of temporal specialization
for Linux on top of LLVM, and evaluated it with six popular
applications (Nginx, Apache Httpd, Lighttpd, Bind, Mem-
cached, and Redis). We show that many dangerous system
calls, such as execve, can be disabled after the application
enters its serving phase, i.e., when the server application starts
handling client requests and becomes susceptible to attacks.
Our results show that temporal specialization disables 51%
more security-critical system calls compared to existing li-
brary specialization approaches [12, 51], while in many cases
it does not leave room for evasion using alternative system
call combinations. As an added benefit, 53 Linux kernel vul-
nerabilities are neutralized by removing system calls which
serve as entry points for triggering them, 13 of which are not
preventable by library specialization.

Our work makes the following main contributions:

1. We propose a novel temporal system call specialization
approach that considers the different operational charac-
teristics of server applications throughout their different
execution phases.

2. We present type-based and address-taken-based pruning
mechanisms to improve the precision of static analysis
techniques for call graph construction.

3. We evaluate our prototype implementation with six pop-
ular applications and a diverse set of 567 shellcode and
17 ROP payload samples, demonstrating its effective-
ness in blocking exploit code, as well as in reducing the
exposed attack surface of the underlying kernel.

Our prototype implementation is publicly available as an
open-source project at https://github.com/shamedgh/
temporal-specialization.

2 Background and Motivation

User-space applications rely on the system call API to inter-
act with the OS. The Linux kernel v4.15 used in this work
provides 333 system calls, while its latest version 5.6 (as of
June 2020) provides 349. Applications, however, typically
rely only on a subset of these system calls for their opera-
tion. Moreover, their requirements change according to the
phase of execution, e.g., whether the application is being ini-
tialized or serving requests. From a security perspective, this
overabundance of system calls allows an attacker to i) use
the additional system calls to carry out malicious operations
as part of exploiting a vulnerability, and ii) exploit underly-
ing kernel vulnerabilities triggered through system calls and
achieve privilege escalation [22, 31, 32].

2.1 Static vs. Temporal API Specialization

Previous works in attack surface reduction [21, 26, 34, 48, 50]
consider the entire application lifetime, and remove function-
ality that will never be used at any point. When considering
the execution phases of typical server applications, however,
we observe that further specialization can be achieved.

In particular, servers typically start handling client requests
after performing a series of one-time operations for setting up
the process. This initialization phase mainly consists of op-
erations such as parsing configuration files, binding network
ports, and forking worker processes. After the completion
of these tasks, the server enters its main long-term serving
phase for handling client requests. In this stable state, the
server typically performs operations such as reading from and
writing to sockets or files, managing memory, and allocating
tasks to the worker processes. Nginx [7] is an example of a
server which exhibits this behavior. Depending on whether it
is started in “single-process” or “multi-process” mode, Nginx
either executes the function ngx_single_process_cycle,
or forks the configured number of worker processes, each
of which invokes the function ngx_worker_process_cycle.
Both functions mark the beginning of the serving phase by
entering an infinite loop that processes client requests.

The operations performed in these two phases are distinc-
tively different, and thus the required system calls for carrying
them out are also different. For example, if a server only cre-
ates a fixed set of long-lived worker processes during the
initialization phase, it will not need access to system calls
such as fork and execve during the serving phase.

Figure 1 shows a simplified view of the call graph for
Apache httpd [15], one of the most popular open source
web servers. The different shapes correspond to application
functions, library functions, and system calls. The initializa-
tion phase begins with main, and this phase performs oper-
ations such as binding and listening to sockets, and spawn-
ing the worker processes through calls to fork and execve.
The forked worker processes begin execution at the func-

https://github.com/shamedgh/temporal-specialization
https://github.com/shamedgh/temporal-specialization

main

sock_bind

p_listn

child_main read

bind

writev

execve

malloc

bind

listen execve

writev

mmap

read

A
p

ac
h

e
P

ro
ce

ss
 A

d
d

re
ss

 S
p

ac
e

Syscall

Lib. Func.

App. Func.

fork

pre_config

mk_child

proc_fork apr_palloc

file_writev

sock_recv

prctl prctl

mkdir mknod

brctl brctl

setns setns

fcntl fcntl

Unused libc functions

bind

listen execve writev

mmap

fork

read

prctl

mknod brctl

setns

fcntl bind

listen execve writev

mmap

fork

read

prctl

mknod brctl

setns

fcntl

Initialization Serving

Figure 1: Library debloating [12,51] can only remove system calls that are never used during the entire lifetime of the application
(top left). Temporal specialization removes additional system calls that are never used after the initialization phase (top right).

tion child_main, which denotes the beginning of the serving
phase. During this phase, the application performs tasks such
as allocating buffers and handling I/O operations.

Library debloating techniques [12, 51] analyze the code
of a given application to identify and remove parts of the
linked libraries that are not needed by the application, thereby
creating specialized versions of each library. However, they
consider the entire lifetime of the application, and therefore,
in the example of Figure 1, are unable to prevent access to
system calls such as fork and execve—crucial for attackers’
exploit code—as they are used during the initialization phase.

2.2 Seccomp BPF
Seccomp BPF [8] is a mechanism provided by the Linux ker-
nel for restricting the set of system calls that are accessible
by user-space programs. Specifically, Seccomp BPF uses the
Berkeley Packet Filter language [40] for allowing develop-
ers to write programs that act as system call filters, i.e., BPF
programs that inspect the system call number (as well as argu-
ment values, if needed) and allow, log, or deny the execution
of the respective system call. Applications can apply Sec-
comp BFP filters by invoking either the prctl or seccomp
system call from within their own process. After doing so, all
system call invocations from within the process itself or any
forked child processes will be checked against the installed
filters to grant or reject permission. We use this mechanism
to reduce the set of system calls available to programs after
the completion of their initialization phase.

3 Threat Model

We consider remote adversaries armed with a vulnerability
that allows arbitrary code execution. Temporal system call
specialization does not rely on any other exploit mitigations,
but as an attack surface reduction technique, it is meant to

be used along with other code specialization techniques. Our
technique limits the set of system calls an attacker can in-
voke. Therefore, any exploit code (e.g., shellcode or ROP
payload) will have limited capabilities, and will not be able to
invoke system calls that are not needed by the server after its
initialization phase. These typically include security-critical
system calls that can be used to spawn additional services, ex-
ecute shell commands, and so on. Preventing access to these
system calls also effectively neutralizes the corresponding
kernel code, which may contain vulnerabilities that can lead
to privilege escalation [39]—an attacker cannot trigger those
vulnerabilities to compromise the kernel, as the respective
system calls cannot be invoked in the first place.

Time-of-check to time-of-use (TOCTTOU) [60] and other
race condition attacks are out of the scope of this work.

4 Design

Our goal is to reduce the number of system calls available
to attackers once a server application has finished its initial-
ization phase, and thus reduce the exposed attack surface.
Disabling system calls that remain unused during the serving
phase requires the identification of those system calls that the
application uses during the initialization phase, and does not
need afterwards. To achieve this, our approach performs the
following steps, illustrated in Figure 2.

• Build a sound call graph of the application, and derive
the list of imported functions from external libraries.

• Map the application call graph, as well as the imported
external library functions, to system calls.

• Use programmer-supplied information about the func-
tions that mark the beginning of the initialization and
serving phases, respectively, to derive the call graph of
each of these phases of execution.

LLVM
IR

Programmer-provided
Function List

SVF Andersen’s
Analysis

Type-based
Pruning

Address-taken
Based Pruning

Seccomp Filter
Generation

filter(SYS_execve)
filter(SYS_setuid)
filter(SYS_setsid)
filter(SYS_bind)
filter(SYS_listen)

Imprecise Call Graph Precise Call GraphCall Graph with Type-based Pruning

Figure 2: Overview of the process for generating a sound call graph to identify the system calls required by each execution phase.

• Based on these call graphs, identify the list of system
calls required by each phase.

• Create Seccomp filters to restrict the use of unneeded
system calls, and apply them right after the end of the
initialization phase.

4.1 Identifying the Transition Point

We require an expert to identify the boundary where the pro-
gram transitions from the initialization phase to the serving
phase, and pass it to our toolchain through a configuration file.
This is the point where the server begins its main operation
and its system call requirements change. As discussed in Sec-
tion 2.1, in many applications, such as Apache Httpd [15] and
Nginx [7], the transition takes place after the server’s main
process forks, and child processes are created. In others, such
as Memcached [4], which use an event-driven model, this
transition takes place at the beginning of the event loop that
handles client requests. In case of Apache Httpd, as shown in
Figure 1, this transition boundary is defined by the function
child_main, and once execution reaches this function, many
system calls are no longer needed.

Although identifying this transition boundary could per-
haps be automated based on heuristics or dynamic analysis,
we did not invest the effort to develop such a capability, as
this needs to be done only once per application. Manually
pinpointing the entry point to the serving phase is relatively
easy even if one is not familiar with a given code base. This
is the only step where manual intervention is required.

4.2 Call Graph Construction

Applications and libraries written in C/C++ often use indirect
function calls via function pointers. For example, the libapr
and libapr-util libraries used by Apache Httpd, use func-
tion pointers to register custom memory allocation functions,
to register callbacks, and to provide other functionalities that
allow the programmer to customize the library. Resolving
these indirect function calls in a sound and precise manner is
therefore critical for identifying the system calls needed by
the application.

Points-to analysis is a static code analysis technique for
deriving the possible targets of pointers in a program, and is
necessary to soundly identify the target functions of indirect
function calls. We use the well-known Andersen’s points-to
analysis algorithm [14] for this purpose.

Applying Andersen’s algorithm to the source code of an
application generates a sound call graph, in which all indi-
rect call sites are resolved. However, like all static analy-
sis techniques, points-to analysis suffers from imprecision
and overapproximation. For example, Apache’s function
ap_run_pre_config contains an indirect function call. An-
dersen’s points-to analysis reports 136 targets for this function
pointer. We manually verified that only seven targets can ac-
tually be executed, and the rest 129 are spurious targets that
were included due to the imprecision of the analysis.

Previous works [14, 27] have extensively discussed the
challenges of scalable and accurate points-to analysis, and
an in-depth discussion of these issues is out of the scope of
this paper. However, we briefly describe the different sources
of overapproximation we faced in our problem space, along
with how we mitigated them.

4.2.1 Points-to Analysis Overapproximation

Points-to analysis can be modeled with multiple types of sen-
sitivity, which reflect how objects in memory are modeled.
These include field sensitivity, context sensitivity, and path
sensitivity. An analysis algorithm employing a higher degree
of sensitivity will provide more precise results, and in turn
will allow us to gain a more fine-grained view into the system
calls required by each execution phase. However, using higher
degrees of sensitivity has the fundamental problem of increas-
ing the analysis time, while it requires significant effort to
implement such a capability. For example, the popular imple-
mentation of Andersen’s algorithm, SVF [55], supports field
sensitivity (it models every field of a struct type uniquely),
but not context sensitivity or path sensitivity. This results in
imprecision in the results of the points-to analysis.

Context-sensitive analysis considers the calling context
when analyzing the target of a function call. When the same
function is invoked from different call sites, each function call
gets its own “context” and is analyzed independently of the

other function calls. This prevents return values of the called
function from propagating into unintended call sites, leading
to imprecision. This is critical for functions that allocate or
reassign objects referenced by their arguments, or functions
that return pointers. Lack of context sensitivity in such cases
causes the propagation of analysis results to all call sites and
all return sites of these functions. For example, to allocate
memory, Nginx uses a wrapper around memory allocation
routines (e.g., malloc), called ngx_alloc. Because the anal-
ysis used by SVF is not context sensitive, its results contain
significant overapproximation.

Similarly to context sensitivity, the lack of path sensitivity
also causes overapproximation in the results of the points-
to analysis. Path-sensitive points-to analysis takes into ac-
count the predicates of the branch conditions in the control
flow graph of the program when solving pointer constraints.
Without path sensitivity, the analysis cannot reason about the
predicate conditions of a branch.

During our analysis of popular servers, we observed that it
was common for libraries (e.g., libapr) to provide an option
to insert optional callback functions at various stages of the
life cycle of the library. These callbacks are implemented as
indirect function calls, and their call sites are guarded by NULL
checks on the callback function pointer. We call these guarded
indirect call sites, and discuss them further in Section 4.2.3.

Due to the lack of context sensitivity, even if no callback
function is registered, the points-to analysis can return spuri-
ous targets for the guarded indirect call site. Due to the lack of
path sensitivity, the analysis cannot detect that the call site is
in fact guarded, and will be skipped at runtime. Figure 3 shows
an example of a guarded indirect call site. The imprecise call
graph contains a spurious edge to piped_log_maintenance
from a guarded indirect call site accessible in the serving
phase. As this function contains a call to the execve system
call, the overapproximation would prevent it from being re-
moved in the serving phase. Similarly, the lack of context
sensitivity and path sensitivity causes overapproximation in
the number of possible targets for all indirect call sites, even
if they are not optional callback functions guarded by NULL
checks. A more detailed discussion on overapproximation in
points-to analysis is available in Appendix A.

To reduce the overapproximation that the lack of context
and path sensitivity introduces in our analysis, and conse-
quently increase the number of system calls that can be re-
moved in the serving phase, we implemented two filtering
schemes that prune spurious call edges based on argument
types and taken addresses.

4.2.2 Pruning Based on Argument Types

A naive implementation of Andersen’s points-to analysis al-
gorithm does not consider any semantics regarding the type
of pointers while solving the constraint graph. For example,
SVF’s implementation of Andersen’s algorithm considers the

number of arguments, but not their types, when solving indi-
rect call sites. Due to the lack of context sensitivity and path
sensitivity, the results of the points-to analysis often contain
imprecision in the form of pointers of one type pointing to
memory objects of a different type.

Similarly, when resolving targets for indirect function calls,
the results of the points-to analysis often contain functions
whose types of arguments do not match those of the call
site. For example, in the imprecise call graph of Apache
Httpd shown in Figure 3, the guarded indirect call site in
function other_child_cleanup has two possible targets,
piped_log_maintenance and event_run, despite the fact
that only the former matches the types of arguments of the
guarded call site.

We have mitigated this problem by checking every indi-
rect call site and pruning any call edges to functions with
arguments whose types do not match those of the call site.
To maintain soundness, when pruning based on argument
types, we consider only arguments of struct type, as primi-
tive types may have a mismatch due to reasons such as integer
promotion. This simple mechanism is extremely effective in
reducing the number of edges in our final call graph. Indica-
tively, for Nginx, it reduces the number of edges by 70%.

4.2.3 Pruning Based on Taken Addresses

Andersen’s algorithm considers all functions in the program
to be reachable from its entry point. We observed that this
leads to an imprecision in the results of the resolution of
indirect call sites, with the result set containing functions that
are not accessible from main at all.

A function can be the target of an indirect call site only if
its address is taken (and stored in a variable) at some point
in the program. Consequently, if the address of a function is
taken at some point in the program that is unreachable from
main, it can never be a target of an indirect call.

Based on this intuition, we prune further the (still) overap-
proximated graph generated from the previous argument type
based pruning step by first identifying all functions whose
addresses are taken along any path that is accessible from the
main function. This gives us all possible functions that can
actually be targets of indirect calls. Using this list of potential
address-taken functions, we visit each indirect call site in the
program and prune all edges towards targets that do not have
their address taken along any valid path.

Going back to the example of Figure 3, the address of
piped_log_mnt is stored in a function pointer within the
function start_module, but start_module is not reachable
from the entry point of Apache Httpd. On the other hand, the
function other_child_cleanup contains a guarded indirect
call site, which first checks if that function pointer is not NULL,
in which case then dereferences it to invoke the target function.
At run time, this NULL check will always return false, and this
indirect call site is never executed.

main()

other_child_cleanup()

child()

start_module()

default_cleanup() SYS_close

Store &piped_log_mnt()
in a function pointer

*

Guarded Indirect Call Site
(*gic)(int r, void *d, apr_wait_t s)

*

piped_log_mnt
(int p, void *m,
apr_wait_t a)

event_run
(apr_pool * p, apr_pool

* pl, serv_rec * s)

* *

Imprecise Call Graph
After

Argument Type-based Pruning
After

Address-taken PruningSimplified Snippet of Apache Httpd Call Graph

Ø

Guard returns false
at run-time

piped_log_mnt
(int p, void *m,
apr_wait_t a)

piped_log_mnt() SYS_execve

Figure 3: The effect of pruning based on argument types and taken addresses on generating a precise call graph.

Path-insensitive points-to analysis cannot determine
whether the guard NULL check will fail or not. However, as
we prune indirect call sites based on address-taken functions,
and given that the address of piped_log_mnt is never taken
along any reachable path from main, we can correctly infer
that this guarded indirect call site does not have any valid
targets, and will be skipped at run time.

4.3 Mapping System Call Invocations to the
Application Call Graph

System calls are typically invoked through the Libc library,
which provides corresponding wrapper functions (e.g., the
write Libc function invokes the SYS_write system call). We
map each exported Libc function to its relevant system call by
first generating the call graph of the entire library, and then
augmenting it with information about the system calls of each
function as “leaves” on the generated call graph [22].

In addition to using Libc wrappers, applications and
libraries can also invoke system calls directly using
the syscall() glibc function or the syscall assembly
instruction—we handle both of these cases as well. Finally,
we combine the Libc call graph with the call graphs of the
main application and all its dependent libraries. Using the
resulting unified graph, we extract the set of system calls re-
quired by the application for the initialization phase, and then
for the serving phase, and identify the system calls that are
not needed in the latter. We then use Seccomp to apply the
respective filters at the beginning of the serving phase.

5 Implementation

In this section, we describe the implementation details of
our framework for temporal system call specialization. Our
framework currently supports server applications written in C.
Although we currently support only Linux libraries and appli-
cations, the concept can easily be applied to other operating
systems as well. We use the LLVM [3] compiler toolchain

to statically analyze the code of the target application. Be-
cause Glibc does not compile with LLVM, we use the GCC
toolchain for the compilation and analysis of Glibc.

5.1 Constructing a Sound Call Graph

Our goal is to identify the functions that may be invoked
during the initialization and serving phases. To that end, the
first step is to construct a sound and precise call graph for the
whole application. Accurate points-to analysis for resolving
the targets of indirect call sites is the most critical part of
this process. We use SVF’s [55, 56] implementation of the
Andersen’s points-to analysis algorithm [14]. SVF operates
on the LLVM intermediate representation (IR), so we first
lower the C source code into the LLVM IR format using
the clang compiler and by applying link-time optimization
(LTO). We then run SVF on this generated bitcode.

As we discussed in Section 4.2, SVF’s implementation
of Andersen’s algorithm is field sensitive, but not context
sensitive or path sensitive, leading to significant imprecision.
We also observed that in some cases, the lack of context and
array index sensitivity causes objects to lose field sensitivity.
We provide more details on this subtle issue in Appendix A.

Solving these imprecision problems would fundamentally
require implementing a context-sensitive, path-sensitive, and
array-index-sensitive analysis, which increases the complex-
ity of the points-to algorithm, and also requires significant
programming effort. Instead, we implemented an alternative
lightweight solution that simply prunes call edges in the call
graph that are provably added as a result of imprecision.

5.1.1 Pruning Based on Argument Types

SVF begins by iterating over all instructions in the IR bitcode,
collecting constraints along the way, and adding them to the
constraint graph. Then, it iterates over all constraints and
solves each of them. At the end of each iteration, it checks
if it can successfully find a new target for an indirect call
site. For any new target found, it first checks if the number of

arguments in the call site matches the number of arguments
in the target function. In case they match (and the target func-
tion is not a variadic function), the analysis adds the target
function as a possible target of the indirect call site. Then,
it begins a new iteration to solve any additional constraints
due to the newly discovered target function. As discussed in
Section 4.2.2, this results in the inclusion of targets with the
same number of arguments, but completely unrelated argu-
ment types. We modified SVF to take the argument type into
account and only add functions as possible targets when the
argument types match.

5.1.2 Pruning Based on Taken Addresses

One of the downsides of using path-insensitive and context-
insensitive pointer analysis is that it cannot consider the state
of the program when solving the points-to set constraints. In
particular, as discussed in Section 4.2.3, if an indirect function
call is guarded by a NULL check on a function pointer, and
the function pointer is not initialized in any function that is
reachable from the program’s entry point, then the call will
be skipped at run time. This is especially useful for modular
programs, where initializing a module causes the address of
one or multiple functions to be taken, and any housekeeping
tasks related to that module are performed after doing the
not-NULL check on their relevant function pointers. However,
due to the imprecision of SVF’s static analysis, its results
include spurious targets for these guarded indirect call sites.

Using the call graph generated after argument type prun-
ing, we record all functions whose addresses are stored into
function pointers. A function’s address can be stored into
a pointer in three ways: i) by a direct store to a pointer, ii)
when passed as an argument to another function, or iii) as part
of the initialization of a constant global variable. We imple-
mented an LLVM IR pass to extract functions that have their
addresses taken via any of these cases. It traverses the call
graph in a depth-first manner, starting at the main function,
and analyzes every LoadInst IR instruction to check if the
address of a function is being loaded from memory. To track
functions passed as arguments to other functions, it iterates
over every IR Value passed as an argument at a call site,
and checks if it corresponds to a function. Finally, it iterates
over all constant GlobalVariable objects in the IR to track
whether a function is part of their initialized values. Based on
the resulting set of address-taken functions, we remove any
spurious targets at each indirect call site, while retaining all
direct call sites without any modifications.

Algorithm 1 summarizes the steps for both types of pruning
based on argument types and taken addresses, which result in
a much more precise call graph than the one provided by SVF.
Once the final call graph is derived, the next and final step is
to identify the system call invocations performed during the
initialization phase and the serving phase.

Algorithm 1: Generation of Precise Call Graph
Input: LLVM IR bitcode for the target application
Output: precise_cg: precise application call graph

1 Run SVF’s Andersen points-to analysis to get the
(overapproximated) call graph cg;

2 /* Perform argument-type pruning */
3 foreach Indirect-callsite ic in cg do
4 foreach Target t of ic in cg do
5 if Argument types of t does not match that of

ic then
6 Prune target t for ic;
7 end
8 end
9 end

10 addr_taken_ f n_set ← /0;
11 reachable_ f unctions← /0;
12 /* Collect address-taken functions */
13 Traverse cg depth-first, starting from main;
14 foreach Reachable function f unc from main do
15 reachable_ f unctions ∪ { f unc};
16 end
17 foreach Function f in reachable_ f unctions do
18 foreach Address-taken function f _addr_tk in f

do
19 addr_taken_ f n_set ∪ { f _addr_tk};
20 end
21 end
22 /* Perform address-taken pruning */
23 foreach Indirect-callsite ic in cg do
24 foreach Target t of ic in cg do
25 if t /∈ addr_taken_ f n_set then
26 Prune target t for ic;
27 end
28 end
29 end
30 precise_cg← cg;

5.2 Pinpointing System Call Invocations

System calls are typically invoked through library function
calls implemented in the standard C library—the most com-
mon implementation of which is glibc. Since glibc cannot
be compiled with LLVM, we do not use points-to analysis to
generate the call graph and rely on a more overapproximated
mechanism, which considers any function having its address
taken as a potential target of any indirect call site in its own
module. This is only performed once to generate the glibc
call graph, and is then used for all applications.

We implemented an analysis pass written in GCC’s RTL
(Register Transfer Language) intermediate representation to
extract the call graph and system call information from glibc.
Our analysis pass first builds the call graph using the Egypt

tool [24], which operates on GCC’s RTL IR. Then, the anal-
ysis pass iterates over every call instruction in the IR and
records any inline assembly code containing the native x86-
64 syscall instruction. These are then added as the “leaves”
of the functions in the call graph.

In addition to making direct system calls via inline-
assembly, glibc also makes system calls via wrap-
per macros such as T_PSEUDO, T_PSEUDO_ERRNO, and
T_PSEUDO_ERRVAL. We identify these wrappers and add the
system calls invoked through them to the call graph.

Glibc also uses weak symbols and versioned symbols
to support symbol versioning. Both weak_alias and
versioned_symbol provide aliases for functions. We stat-
ically analyze the source code to collect all such aliases, and
add them to the call graph. In this way we can map Glibc
function calls to system calls.

System calls can also be invoked directly by the application
through the syscall() glibc function, inline-assembly, or
the use of assembly files. We analyze the IR bitcode of the
application for invocations of the syscall() function, and
add the corresponding syscall number information to the call
graph. To track the directly invoked system calls in inline
assembly, we analyze the LLVM IR for InlineAsm blocks.
If an InlineAsm block contains the syscall instruction, we
extract the system call number and add it to the functions that
call the inline assembly block.

To scan assembly files for syscall instructions, we de-
veloped a tool that extracts the corresponding system call
number. In 64-bit systems, the syscall instruction reads the
system call number from the RAX register. Starting from
every syscall instruction, we perform backwards slicing
to identify the initialization point of RAX with the system
call number. The process continues tracing backwards in the
assembly code to find the value (or set of values) that RAX
can take at runtime. While glibc does use inline assembly,
we did not encounter any custom assembly-level system call
invocations in the set of applications we evaluated.

Once we have mapped the Glibc interface to system calls,
and have extracted the direct system calls, we combine this
information with the previously generated precise call graph,
to obtain the list of system calls required by the initialization
phase and the serving phase.

5.3 Installing Seccomp Filters

Finally, we create and apply Seccomp filters that disable the
unneeded system calls at the transition boundary from the
initialization to the serving phase. We use the prctl system
call to install the Seccomp filters. We currently require man-
ual intervention to install the Seccomp filters, but this can be
easily automated as part of the compilation process. Seccomp
filters are expressed as BPF programs, and once installed,
they cannot be modified. However, if the prctl system call is
not blocked, then it is possible to install new Seccomp filters.

When two installed BPF programs contradict each other, the
least permissive of the two takes precedence. Therefore, once
a system call is prohibited, the attacker cannot remove it from
the deny list. For example, if invoking execve is prohibited,
and an attacker is able to install another BPF program that al-
lows it, the deny list will have priority and execve will remain
blocked. Furthermore, an installed Seccomp filter cannot be
uninstalled without killing the process it has been applied to.

As an additional safeguard, the invocation of the prctl and
seccomp system calls is prohibited as part of our Seccomp
filtering at the beginning of the serving phase, if the applica-
tion no longer needs them. This means that an attacker cannot
install any new filters at all once the serving phase begins.

6 Experimental Evaluation

The main focus of our experimental evaluation lies on as-
sessing the additional attack surface reduction achieved by
temporal specialization compared to library specialization
techniques, and evaluating its security benefits. For all experi-
ments, we used a set of six very popular server applications:
Nginx, Apache Httpd, Lighttpd, Bind, Memcached, and Redis.

Existing library specialization techniques [12, 51] only re-
move unused code, and do not actually perform any kernel-
backed system call filtering (e.g., using Seccomp). That is,
although the Libc functions corresponding to some system
calls may be removed, the attacker is still able to directly
invoke those system calls, e.g., as part of injected shellcode
or a code reuse payload. Still, such a capability is relatively
easy to implement once the unused Libc functions have been
identified. In fact, for our evaluation purposes, we developed
our own library specialization tool, similar to piecewise com-
pilation [51], and on top of it implemented the capability
of applying Seccomp filters to actually block the execution
of system calls that correspond to removed Libc functions
(unless they are also invoked directly by other parts of the
application, in which case they cannot be disabled). Piecewise
compilation leverages the SVF [55] tool to perform points-
to analysis and generate the call graph for each library. Our
custom library specialization tool also uses SVF to create call
graphs for each library and further extends them to extract the
list of system calls required for each application.

For our security evaluation, we explore two aspects of the
protection offered by temporal specialization. First, we eval-
uate its effectiveness in blocking exploit code using a large
set of shellcode and ROP payload samples. To account for
potential evasion attempts using alternative system call com-
binations, we also exhaustively generate all possible variants
of each sample. Second, given that system calls are the gate-
way to exploiting kernel vulnerabilities, we also look into the
number of Linux kernel CVEs that are neutralized once the
relevant system calls have been blocked.

We also validated the correctness of our implementation by
applying temporal specialization and running each application

Table 1: “Argument type” and “address taken” pruning reduce
the number of spurious edges on the call graph significantly.

Application SVF + Arg. Type + Address Taken

Nginx 38.2K 11.6K 11.5K
Apache Httpd 23.8K 12.4K 11.1K
Lighttpd 3.0K 2.7K 2.7K
Bind 67.9K 33.7K 33.3K
Memcached 7.6K 6.2K 5.8K
Redis 33.8K 18.6K 18.6K

with various workloads. For each application, we performed
100 client requests and validated the responses, without en-
countering any issues. We also compared the server logs in
both cases to further ensure the absence of any internal errors
that are not visible at the client side.

6.1 Call Graph Analysis
Identifying the transition boundary between the initializa-
tion and serving phase for the applications we consider is
straightforward. We begin by providing some further de-
tails for each application. For Nginx [7], we use the de-
fault configuration with all the default modules enabled.
Nginx has three functions that can act as transition points
to the serving phase: ngx_worker_process_cycle and
ngx_single_process_cycle are used for handling client
requests, while ngx_cache_manager_process_cycle is re-
sponsible for cache management. Each of them runs in its
own separate thread.

We use the vanilla configuration of Apache Httpd [15],
statically compiled with libapr and libapr-util to make
our analysis simpler. Our configuration enables all default
modules. The transition boundary of the serving phase is the
child_main function.

Lighttpd has an event-driven architecture, not relying on a
primary–secondary process model. It can be launched with a
configurable number of processes, and each process executes
the server_main_loop function to handle client requests.

Bind is one of the most widely used DNS servers, acting as
both an authoritative name server and as a recursive resolver.
Bind uses multi-threading to handle client requests and enters
the serving phase after creating the secondary threads, by
invoking the isc_app_ctxrun function.

Memcached and Redis are both in-memory key-value
databases. Similarly to Lighttpd, Memcached also has an
event-driven architecture and executes the worker_libevent
function to serve client requests. In Redis, the aeMain func-
tion serves as the event processing loop.

As shown in Table 1, these applications vary in complexity,
with the number of edges in the initial call graph (generated
by SVF) ranging from 3K for Lighttpd to 67.9K for Bind.
By applying our pruning techniques based on argument types

Table 2: Breakdown of the time (in minutes) required for each
step of our analysis.

Application Bitcode
Size(MB)

Default
(min)

SVF w.
Arg. Type

+ Addr.
Taken

Temp.
Total

Nginx 1.9 1 +80 +2 83
Apache 2.1 3 +13 +1 17
Lighttpd 1.0 1 +1 +1 3
Bind 11.0 3 +554 +5 562
Memcached 1.6 1 +1 +1 3
Redis 9.2 1 +21 +1 23

Table 3: Number of system calls retained (out of 333 available)
after applying library debloating and temporal specialization.

Application Library
Debloating

Temporal Specialization
Initialization Serving

Nginx 104 104 97
Apache 105 94 79
Lighttpd 95 95 76
Bind 127 99 85
Memcached 99 99 84
Redis 90 90 82

and taken addresses, the precision of the points-to analysis
improves significantly, reducing the number of spurious edges
to half or even less, especially for the most complex applica-
tions. This improvement allows us to disable more system
calls during the serving phase of each application. For exam-
ple, in case of Apache Httpd, using the more imprecise results
of SVF alone does not allow the removal of security-sensitive
system calls such as execve.

The complexity of each application affects the analysis
time required to generate the call graph. Table 2 shows the
breakdown of the amount of time required for generating
the call graph in each step, with the total time for the whole
toolchain in the last column. We compiled each application
10 times and report the average time. The compilation time is
only a few seconds different in each case for all applications.
The analysis time ranges from three minutes for Lighttpd to
more than nine hours for Bind. The most time-consuming
aspect of our approach is running Andersen’s points-to analy-
sis algorithm, which is expected. While one could use other
algorithms, such as Steensgard’s [54], which are both more ef-
ficient and more scalable, they come at the price of precision.
We discuss other algorithms and tools which can be used to
generate call graphs in Section 7.

6.2 Filtered System Calls
We compare our approach with library specialization [12, 51]
to show the benefit of applying temporal specialization. As
shown in Table 3, once entering the long-term serving phase,

Table 4: Critical system calls removed by library specialization (“Lib.”) and temporal specialization (“Temp.”).

Syscall
Nginx Apache Httpd Lighttpd Bind Memcached Redis

Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp.

C
m

d
E

xe
cu

tio
n clone 7 3 7 7* 7 7* 7 7* 7 7* 7 7*

execveat 3 3 3 3 3 3 3 3 3 3 3 3

execve 7 3 7 3 7 v 3 3 3 3 7 v

fork 3 3 3 3 3 3 3 3 3 3 3 3

ptrace 3 3 3 3 3 3 3 3 3 3 3 3

Pe
rm

is
si

on

chmod 7 7 3 3 7 3 7 3 3 3 7 3

mprotect 7 7 7 7 7 7 7 7 7 7 7 7

setgid 7 7 7 3 7 3 7 3 7 3 3 3

setreuid 3 3 3 3 3 3 3 3 3 3 3 3

setuid 7 7 7 3 7 3 7 3 7 3 3 3

N
et

w
or

ki
ng

accept4 7 7 7 7 7 7 3 3 7 7 3 3

accept 7 7 3 3 7 7 7 7 7 7 7 7

bind 7 7 7 7 7 3 7 7 7 7 7 7

connect 7 7 7 7 7 7 7 7 7 7 7 7

listen 7 7 7 3 7 3 7 7 7 7 7 3

recvfrom 7 7 3 3 7 7 7 7 7 7 3 3

socket 7 7 7 7 7 7 7 7 7 7 7 7

3: System call is removed. 7: System call is not removed.
v: Can be mitigated by applying configuration-driven debloating [34] (details in Section 6.2).
* : Can be mitigated by applying API specialization (details in Section 6.3).

temporal specialization retains fewer system calls than static
library debloating. Although in most cases the reduction is not
significant (in the best case for Bind, the number of system
calls drops from 127 to 85, while in the worst case for Nginx,
only 7 system calls are removed), a more crucial question is
whether the removed system calls are “critical” or not, i.e.,
whether they will hinder the execution of exploit code that
relies on them.

As a first step towards answering this question, Table 4
shows which critical system calls are filtered in each applica-
tion after applying library debloating and temporal specializa-
tion. We chose a set of 17 security-critical system calls which
are used as part of shellcode and ROP payloads (more details
on this data set are provided in Section 6.3). As shown in
Table 4, temporal specialization removes a total of 53 critical
system calls across all applications, compared to just 35 for
library debloating alone—an overall increase by 51%.

We group these system calls according to their functionality
into three categories to analyze further the impact of tempo-
ral specialization. Command Execution includes system calls
used to execute arbitrary code. Permission includes system
calls which can be used to modify user, file, or memory per-
missions. Networking contains system calls mostly used in
establishing network connections.

Command Execution The system calls execveat, fork
and ptrace can be filtered across all applications by both tech-
niques. No application uses execveat or ptrace. In place

of the former most use execve, while the use of the latter is
rare. The reason no application uses the fork system call is
that Libc’s fork function actually uses the clone system call.
The widely used by exploit code execve system call is also
used in many applications to spawn child processes, so it can
not be removed by library debloating.

After entering the serving phase, however, most servers
do not need to invoke execve anymore, and thus temporal
specialization can remove it. This has significant security ben-
efits, as also discussed in the next section. For Lighttpd and
Redis, we manually verified that execve was invoked only if
the application was launched with a specific run-time config-
uration option that is disabled by default. Therefore, the prior
application of some form of configuration-driven debloat-
ing [34] would allow temporal specialization to successfully
remove execve from all six applications.

Permissions Four of the permission system calls (chmod,
setgid, setuid, and setreuid) can be filtered in all appli-
cations, except Nginx. As allocating memory and setting its
permissions is a crucial operation for most applications, the
mprotect system call cannot be filtered under any circum-
stances. As we discuss in Section 6.3, we could still enforce a
more restrictive invocation policy for this system call by limit-
ing the allowable permissions to be applied on memory pages,
as after the initialization phase it is unlikely that executable
memory will need to be allocated.

Table 5: Equivalent system calls.

System call Equivalent System call(s)
execve execveat
accept accept4
dup dup2,dup3
eventfd eventfd2
chmod fchmodat
recv recvfrom, read
send sendto, write
open openat

select
pselect6, epoll_wait, epoll_wait_old,
poll, ppoll, epoll_pwait

Networking Neither approach can filter system calls used
for creating network connections (socket, connect). This is
because server applications may establish connections with
other backend services, such as databases.

Although we expected listen and bind to be removed by
temporal specialization, as these operations are typically part
of the initialization phase, they are only removed in Apache
Httpd, Lighttpd and Redis (only listen). We suspect that
the reason they remain in the rest is related to the remaining
overapproximation in the call graph, and we plan to further
analyze these cases as part of our future work.

6.3 Exploit Code Mitigation
To evaluate the security benefits of temporal specialization, we
collected a large and diverse set of exploit payloads. This set
consists of 53 shellcodes from Metasploit [5], 514 shellcodes
from Shell-storm [9], and 17 ROP payloads (from PoCs and
in-the-wild exploits). Shellcodes are generic and can work
against every application. Although the ROP payload of a
given proof-of-concept exploit is meant to be used against a
specific application, since all these payloads use one or more
system calls to interact with the operating system, their final
intent can be generalized irrespective of the target application.
Thus, for ROP payloads, we make the conservative assump-
tion that each can be used against any of our test applications.

6.3.1 Shellcode Analysis

For Metasploit, we use the msfvenom utility to generate a
binary for each of the 53 available Linux payloads. We then
disassemble each generated file to extract the system calls
used. Similarly, we extract the system calls used by the 514
payloads collected from Shell-storm. Finally, we compare
the set of system calls used in each payload with the set
of system calls available in each application after apply-
ing library specialization and temporal specialization, to get
the number of shellcodes “broken” in each case. We con-
sider a payload broken if at least one of the system calls
it relies on is removed. For instance, the bind_tcp shell-
code uses six system calls: setsockopt, socket, bind,

mprotect, accept and listen. Temporal specialization
blocks bind in Lighttpd and Apache Httpd, and the attacker
can no longer successfully run this shellcode.

To account for potential evasion attempts by swapping
blocked system calls with equivalent ones, we also exhaus-
tively generate all possible variants of each shellcode using
other system call combinations that provide the same function-
ality. For instance, replacing accept with accept4 maintains
the same functionality, but would allow an attacker to bypass
a filter that restricts only one of them. Starting from our initial
set of 567 shellcodes, we generate 1726 variants according to
the equivalent system calls listed in Table 5.

We have summarized the results regarding the number of
blocked shellcodes for each application by each specialization
technique in Table 6. As shown in the row titled “All Shell-
codes,” for each of the six tested applications, temporal spe-
cialization successfully breaks a higher number of shellcode
variants compared to library debloating. The improvement
is significant in Lighttpd (1248 with temporal vs. 919 with
library specialization), Apache Httpd (1466 vs. 1097), Nginx
(1249 vs. 923), and Redis (1307 vs. 1165), while it is marginal
for Memcached (1319 vs. 1258) and Bind (1341 vs. 1258).

Payloads can be categorized according to the task they per-
form. The broad categories include i) payloads that open a
port and wait for the attacker to connect and launch a shell,
ii) payloads that connect back and launch a reverse shell,
iii) payloads that execute arbitrary commands, and iv) pay-
loads that perform system operations, e.g., access a file or
add a user. The first four rows in Table 6 provide the number
of broken payloads in each of these categories. We see that
90% of the payloads that open a port are broken with tem-
poral specialization. For Apache Httpd, although 88% of the
“connect” and 91% of the “execute” shellcodes are broken
with our approach, none of the two specialization schemes
perform well for payloads that perform file operations. This
is because file system operations are required by applications
during both the initialization and the serving phases.

Achieving arbitrary remote code execution provides an at-
tacker the ultimate control over a target system. Removing the
ability to execute commands thus has a more significant im-
pact on restricting an attacker’s actions compared to blocking
payloads of other categories, e.g. payloads that open a port.
The execve system call is the most crucial for executing arbi-
trary commands, and as shown in Table 4, it can be removed
in Apache Httpd, Nginx, Memcached and Bind by applying
temporal specialization. This can also be seen in the row titled
“Execute Command” in Table 6, where more than 80% of the
shellcodes that aim to achieve arbitrary command execution
are broken in Nginx, Apache Httpd, Bind, and Memcached.
In these cases, the attacker is heavily restricted, and even if
payloads in other categories (e.g., network connection estab-
lishment) are successful, the capability of executing arbitrary
commands is still restricted.

Table 6: Number (and percentage) of payloads broken by library (“Lib.”) and temporal (“Temp.”) specialization for each category.

Payload Category Count
Nginx Apache Httpd Lighttpd Bind Memcached Redis

Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp. Lib. Temp.

Open Port 560 334 (60%) 471 (84%) 199 (71%) 546 (98%) 330 (59%) 525 (94%) 500 (89%) 505 (90%) 471 (84%) 479 (85%) 439 (78%) 527 (94%)

Create Connection 366 245 (67%) 313 (86%) 268 (73%) 321 (87%) 263 (71%) 271 (74%) 313 (85%) 314 (85%) 289 (79%) 314 (85%) 280 (76%) 293 (80%)

Execute Command 408 223 (54%) 340 (83%) 247 (60%) 370 (91%) 223 (54%) 273 (67%) 338 (83%) 358 (88%) 352 (86%) 362 (89%) 259 (63%) 274 (67%)

System Operations 392 121 (30%) 125 (32%) 183 (46%) 229 (58%) 103 (26%) 179 (46%) 107 (27%) 164 (42%) 146 (37%) 164 (42%) 187 (47%) 213 (54%)

All Shellcodes 1726 923 (53%) 1249 (72%) 1097(63%) 1466 (85%) 919 (53%) 1248 (72%) 1258 (72%) 1341 (78%) 1258 (72%) 1319 (77%) 1165(68%) 1307 (76%)

Change Permission 3 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Execute Command 14 7 (50%) 14 (100%) 7 (50%) 14 (100%) 7(50%) 7 (50%) 14 (100%) 14 (100%) 14 (100%) 14 (100%) 7 (50%) 7 (50%)

All ROP Payloads 17 7 (41%) 14 (82%) 7 (41%) 14 (82%) 7 (41%) 7 (41%) 14 (82%) 14 (82%) 14 (82%) 14 (82%) 7 (41%) 7 (41%)

6.3.2 ROP Payload Analysis

We collected a set of 17 publicly available ROP payload sam-
ples for Linux (details for each one are provided in Table 8
in the appendix). We follow the same strategy as with the
shellcodes and make the generic assumption that each of the
payloads can be used against any of our tested applications.

From a system call perspective, ROP payloads are much
simpler and usually aim towards either allocating executable
memory for enabling the execution of second-stage shellcode,
or invoking execve or similar system calls for direct com-
mand execution. ROP payloads can thus be broadly catego-
rized into these two categories. The last three rows in Table 6
provide the number of ROP payloads in the two categories
and their combined results. Ten ROP payloads attempt to ex-
ecute commands and temporal specialization blocks all of
them in four applications (Apache Httpd, Nginx, Memcached
and Bind). In case of Lighttpd and Redis, because execve
is used even in the serving phase (when used with a specific
non-default configuration), temporal specialization cannot fil-
ter it. Neither library nor temporal specialization can block
any payloads that try to change in-process memory permis-
sions. This is because mprotect is used by all applications
for memory allocation and permission assignment.

6.3.3 What Else can Attackers Do?

Assuming command execution (e.g., through execve and the
like) has been blocked, attackers may resort to other system
calls to achieve their goals. Meterpreter [6] is an advanced
payload that uses DLL injection to inject malicious code into
a process. Using such a payload would remove the require-
ment of using execve directly to launch external binaries,
and instead allows the attacker to inject the necessary code
to perform any operation as part of the vulnerable process
itself. While Meterpreter (in its original form) is only avail-
able for Windows, there are equivalents for Linux which use
the ptrace system call. However, none of the applications
in our dataset require this system call, so it can be filtered in
all cases. Furthermore, by default, this capability is limited to
processes that have a predefined relationship with the target
process since Linux kernel v3.2 due to the associated security

risks. The traced process should either be a child process of
the tracer, or should have tracing enabled using prctl.

Even if ptrace is not available, there are other system
call combinations that could be leveraged to perform DLL
injection. For example, Linux applications have the option
of dynamically loading shared objects after program launch,
using the dlopen and dlsym functions. Even if these two
functions are not available, the attacker can simply emulate
their functionality using the open, mmap, and close system
calls to inject a malicious library. Given that these are very
basic operations, it is unlikely that library or temporal special-
ization will be able to remove these system calls. However, a
crucial requirement of DLL injection is to place the injected
DLL in executable memory. When an application enters its
serving phase it will definitely need mmap to allocate memory,
but this memory is typically used for data which is not exe-
cutable. Applying argument-level API specialization [41] in
this case would prevent the attacker from mapping executable
memory once the application enters the serving phase, thereby
preventing these attacks.

The set of system calls used for file operations can also be
leveraged by an attacker to gain command execution. Con-
sider the case of an attacker writing to a file in the crontab
folder by invoking open, write, and close. In this case, the
crond service will run an attacker-controlled script which
gives them the capability of executing arbitrary commands.
While applying argument-level API specialization [41] can
potentially protect against such a scenario (assuming the file
paths can be predetermined), our approach cannot prevent
such cases in general if file permissions are not set properly.
For instance, regular programs should not have write access
to sensitive folders like crontab.

6.4 Kernel Security Evaluation
System calls are the main entry point into the kernel. Al-
though system calls (especially security-critical ones) are
mainly used by attackers to perform unauthorized operations
as part of exploiting a vulnerable process, they can also be
used to exploit vulnerabilities in the underlying kernel. Previ-
ous works [31–33, 46] have shown that malicious users can
target the kernel to perform privilege escalation or leak sensi-

Table 7: Kernel CVEs mitigated by filtering unneeded system calls.

CVE System Call(s) Description Library Temporal

CVE-2018-18281 execve(at), mremap Allows user to gain access to a physical page after it has been released. 0 4
CVE-2016-3672 execve(at) Allows user to bypass ASLR by disabling stack consumption resource limits. 2 4
CVE-2015-3339 execve(at) Race condition allows privilege escalation by executing program. 2 4
CVE-2015-1593 execve(at) Bug in stack randomization allows attackers to bypass ASLR by predicting top of stack. 2 4
CVE-2014-9585 execve(at) ASLR protection can be bypassed du to bug in choosing memory locations. 2 4
CVE-2013-0914 execve(at) Allows local user to bypass ASLR by executing a crafted application. 2 4
CVE-2012-4530 execve(at) Sensitive information from the kernel can be leaked via a crafted application. 2 4
CVE-2012-3375 epoll_ctl Denial of service can be caused due to improper checks in epoll operations. 0 1
CVE-2011-1082 epoll_(ctl,pwait,wait) Local user can cause denial of service due to improper checks in epoll data structures. 0 1
CVE-2010-4346 execve(at) Allows attacker to conduct NULL pointer dereference attack via a crafted application. 2 4
CVE-2010-4243 uselib, execve(at) Denial of service can be caused via a crafted exec system call. 2 4
CVE-2010-3858 execve(at) Denial of service can be caused due to bug in restricting stack memory consumption. 2 4
CVE-2008-3527 execve(at) Allows a local user to escalate privileges or cause DoS due to improper boundary checks. 2 4

tive information. In most cases, these attacks are performed
by exploiting a kernel vulnerability that is triggered through
a system call, when invoked with specially crafted arguments.
By disabling system calls associated with kernel vulnerabili-
ties we can thus reduce the attack surface of the kernel that
is exposed to attackers. While filtering security-critical sys-
tem calls is of importance in case of user-space vulnerability
exploitation, it is important to note that any system call asso-
ciated with a kernel vulnerability can be exploited to mount
privilege escalation attacks.

To gain a better understanding of how filtering individ-
ual system calls impacts mitigating potential kernel vulner-
abilities, we constructed the Linux kernel’s call graph using
KIRIN [64]. This allows us to identify all functions that are in-
voked as a result of specific system call invocations, and thus
reason about which part of the kernel’s code—and therefore
which vulnerabilities—become inaccessible when blocking a
given set of system calls.

To perform our analysis, we crawled the CVE website [1]
for Linux kernel vulnerabilities using a custom automated
tool. Our tool extracts each CVE’s relevant commit, and after
parsing it in the Linux kernel’s Git repository, finds the cor-
responding patch, and retrieves the relevant file and function
that was modified by the patch. We discovered that while
there were only a few CVEs directly associated with filtered
system call code, many CVEs were associated with files and
functions that were invoked exclusively by filtered system
call code. By matching the CVEs to the call graph created
by KIRIN, we were able to pinpoint all the vulnerabilities
that are related to the set of system calls filtered by a given
application under each specialization mechanism. This pro-
vides us with a metric to assess the attack surface reduction
achieved by temporal specialization at the kernel level. This
reduction is reflected in the number of CVEs neutralized for
a given application after applying our Seccomp filters at the
beginning of the serving phase.

Based on our analysis, a total of 53 CVEs are effectively
removed in at least one of the six applications (i.e., the re-
spective vulnerabilities cannot be triggered by the attacker)

by temporal specialization. Out of the 53 vulnerabilities that
can be mitigated by temporal specialization, 40 can be mit-
igated by system call filtering based on library debloating
as well. Table 6 shows the 13 CVEs that are neutralized by
temporal specialization, and which cannot be neutralized by
library specialization in some or all applications. The last two
columns correspond to the number of applications for which
the CVE is neutralized for library debloating and temporal
specialization, respectively.

7 Discussion and Limitations

Our approach does not remove any code from the protected
program, and consequently cannot mitigate any vulnerabilities
in the application itself, or reduce the code that could be
reused by an attacker.

Similarly to other attack surface reduction techniques, the
effectiveness of temporal specialization varies according to
the specific requirements of a given application, and as our
results show, it may not prevent all possible ways an attacker
can perform harmful interactions with the OS. Our equivalent
system call analysis attempts to quantify the evasion potential
by replacing system calls with others, but depending on the
attacker’s specific goals, there may be more creative ways
to accomplish them using the remaining system calls. For
example, without our technique, an attacker could read the
contents of a file simply by executing the cat program. Once
the execve-family of system calls are blocked, the attacker
would have to implement a more complex shellcode to open
and read the file and write it to an already open socket. As
part of our future work, we plan to extend our analysis by ex-
tracting the arguments passed to system calls and constraining
them as well [41, 42]. This would further limit the attacker’s
capabilities when using the remaining system calls.

Although we have considered only server applications in
this work, there could be benefit in applying temporal spe-
cialization to some client applications. In general, any appli-
cation that follows the initialization/serving phase execution
model can benefit from our approach. Examples of desktop

applications which follow this model are ssh-agent [61] and
syslog-ng [10]. Further analysis of how well these applica-
tions follow the two-stage execution model has been left for
future work.

Due to multiple inheritance with support for polymorphism
in C++, our type-based matching currently supports only C
code. We plan to extend our approach to support applications
developed in C++ as part of our future work.

Additionally, we plan to investigate the use of alternative
points-to analysis algorithms. In particular, the authors of
TeaDSA [36], which is the type-aware implementation of
SeaDSA [23], report better accuracy than SVF in some cases
(typically for C++ applications) and worse in others (C ap-
plications). The authors acknowledge that TeaDSA is more
precise for C++ applications than SVF. However, for C ap-
plications (e.g., OpenSSL), their results show that it is less
precise than SVF. Moreover, the comparison in the paper is
with the type-unaware SVF. Because most server applications
are written in C, we anticipate the accuracy of our type-based
pruning to be better than type-aware SeaDSA. Unfortunately
we could not get TeaDSA to work with our applications due to
crashes. We will explore TeaDSA and other points-to analysis
algorithms as part of our future work.

Applications can dynamically load libraries through the
dlopen and dlsym functions. Due to the dynamic nature of
this feature, our current prototype does not support it.

8 Related Work

System call filtering based on policies derived through static
or dynamic analysis has been widely used in host-based intru-
sion detection [18–20, 29, 35, 44, 52, 58]. Since in this paper
we focus on attack surface reduction through software spe-
cialization, we mainly discuss related works in this context.

Application Debloating Many previous works have fo-
cused on reducing the attack surface by removing unused code
from the application’s process address space. Mulliner and
Neugschwandtner [43] proposed one of the first approaches
for preforming library debloating by removing non-imported
functions from shared libraries at load time. Quach et al. [51]
improve library debloating by extending the compiler and
the loader to remove all unused functions from shared li-
braries at load time. Agadakos et al. [12] propose a similar
library debloating approach at the binary level, through func-
tion boundary detection and dependency identification.

Porter et al. [47] also perform library debloating, but load li-
brary functions only when requested by the application. While
this is similar to our approach in taking the program execution
phase into account, library functions are loaded and unloaded
based on the need of the application, whereas we install re-
strictive filters (which cannot be removed) after the execution
enters the serving phase.

Davidsson et al. [16] analyze the complete software stack
for web applications to create specialized libraries based on
the requirements of both the server application binaries and
PHP code. Song et al. [53] apply data dependency analysis
to perform fine-grained library customization of statically
linked libraries. Shredder [41] instruments binaries to restrict
arguments passed to critical system API functions to a prede-
termined legitimate of possible values. Saffire [42] performs
call-site-specific argument-level specialization for functions
at build time.

Another line of research on debloating focuses on using
training to identify unused sections of applications. Qian et
al. [48] use training and heuristics to identify unnecessary
basic blocks and remove them from the binary without relying
on the source code. Ghaffarinia and Hamlen [21] use a similar
approach based on training to limit control flow transfers to
unauthorized sections of the code.

Other works explore the potential of debloating software
based on predefined feature sets. CHISEL [26] uses rein-
forcement learning to debloat software based on test cases
generated by the user. TRIMMER [25] finds unnecessary
basic blocks using an inter-procedural analysis based on user-
defined configurations. DamGate [63] rewrites binaries with
gates to prevent execution of unused features.

While the above works focus on C/C++ applications, other
works specifically focus on the requirements of other pro-
gramming languages [30, 57, 62]. Jred [62] uses static anal-
ysis on Java code to identify and remove unused methods
and classes. Jiang et al. [30] used data flow analysis to imple-
ment a feature-based debloating mechanism for Java. Azad
et al. [13] propose a framework for removing unnecessary
features from PHP applications through dynamic analysis.

Kernel and Container Debloating KASR [65] and FACE-
CHANGE [66] use dynamic analysis to create kernel profiles
for each application by using training to identify used parts of
the kernel. Kurmus et al. [37] propose a method to automat-
ically generate kernel configuration files to tailor the Linux
kernel for specific workloads. Similarly, Acher et al. [11] use
a statistical supervised learning method to create different sets
of kernel configuration files. Sysfilter [17] is a static binary
analysis framework that reduces the kernel’s attack surface by
restricting the system calls available to user-space processes.

Wan et al. [59] use dynamic analysis to profile the required
system calls of a container and generate relevant Seccomp
filters. Due to the incompleteness of dynamic analysis, Con-
fine [22] uses static analysis to create similar Seccomp profiles
to filter unnecessary system calls from containers. Docker-
Slim [2] is an open source tool which also relies on dynamic
analysis to remove unnecessary files from Docker images.
Similar to temporal debloating, SPEAKER [38] separates the
required system calls of containers in two main phases, boot-
ing and runtime. The approach only targets containers and
relies on training to identify the system calls for each phase.

9 Conclusion

We presented temporal system call specialization, a novel
approach for limiting the system calls that are available to
server applications after they enter their serving or stable state.
Compared to previous software specialization approaches,
which consider the whole lifetime of a program, temporal spe-
cialization removes many additional system calls, including
dangerous ones such as execve, which are typically required
by server applications only during their initialization phase.

For a given server application, we perform static analysis of
the main program and all imported libraries to extract the set
of system calls which are no longer used after the transition
into the serving phase. As precise call graph generation is
a known problem in static analysis, we perform multiple
optimizations on top of existing points-to analysis algorithms
to reduce the imprecision of the call graph, which helps in
identifying a near-accurate set of used system calls.

We demonstrate the effectiveness of temporal specializa-
tion by evaluating it with six well known server applications
against a set of shellcodes and ROP payloads. We show that
temporal specialization disables 51% more security-critical
system calls compared to existing library specialization ap-
proaches, breaking 77% of the shellcodes and 68% of the
ROP payloads tested. In addition, 53 Linux kernel CVEs are
mitigated once temporal specialization comes into effect, 13
of which are not preventable by library specialization.

As a best-effort attack surface reduction solution, temporal
specialization is practical, easy to deploy, and significantly
restricts an attacker’s capabilities.

Acknowledgments

We thank our shepherd, Claudio Canella, the anonymous re-
viewers, and the members of the artifact evaluation committee
for their helpful feedback. This work was supported by the
Office of Naval Research (ONR) through award N00014-17-1-
2891, the National Science Foundation (NSF) through award
CNS-1749895, and the Defense Advanced Research Projects
Agency (DARPA) through award D18AP00045. Any opin-
ions, findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of the ONR, NSF, or DARPA.

References

[1] Common vulnerabilities and exposures database.
https://www.cvedetails.com.

[2] DockerSlim. https://dockersl.im.

[3] The LLVM compiler infrastructure. http://llvm.org.

[4] Memcached. https://memcached.org/.

[5] Metasploit framework. http://www.metasploit.com.

[6] Meterpreter. https : / / github.com / rapid7 /
metasploit-framework/wiki/Meterpreter/.

[7] Nginx. https://www.nginx.com/.

[8] Seccomp BPF (SECure COMPuting with filters).
https : / / www.kernel.org / doc / html / v4.16 /
userspace-api/seccomp_filter.html.

[9] Shell-storm. http://www.shell-storm.org.

[10] Syslog NG. https://www.syslog-ng.com/.

[11] Mathieu Acher, Hugo Martin, Juliana Pereira, Arnaud
Blouin, Jean-Marc Jézéquel, Djamel Khelladi, Luc
Lesoil, and Olivier Barais. Learning very large con-
figuration spaces: What matters for Linux kernel sizes.
Technical Report HAL-02314830, Inria Rennes - Bre-
tagne Atlantique, 2019.

[12] Ioannis Agadakos, Di Jin, David Williams-King,
Vasileios P Kemerlis, and Georgios Portokalidis. Nib-
bler: Debloating binary shared libraries. In Proceedings
of the 35th Annual Computer Security Applications Con-
ference (ACSAC), pages 70–83, 2019.

[13] Babak Amin Azad, Pierre Laperdrix, and Nick Niki-
forakis. Less is more: Quantifying the security benefits
of debloating web applications. In Proceedings of the
28th USENIX Security Symposium, 2019.

[14] Lars Ole Andersen. Program analysis and specializa-
tion for the C programming language. PhD thesis, Uni-
versity of Cophenhagen, 1994.

[15] Apache. Apache Httpd, 2019. https : / /
httpd.apache.org/.

[16] Nicolai Davidsson, Andre Pawlowski, and Thorsten
Holz. Towards automated application-specific software
stacks. In Proceedings of the 24th European Symposium
on Research in Computer Security (ESORICS), 2019.

[17] Nicholas DeMarinis, Kent Williams-King, Di Jin, Ro-
drigo Fonseca, and Vasileios P. Kemerlis. Sysfilter:
Automated system call filtering for commodity soft-
ware. In Proceedings of the International Conference on
Research in Attacks, Intrusions, and Defenses (RAID),
2020.

[18] Henry Hanping Feng, Jonathon T Giffin, Yong Huang,
Somesh Jha, Wenke Lee, and Barton P Miller. Formal-
izing sensitivity in static analysis for intrusion detection.
In Proceedings of the IEEE Symposium on Security &
Privacy (S&P), pages 194–208, 2004.

[19] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji,
and Thomas A Longstaff. A sense of self for Unix
processes. In Proceedings of the IEEE Symposium on
Security & Privacy (S&P), pages 120–128, 1996.

https://www.cvedetails.com
https://dockersl.im
http://llvm.org
https://memcached.org/
http://www.metasploit.com
https://github.com/rapid7/metasploit-framework/wiki/Meterpreter/
https://github.com/rapid7/metasploit-framework/wiki/Meterpreter/
https://www.nginx.com/
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
http://www.shell-storm.org
https://www.syslog-ng.com/
https://httpd.apache.org/
https://httpd.apache.org/

[20] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia:
A delegating architecture for secure system call interpo-
sition. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2004.

[21] Masoud Ghaffarinia and Kevin W. Hamlen. Binary
control-flow trimming. In Proceedings of the 26th ACM
Conference on Computer and Communications Security
(CCS), 2019.

[22] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Be-
nameur, and Michalis Polychronakis. Confine: Auto-
mated system call policy generation for container attack
surface reduction. In Proceedings of the International
Conference on Research in Attacks, Intrusions, and De-
fenses (RAID), 2020.

[23] Arie Gurfinkel and Jorge A Navas. A context-sensitive
memory model for verification of C/C++ programs. In
Proceedings of the International Static Analysis Sympo-
sium, pages 148–168. Springer, 2017.

[24] Andreas Gustafsson. Egypt. https://www.gson.org/
egypt/egypt.html.

[25] Ashish Gehani Hashim Sharif, Muhammad Abubakar
and Fareed Zaffar. Trimmer: Application specializa-
tion for code debloating. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Soft-
ware Engineering (ASE), 2018.

[26] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and
Mayur Naik. Effective program debloating via rein-
forcement learning. In Proceedings of the 24th ACM
Conference on Computer and Communications Security
(CCS), 2018.

[27] Michael Hind. Pointer analysis: Haven’t we solved this
problem yet? In Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE), pages 54–61, 2001.

[28] Gerard J Holzmann. Code inflation. IEEE Software,
(2):10–13, 2015.

[29] Kapil Jain and R Sekar. User-level infrastructure for sys-
tem call interposition: A platform for intrusion detection
and confinement. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2000.

[30] Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu.
Feature-based software customization: Preliminary anal-
ysis, formalization, and methods. In Proceedings of the
17th IEEE International Symposium on High Assurance
Systems Engineering (HASE), 2016.

[31] Vasileios P. Kemerlis. Protecting Commodity Operating
Systems through Strong Kernel Isolation. PhD thesis,
Columbia University, 2015.

[32] Vasileios P. Kemerlis, Michalis Polychronakis, and An-
gelos D. Keromytis. ret2dir: Rethinking kernel isolation.
In Proceedings of the 23rd USENIX Security Sympo-
sium, pages 957–972, 2014.

[33] Vasileios P. Kemerlis, Georgios Portokalidis, and Ange-
los D. Keromytis. kguard: Lightweight kernel protection
against return-to-user attacks. In Proceedings of the 21st
USENIX Security Symposium, 2012.

[34] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis
Polychronakis. Configuration-driven software debloat-
ing. In Proceedings of the 12th European Workshop on
Systems Security, 2019.

[35] Christopher Kruegel, Engin Kirda, Darren Mutz,
William Robertson, and Giovanni Vigna. Automating
mimicry attacks using static binary analysis. In Proceed-
ings of the USENIX Security Symposium, 2005.

[36] Jakub Kuderski, Jorge A Navas, and Arie Gurfinkel.
Unification-based pointer analysis without oversharing.
In Proceedings of the Formal Methods in Computer
Aided Design (FMCAD), pages 37–45. IEEE, 2019.

[37] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bern-
hard Heinloth, Valentin Rothberg, Andreas Ruprecht,
Wolfgang Schroder-Preikschat, Daniel Lohmann, and
Rudiger Kapitza. Attack surface metrics and automated
compile-time OS kernel tailoring. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS), 2013.

[38] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel,
Rui Ma, Yuewu Wang, and Qi Li. SPEAKER: Split-
phase execution of application containers. In Proceed-
ings of the 12th Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA),
pages 230–251, 2017.

[39] Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin
Cappos. Lock-in-pop: Securing privileged operating
system kernels by keeping on the beaten path. In Pro-
ceedings of the USENIX Annual Technical Conference
(ATC), 2017.

[40] Steven McCanne and Van Jacobson. The BSD packet
filter: A new architecture for user-level packet capture.
In Proceedings of the USENIX Winter Conference, 1993.

[41] Shachee Mishra and Michalis Polychronakis. Shred-
der: Breaking Exploits through API Specialization. In
Proceedings of the 34th Annual Computer Security Ap-
plications Conference (ACSAC), 2018.

[42] Shachee Mishra and Michalis Polychronakis. Saffire:
Context-sensitive function specialization against code
reuse attacks. In Proceedings of the 5th IEEE European
Symposium on Security and Privacy (EuroS&P), 2020.

https://www.gson.org/egypt/egypt.html
https://www.gson.org/egypt/egypt.html

[43] Collin Mulliner and Matthias Neugschwandtner. Break-
ing payloads with runtime code stripping and image
freezing, 2015. Black Hat USA.

[44] Chetan Parampalli, R Sekar, and Rob Johnson. A prac-
tical mimicry attack against powerful system-call moni-
tors. In Proceedings of the ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS), pages 156–167, 2008.

[45] Fernando Magno Quintao Pereira and Daniel Berlin.
Wave propagation and deep propagation for pointer anal-
ysis. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO), pages
126–135, 2009.

[46] Marios Pomonis, Theofilos Petsios, Angelos D.
Keromytis, Michalis Polychronakis, and Vasileios P.
Kemerlis. kRˆX: Comprehensive kernel protection
against just-in-time code reuse. In Proceedings of
the 12th European Conference on Computer Systems
(EuroSys), pages 420–436, 2017.

[47] Chris Porter, Girish Mururu, Prithayan Barua, and San-
tosh Pande. Blankit library debloating: Getting what you
want instead of cutting what you don’t. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
164–180, 2020.

[48] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho
Chung, Taesoo Kim, and Wenke Lee. RAZOR: A frame-
work for post-deployment software debloating. In Pro-
ceedings of the 28th USENIX Security Symposium, 2019.

[49] Anh Quach, Rukayat Erinfolami, David Demicco, and
Aravind Prakash. A multi-OS cross-layer study of bloat-
ing in user programs, kernel and managed execution
environments. In Proceedings of the Workshop on
Forming an Ecosystem Around Software Transforma-
tion (FEAST), pages 65–70, 2017.

[50] Anh Quach and Aravind Prakash. Bloat factors and
binary specialization. In Proceedings of the 3rd ACM
Workshop on Forming an Ecosystem Around Software
Transformation (FEAST), pages 31–38, 2019.

[51] Anh Quach, Aravind Prakash, and Lok Yan. Debloating
software through piece-wise compilation and loading.
In Proceedings of the 27th USENIX Security Symposium,
pages 869–886, 2018.

[52] Mohan Rajagopalan, Matti Hiltunen, Trevor Jim, and
Richard Schlichting. Authenticated system calls. In Pro-
ceedings of the International Conference on Dependable
Systems and Networks (DSN), pages 358–367, 2005.

[53] Linhai Song and Xinyu Xing. Fine-grained library cus-
tomization. In Proceedings of the 1st ECOOP Interna-
tional Workshop on Software Debloating and Delayer-
ing (SALAD), 2018.

[54] Bjarne Steensgaard. Points-to analysis in almost lin-
ear time. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 32–41, 1996.

[55] Yulei Sui and Jingling Xue. SVF: interprocedural static
value-flow analysis in LLVM. In Proceedings of the
25th International Conference on Compiler Construc-
tion, 2016.

[56] Yulei Sui, Ding Ye, and Jingling Xue. Detecting mem-
ory leaks statically with full-sparse value-flow analysis.
IEEE Transactions on Software Engineering, 40(2):107–
122, 2014.

[57] Kanchi Gopinath Suparna Bhattacharya and Man-
gala Gowri Nanda. Combining concern input with pro-
gram analysis for bloat detection. In Proceedings of the
ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages & Applications
(OOPSLA), 2013.

[58] David Wagner and Drew Dean. Intrusion detection via
static analysis. In Proceedings of the IEEE Symposium
on Security & Privacy, pages 156–168, 2001.

[59] Zhiyuan Wan, David Lo, Xin Xia, Liang Cai, and Shan-
ping Li. Mining sandboxes for Linux containers. In
Proceedings of the 10th IEEE International Conference
on Software Testing, Verification and Validation (ICST),
pages 92–102, 2017.

[60] Jinpeng Wei and Calton Pu. TOCTTOU vulnerabilities
in UNIX-style file systems: An anatomical study. In
Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2005.

[61] Tatu Ylönen. SSH Agent. https://www.ssh.com/ssh/
agent.

[62] Dinghao Wu Yufei Jiang and Peng Liu. Jred: Program
customization and bloatware mitigation based on static
analysis. In Proceedings of the 40th Annual Computer
Software and Applications Conference (ACSAC), 2016.

[63] Tian Lan Yurong Chen and Guru Venkataramani.
Damgate: Dynamic adaptive multi-feature gating in
program binaries. In Proceedings of the Workshop on
Forming an Ecosystem Around Software Transformation
(FEAST), 2017.

[64] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee
Jung, Ahmed M. Azab, and Ruowen Wang. PeX: A

https://www.ssh.com/ssh/agent
https://www.ssh.com/ssh/agent

permission check analysis framework for linux kernel.
In Proceedings of the 28th USENIX Security Symposium,
pages 1205–1220, 2019.

[65] Zhi Zhang, Yueqiang Cheng, Surya Nepal, Dongxi Liu,
Qingni Shen, and Fethi Rabhi. KASR: A reliable and
practical approach to attack surface reduction of com-
modity OS kernels. In Proceedings of the International
Conference on Research in Attacks, Intrusions, and De-
fenses (RAID), pages 691–710, 2018.

[66] Xiangyu Zhang Zhongshu Gu, Brendan Saltaformaggio
and Dongyan Xu. Face-change: Application-driven dy-
namic kernel view switching in a virtual machine. In
Proceedings of the 44th IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
2014.

A Appendix

Imprecision of Points-to Analysis
In Sections 4.2 and 5.1, we discussed how context sensitivity
and path sensitivity contribute to the overapproximation prob-
lem and make the results of Andersen’s analysis imprecise.
While our experiences show that the lack of context sensitivity
and path sensitivity are the primary contributors to this impre-
cision, other factors too contribute to overapproximation in
the results of the points-to analysis.

Field Sensitivity The points-to analysis provided by the
SVF library is field-sensitive. Field sensitivity allows every
field of a struct to be uniquely modeled, which is critical for
the precision of the analysis. For example, in case of Apache
Httpd, the cleanup_t type contains function pointers for
cleaning memory allocated on various heaps. To distinguish
between the different function pointers in this structure, we
must model the individual fields of the struct cleanup_t
as field-sensitive. However, there are certain circumstances
under which SVF forsakes field sensitivity in lieu of simplicity
of implementation and reduction in analysis time.

Array Index Sensitivity SVF’s implementation of Ander-
sen’s algorithm is not array-index-sensitive. Individual ele-
ments of an array are not modeled uniquely. Therefore, if
multiple struct objects are stored in a array, the individual
struct objects become field-insensitive, because the array
elements themselves are not modeled uniquely.

For example, objects of type ap_listen_rec are stored
in the array of pointers listen_buckets. The type
ap_listen_rec has a field accept_func which stores a
pointer to the function that is invoked on the accept event. As
these objects are stored in an index-insensitive array, they lose

Table 8: Linux ROP payloads used in our evaluation.

1) Return Oriented Programming and ROPgadget tool
http://shell- storm.org/blog/Return- Oriented- Programming- and-
ROPgadget-tool/

2) ARM Exploitation - Defeating DEP - executing mprotect()
https://blog.3or.de/arm- exploitation- defeating- dep- executing-
mprotect.html

3) 64-bit ROP | You rule ’em all!
https://0x00sec.org/t/64-bit-rop-you-rule-em-all/1937

4) 64-bit Linux Return-Oriented Programming
https://crypto.stanford.edu/~blynn/rop/

5) Return-Oriented-Programming(ROP FTW)
http://www.exploit- db.com/docs/english/28479- return- oriented-
programming-(rop-ftw).pdf

6) PMS 0.42 - Local Stack-Based Overflow (ROP)
https://www.exploit-db.com/exploits/44426/

7) Crashmail 1.6 - Stack-Based Buffer Overflow (ROP)
https://www.exploit-db.com/exploits/44331/

8) PHP 5.3.6 - Local Buffer Overflow (ROP)
https://www.exploit-db.com/exploits/17486/

9) HT Editor 2.0.20 - Local Buffer Overflow (ROP)
https://www.exploit-db.com/exploits/22683/

10) Bypassing non-executable memory, ASLR and stack canaries on x86-64 Linux
https://www.antoniobarresi.com/security/exploitdev/2014/05/03/
64bitexploitation/

11) Bypassing non-executable-stack during Exploitation (return-to-libc)
https://www.exploit-db.com/papers/13204/

12) Exploitation - Returning into libc
https://www.exploit-db.com/papers/13197/

13) Bypass DEP/NX and ASLR with Return Oriented Programming technique
https://medium.com/4ndr3w/linux- x86- bypass- dep- nx- and- aslr-
with-return-oriented-programming-ef4768363c9a/

14) ROP-CTF101
https : / / ctf101.org / binary - exploitation / return - oriented -
programming/

15) Introduction to return oriented programming (ROP)
https://codearcana.com/posts/2013/05/28/introduction-to-return-
oriented-programming-rop.html/

16) Simple ROP Exploit Example
https://gist.github.com/mayanez/c6bb9f2a26fa75261a9a26a0a637531b/

17) Analysis of Defenses against Return Oriented Programming
https://www.eit.lth.se/sprapport.php?uid=829/

their field sensitivity, and SVF cannot distinguish between
the targets of the accept_func field and the targets of the
other fields in ap_listen_rec that hold function pointers.
Moreover, due to array index insensitivity, it is impossible
to distinguish the accept_func field of one ap_listen_rec
object, from the accept_func field of another object, stored
in the same array.

Positive Weight Cycles Due to context insensitivity, espe-
cially for memory allocation wrappers, it is possible for the
constraint graph to contain cycles. Cycle elimination [27] is
a popular optimization in points-to analysis—the key idea
being that constraint nodes that are part of a cycle in the con-
straint graph share the same solution, and therefore can be
collapsed into a single node. However, cycle elimination is
not trivial in field-sensitive analysis, because the edges be-
tween the constraint nodes are weighted (where the weight of
the edge is the index of the field being accessed).

Moreover, SVF implements an optimization of Andersen’s
algorithm, called Wave Propagation [45]. This optimization
requires the constraint graph to be topologically sorted, and
that there are no edges. Due to this requirement, at the end
of each iteration, SVF converts every field-sensitive struct
object that is involved in a cycle into field-insensitive.

http://shell-storm.org/blog/Return-Oriented-Programming-and-ROPgadget-tool/
http://shell-storm.org/blog/Return-Oriented-Programming-and-ROPgadget-tool/
https://blog.3or.de/arm-exploitation-defeating-dep-executing-mprotect.html
https://blog.3or.de/arm-exploitation-defeating-dep-executing-mprotect.html
https://0x00sec.org/t/64-bit-rop-you-rule-em-all/1937
https://crypto.stanford.edu/~blynn/rop/
http://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf
http://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf
https://www.exploit-db.com/exploits/44426/
https://www.exploit-db.com/exploits/44331/
https://www.exploit-db.com/exploits/17486/
https://www.exploit-db.com/exploits/22683/
https://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
https://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
https://www.exploit-db.com/papers/13204/
https://www.exploit-db.com/papers/13197/
https://medium.com/4ndr3w/linux-x86-bypass-dep-nx-and-aslr-with-return-oriented-programming-ef4768363c9a/
https://medium.com/4ndr3w/linux-x86-bypass-dep-nx-and-aslr-with-return-oriented-programming-ef4768363c9a/
https://ctf101.org/binary-exploitation/return-oriented-programming/
https://ctf101.org/binary-exploitation/return-oriented-programming/
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html/
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html/
https://gist.github.com/mayanez/c6bb9f2a26fa75261a9a26a0a637531b/
https://www.eit.lth.se/sprapport.php?uid=829/

	Introduction
	Background and Motivation
	Static vs. Temporal API Specialization
	Seccomp BPF

	Threat Model
	Design
	Identifying the Transition Point
	Call Graph Construction
	Points-to Analysis Overapproximation
	Pruning Based on Argument Types
	Pruning Based on Taken Addresses

	Mapping System Call Invocations to the Application Call Graph

	Implementation
	Constructing a Sound Call Graph
	Pruning Based on Argument Types
	Pruning Based on Taken Addresses

	Pinpointing System Call Invocations
	Installing Seccomp Filters

	Experimental Evaluation
	Call Graph Analysis
	Filtered System Calls
	Exploit Code Mitigation
	Shellcode Analysis
	ROP Payload Analysis
	What Else can Attackers Do?

	Kernel Security Evaluation

	Discussion and Limitations
	Related Work
	Conclusion
	Appendix

