

STRIDE: POLYMORPHIC SLED DETECTION
THROUGH INSTRUCTION SEQUENCE
ANALYSIS

P. Akritidis1, E. P. Markatos1, M. Polychronakis1, and K. Anagnostakis2
1Institute of Computer Science Foundation for Research and Technology Hellas, P.O. Box
1385 Heraklio, GR-711-10 Greece, {akritid, markatos, mikepo}@ics.forth.gr
2Distributed Systems Laboratory, CIS Department, Univ. of Pennsylvania, 200 S. 33rd Street,
Phila, PA 19104, anagnost@dsl.cis.upenn.edu

Abstract: Despite considerable effort, buffer overflow attacks remain a major security
threat today, especially when coupled with self-propagation mechanisms as in
worms and viruses. This paper considers the problem of designing network-
level mechanisms for detecting polymorphic instances of such attacks. The
starting point for our work is the observation that many buffer overflow at-
tacks require a “sled” component to transfer control of the system to the ex-
ploit code. While previous work has shown that it is possible to detect certain
types of sleds, including obfuscated instances, this paper demonstrates that the
proposed detection heuristics can be thwarted by more elaborate sled obfusca-
tion techniques. To address this problem, we have designed a new sled detec-
tion heuristic, called STRIDE, that offers three main improvements over pre-
vious work: it detects several types of sleds that other techniques are blind to,
has a lower rate of false positives, and is significantly more computationally
efficient, and hence more suitable for use at the network-level.

Keywords: security; intrusion detection; buffer overflow detection.

1. INTRODUCTION

Buffer overflow attacks, popularized in 1996 by Aleph One1, have been a
major security concern ever since, because exploiting a buffer overflow
vulnerability allows an attacker located anywhere on the Internet to execute
arbitrary code on the compromised system. The highly interconnected envi-
ronment of the Internet currently creates tremendous exploitation opportuni-

2 P. Akritidis, E. P. Markatos, M. Polychronakis, K. Anagnostakis

ties. In fact, such vulnerabilities in networked services are currently the main
means used for propagation of Internet worms.

A tutorial on buffer overflow attacks was provided by Aleph One in
19961. A buffer overflow attack takes advantage of insufficient bounds
checking on a buffer located on the stack to overflow the buffer and over-
write the return address of the currently executing function. Figure 1 shows
the typical layout of the stack both before (left) as well as after the buffer
overflow attack (middle and right). The attack involves injecting data into
the buffer which resides in the lower addresses of the stack. The amount of
data injected is larger than the buffer size and the resulting overflow over-
writes at least the local variables, the saved ebp, and the return
address, resulting in the stack shown in Figure 1 (middle). The return
address is hijacked to point to malicious code that is injected by the attacker,
usually within the same overflowed buffer, illustrated as the shaded area in
Figure 1 (middle). Besides stack-based buffer overflow attacks, it is also
possible (although, perhaps more difficult) to engineer similar attacks on
heap-based and statically-allocated buffers.

Despite considerable efforts in end-system preventive measures2-8, adop-
tion of these techniques is proceeding at an alarmingly slow pace. Dealing
with this threat therefore requires additional perimeter defense mechanisms,
as provided by firewalls and network intrusion detection systems. However,
obfuscation techniques make it hard to apply simple rule-based detection
techniques as currently used in network intrusion detection.

Buffer overflows often have features that can be seen as a weakness that
can be exploited by detection heuristics. A key observation is that, although
the location of the injected code relative to the start of the buffer is known to
the attacker, the absolute address, which represents the start of the injected
code, is only approximately known because the location of the start of the

Figure 1. Anatomy of a stack-based buffer overflow attack. By overflowing the buffer, the
return address can be overwritten with a value pointing somewhere within the sled. The flow
of control will be transferred to the start of the shellcode from any location in the sled.

STRIDE: Polymorphic Sled Detection 3

buffer relative to the start of the stack varies between systems, even for the
same executable program.

To overcome the lack of exact knowledge on where to divert control, the
attacker needs to append the malicious code fragment to a sequence of NOP
instructions, typically around a few hundred bytes long. The overwritten
return address always transfers control somewhere inside this sequence, and
thus, after sliding through the NOP instructions, control will eventually
reach the worm code. Due to the sliding metaphor, this sequence is usually
called a sled. The exact location within the sled where execution will start
does not matter: as long as the return address causes the system to jump
anywhere within the sled, it will always reach the core of the exploit.

To detect buffer overflows, Network Intrusion Detection Systems (NID-
Ses) rely on signatures, characteristic strings, and regular expressions, such
as code sequences included in an attack's shellcode that can identify the
attack. However, obfuscation similar to polymorphism9,10, used in viruses
since the early 90s, renders signature-based techniques for zero-day worm
detection obsolete11,12. Polymorphism usually encrypts the shellcode with a
different random key each time and prepends it with a decryption routine.
When the malicious program starts executing, the decryption routine will
execute first, which in turn will decrypt the shellcode, which will then start
executing. Since the decryption routine itself cannot be encrypted, some
systems base their zero-day worm detection on detecting the decryption
routine itself. Unfortunately, decryption routines are usually obfuscated
using metamorphism. Metamorphism substitutes (sequences of) instructions
with equivalent (sequences of) instructions, making the decryption routine
difficult to fingerprint. Metamorphism is also used to obfuscate sleds, by, for
example, substituting NOP instructions, with other equivalent instruction
sequences.

Many existing detection mechanisms have also focused on detecting the
sled component in order to detect buffer overflow attacks. For example,
signatures to match simple sleds have been included in the shellcode rule set
of the Snort NIDS13. In addition, Snort has been extended with the Fnord
plugin14 that searches for obfuscated sleds. Finally, Toth and Kruegel pro-
posed the Abstract Payload Execution (APE) method15 which further im-
proves the sensitivity of obfuscated sled detection.

The rest of the paper is organized as follows. First, in Section 2 we pre-
sent a classification of obfuscated sleds, and in Section 3 we discuss some
existing detection techniques. Then, in Section 4 we propose STRIDE, a
novel detection mechanism. In Section 5 we evaluate the detection mecha-
nisms using generated attacks and real network traces, and in Section 6 we
discuss limitations of sled detection in general and of STRIDE in particular.
Finally, we conclude in Section 7.

4 P. Akritidis, E. P. Markatos, M. Polychronakis, K. Anagnostakis

2. CLASSIFICATION OF SLEDS

The sled is a sequence of instructions responsible for directing the flow
of control towards the core code of a buffer overflow attack. Although
execution of the sled can start at any position, it always ends up “sliding”
inside the core code of the attack. There are many different ways for a sled
to achieve its functionality. In this section, we present several types of sleds
in order of increasing (perceived) difficulty to detect.

2.1 Simple NOP Sled

The simplest sled consists of a series of NOP (no-operation) instructions.
A NOP instruction has no effect on program behavior: it simply advances
the program counter. Execution of the sled may start at any position, and the
NOPs are used to transfer control, step by step, to the shellcode right after
the sled. This simple sled has been demonstrated in the buffer overflow
examples of1 and has been used in many other attacks.

2.2 One-byte NOP-equivalents Sled

A NOP sled can be easily obfuscated by replacing literal NOP instruc-
tions with one-byte instructions which have no significant effect, and, for the
purposes of the attacker, are practically equivalent to NOPs. For example,
instructions that increase or decrease a register which is not used by the
attacker, instructions that set or clear a flag, and instructions that push or pop
a register, can all be used in a sled instead of NOPs.

Current polymorphic buffer overflow attack generators use such sleds to
avoid detection. The ADMmutate16 engine uses this technique with a list of
of 55 one-byte NOP-equivalent instructions. The Metasploit Framework17
extends the ADMmutate engine with 3 additional single-byte NOP replace-
ments. We have enumerated 66 such instructions in the Intel IA-32 architec-
ture18. Although not yet seen in the wild, obfuscated sleds are readily avail-
able to attackers.

2.3 Multi-byte NOP-equivalents Sled

A straightforward extension to one-byte NOP-equivalent sleds is to use
multi-byte NOP-equivalent instructions, which, like their one-byte counter-
parts, simply advance the program counter in order to reach the core of the
exploit. However, it is not possible to use any multi-byte NOP equivalent
instruction available in the instruction set, because a sled must be executable
at every offset. Therefore, a straightforward way to generate multi-byte

STRIDE: Polymorphic Sled Detection 5

NOP-equivalents sleds is to restrict the operands of multi-byte instructions to
correspond only to the opcodes of one-byte NOP-equivalent instructions, or
to the opcodes of multi-byte NOP-equivalents. Consider for example the
multi-byte NOP-equivalents sled shown in Figure 2. If control is transferred
to the leftmost byte, it will execute instructions cmp $0x35,%al, sub
$0x40,%al, add $0x249b0c68,%eax, etc. Note that the first argu-
ment of the first instruction cmp $0x35,%al, is 0x35, which corre-
sponds to the opcode of instruction xor. Therefore, if control is transferred
to the penultimate byte from the left, it will execute instructions xor, or,
and, etc. leading to the end of the sled. This is true for all instructions in this
type of sleds: their arguments are such that if control is transferred to any
byte inside the sled, the execution will eventually lead to the end of the sled.

2.4 Four-byte Aligned Sled

Although traditional NOP sleds had to be executable at each and every
byte, stack alignment can relax this restriction by constraining the possible
placements of the vulnerable buffer. The default behavior of modern compil-
ers is to align the stack at word (4-byte) boundaries19. Reference11 discusses
the possibility of exploiting stack alignment to construct sleds that have to be
executable every 4 bytes. Pairs of non-destructive 2-byte instructions can be
used as NOP-equivalents, but it is also possible to use longer instructions
with techniques similar to the multi-byte instruction sled discussed earlier.
Code sequences starting at non-word-aligned offsets may contain any kind
of instruction, including instructions with destructive side-effects or even
illegal ones, which can hinder detection.

2.5 Trampoline Sled

Although typical sleds transfer control to the shellcode by sliding it along
their body—hence the name sled—, the same functionality can be achieved
by jumping directly to the shellcode, as illustrated in Figure 3(a). The body

Figure 2. An example of a small sled, executable at every byte offset, which is constructed by
interleaving one-byte and multi-byte NOP-equivalent instructions.

6 P. Akritidis, E. P. Markatos, M. Polychronakis, K. Anagnostakis

of such a sled consists of control transfer instructions with relative addresses,
all pointing directly to the shellcode. Thus, the flow of control will reach the
shellcode in a single step from any point it may have entered the sled.

Trampoline-sleds can be directly implemented, relying on four-byte
alignment, by cramming a jump instruction together with its operands into
every four-byte-long slot of the sled. Even if a trampoline-sled has to be
executable at every offset, an attacker can carefully choose the operands of
the jump instructions to be valid NOP-equivalent opcodes, as explained in
Section 2.3. An example of a small trampoline-sled that is executable at
every byte offset is illustrated in Figure 3(b).

The shortest control transfer instructions available are two bytes long.
For example, instructions such as jmp and loop take a one-byte operand
that specifies the relative address of the jump target. The use of two-byte
control transfer instructions places an additional restriction on the maximum
jump displacement that can be used for sleds executable at each byte. Gener-
ally, the operand of these instructions is encoded as a signed 8-bit immediate
value, which allows for a maximum forward relative offset of 127 bytes.
Additionally, since the operand must at the same time act as a one-byte
NOP-equivalent instruction, the maximum jump displacement is further
reduced to the NOP-equivalent opcode with the greater signed integer value
that is less than 128. The two NOP replacements with the largest such op-
codes that we have come across are push imm8 and push imm32, which
result to an offset of 106 and 104 bytes, respectively. Trampoline sleds are
still feasible, though, by solely using jumps with relatively large positive
displacements, which result to forward execution “bounces”. Thus, the flow
of control “jumps” and “strides” towards the shellcode.

Figure 3. (a) The ideal trampoline-sled: flow of control is directed to the shellcode in a single
step from any position in the sled. (b) An example of a small trampoline-sled that is executa-
ble at every byte offset. Control transfer instructions are placed at every second byte and their
relative address operand is chosen so that it is a valid NOP-equivalent opcode.

STRIDE: Polymorphic Sled Detection 7

2.6 Obfuscated Trampoline-sled

Since the number of control transfer instructions that can be used for the
construction of trampoline-sleds is limited, one could argue that such sleds
can be detected by searching for the specific opcodes of these instructions,
much in the same way that Fnord does for NOP-equivalents (cf. Section 3.2).

The entropy of the basic trampoline-sled can be increased in order to
evade detection, by interleaving NOP-equivalent instructions along with the
jump instructions. In this way, the shellcode is not reached in a single step,
but in a number of steps which can be tuned by the attacker. This will result
to a sparse distribution of the control transfer instructions, which renders
simple detection methods ineffective.

2.7 Static Analysis Resistant Sleds

Sleds of this type attempt to evade detection by making it difficult for de-
tection heuristics to statically infer the outcome of the execution of the sled.
When the sled is actually executed, its behavior is that intended by the
attacker, correctly leading to the shellcode. This can be achieved by either
using branches whose target cannot be determined statically or by using self-
modifying code. Static analysis cannot follow branches that cannot be de-
termined statically, such as register or memory indirect jumps, because the
contents of the registers or memory are not known during the analysis.
Therefore, it cannot continue with the inspection of the corresponding code
paths and cannot determine their outcome. Such jumps, however, must
specify the target as an absolute address.

Also, a sled could modify itself so that invalid instructions, appearing
under static analysis to terminate a code path, are overwritten during execu-
tion by previous instructions and are actually executed normally. However,
the sled must rely on stack alignment to avoid the execution of illegal in-
structions before they are fixed-up. Again, like indirect branches, write
operations require an absolute address.

To overcome the absolute address problem, present in both indirect
branches and self-modifying instructions, the esp register, which holds the
stack frame's absolute address, can be used to find the buffer and sled ad-
dresses. However, the use of the esp register could hint for static analysis
resistant sleds, but, in fact, the absolute address of the sled can be found even
without using this register: knowing the injected return address and main-
taining a counter while sliding through the sled provides knowledge of the
absolute address of the current sled position. This seems to be relatively hard
to implement, especially considering the need for 4-byte alignment.

8 P. Akritidis, E. P. Markatos, M. Polychronakis, K. Anagnostakis

Table 1. Comparative effectiveness of various sled detection schemes.

Scheme
Sled Type

Snort Fnord APE STRIDE
1. NOP instructions Yes Yes Yes Yes
2. One-byte NOP-equivalents No Yes Yes Yes
3. Multi-byte NOP-equivalents No No Yes Yes
4. Four-byte Aligned No No Yes Yes
5. Trampoline-sled No No No Yes
6. Obfuscated Trampoline-sled No No No Yes
7. Static Analysis Resistant No No No After extension*

3. SLED DETECTION MECHANISMS

In this section we briefly present three techniques which have been pro-
posed for sled detection: NIDS signatures, the Fnord mutated sled detection
plugin, and APE. Table 1 summarizes the effectiveness of each technique,
along with our proposed detection mechanism, for each sled type.

3.1 NIDS Signatures

Detecting simple NOP sleds such as those described in section 2.1 is rela-
tively straightforward. On the Intel IA-32 architecture, nop is a single-byte
instruction with opcode 0x90. Thus, to detect a simple sled consisting only
of nop instructions, a pattern matching rule searching for a sufficiently long
sequence of bytes with value 0x90 is enough. Indeed, such rules exist for
popular NIDSes, such as Snort13.

3.2 Fnord

The Fnord14 mutated sled detection plugin for Snort detects sleds by
searching network traffic for long series of one-byte NOP-equivalent instruc-
tions. It is, therefore, capable to detect type-2 sleds, such as those described
in Section 2.2. It may be the case that its list of NOP-equivalents could be
extended with the opcodes of multi-byte NOP-equivalents, making it capable
to detect type-3 sleds such as those described in Section 2.3, but we use the
standard version here. However, Fnord definitely fails to detect type-4 sleds
and above, that exploit the alignment of stack variables.

* STRIDE can detect sleds that use indirect jumps, and we discuss how it may be extended to
detect self modifying sleds in Section 6.

STRIDE: Polymorphic Sled Detection 9

There also exist various other tools that offer similar sled detection capa-
bilities with Fnord20, 21. Since these tools, along with Fnord, all rely on the
NOP-equivalents list contained in ADMmutate in order to detect mutated
sleds, it is sufficient to consider just one of them.

3.3 Abstract Payload Execution

APE15 is a detection mechanism that enables the detection of sleds by
looking for sufficiently long series of valid instructions: instructions which
decode correctly and whose memory operands are within the address space
of the process being protected against attacks. To reduce its runtime execu-
tion overhead, APE uses sampling to pick a small number of positions in the
data from which it will start abstract execution. The number of successfully
executed instructions from each position is called the Maximum Executable
Length (MEL). When APE encounters a conditional branch, it follows both
branches and considers the longest one as the MEL. If the destination of the
branch can not be determined statically, APE terminates execution and uses
the MEL value computed so far. A sled is detected if a sequence has a MEL
value greater than 35. Although APE can be used to detect sleds of type-1
through type-4, it fails, however, to detect sleds of type-5 (trampoline sleds),
type-6 (obfuscated trampoline), and type-7 (static-analysis-resistant sleds).

Indeed, although the purpose of type-5, and type-6 sleds is to transfer
program control to the shellcode in as few steps as possible using jump
instructions, the mechanism that is used by the APE scheme is based on the
detection of a sufficiently long execution sequence of instructions, and thus,
trampoline-sleds evade detection by having a short sequence of executed
instructions. Static analysis resistant sleds also confuse APE, because it errs
on the unsafe side when it cannot decide about a code sequence.

4. THE STRIDE DETECTION ALGORITHM

In this section we describe STRIDE, our new sled detection mechanism
which, compared to previous approaches, is able to detect more types of
sleds with less false positives.

STRIDE is given some input data, such as a URL, and searches each and
every position of the data to find a sled. If a sled is found, the input data are
considered part of an attack. To detect a sled spanning over at least n bytes
and starting at position i of the input data, STRIDE searches for all se-
quences of instructions of length jn − bytes starting at offset ji + of the
input data, for all }10{ −∈ nj K . If STRIDE finds all n sequences of

10 P. Akritidis, E. P. Markatos, M. Polychronakis, K. Anagnostakis

instructions to be valid sequences, it then concludes that a sled of length n
starts at position i .

We call a code sequence, starting at a certain point i in the input data, a
“valid sequence of instructions of length n at position i ,” if it either (1)
decodes correctly for n bytes without encountering privileged instructions,
or if (2) a jump instruction is encountered along the way. Informally, a valid
sequence of instructions is a sequence of instructions which can be used to
construct a sled. Such a sequence may only contain valid instructions, and
may not contain privileged instructions, i.e., instructions which can be in-
voked only by the operating system kernel.

Figure 4 gives the pseudo-code for STRIDE. The main routine, stride,
consists of a loop which tries to find a sled of length sled_length at each
and every position of input data input. Routine find_sled(data,
len) finds a sled by attempting to valid all valid sequences of length len-
i which start at position data+i, for al values of i. Aligned sleds are
accounted-for by checking for valid sequences at every four bytes instead of
at every byte but the check is applied for all four possible displacements.

STRIDE is related to previous approaches in several ways. Like Snort13
and Fnord14, STRIDE is able to find long sequences of NOP(-equivalent)
instructions. Like APE15, STRIDE is able to decode the input data and
identify sequences of instructions that may be part of a sled. However,
STRIDE has two major differences from APE:

 stride(input, input_size, sled_length) {
 for (i=0; i < input_size-sled_length; i++) {
 if (find_sled(input+i, sled_length))
 return TRUE;
 }
 return FALSE;
 }

 find_sled(data, len) {
 for (j = 0; j < 4; j++)
 for (i = j; i < len; i+=4)
 if (!valid_sequence(data+i, len-i))
 return FALSE ;
 return TRUE;
 }

 is_valid_sequence(data,len) {
 /* decode "len" instructions in buffer "data" */
 res = decode(data, len);
 if (res == VALID_DECODE) return TRUE;
 if (res == ENDS_IN_JMP) return TRUE;
 return FALSE;
 }

Figure 4. Pseudo-code for STRIDE algorithm

STRIDE: Polymorphic Sled Detection 11

Table 2. Detection rate of the various detection schemes for traces containing 10,000 different
generated sleds of a single type.

Scheme
Sled Type in Trace

Snort Fnord APE STRIDE
NOP instructions 100% 100% 100% 100%
One-byte NOP-equivalents 0% 55.4% 100% 100%
Multi-byte NOP-equivalents 0% 0% 100% 100%
Four-byte Aligned 0% 0% 100% 100%
Trampoline-sled 0% 0% 0% 100%
Obfuscated Trampoline-sled 0% 0% Fig. 5 100%

• APE detects a sled when it finds a sufficiently long execution sequence
of instructions. Therefore, although it is able to detect NOP-based sleds,
APE can not detect trampoline sleds, because they jump directly to their
destination code and, therefore, do not exhibit long execution sequences.
In contrast, STRIDE may consider even short execution sequences (such
as a single jump instruction) to be part of a valid sled.

• STRIDE verifies that each and every byte of a sled (apart from the cases
of word-aligned sleds) is the start of a valid sequence of instructions. On
the contrary, for APE it is enough to find only one sufficiently long exe-
cution sequence to consider it a valid sled.

5. EXPERIMENTAL EVALUATION

We evaluate the accuracy of the detection rate of our proposed algorithm
STRIDE, Snort's shellcode signatures13, Fnord mutated sled detection plugin
for Snort14, and APE, by generating 10,000 different sleds of each type using
the Metasploit Framework v2.217, modified to generate sleds ranging from
type-1 (simple NOP sleds) up to type-6 (obfuscated trampoline).

We also evaluate the false positives rate of the four methods as in15, by
applying them to HTTP URIs. The URIs were captured from our institution's
LAN, which contains about 150 hosts. Sled detection methods which are
based on instruction decoding, employ the decoder used in22.

5.1 Detection Rate

The results of applying all four detection methods on the generated sleds
are shown in Table 2. We observe that Snort's shellcode signatures detect
simple NOP sleds with 100% success, but fail to detect more elaborate sleds.
Fnord is able to detect simple NOP sleds with 100% success too, and in

12 P. Akritidis, E. P. Markatos, M. Polychronakis, K. Anagnostakis

addition is able to detect sleds with one-byte NOP-equivalent instructions
with a 55.4% rate. Although it could have achieved a 100% rate for one-byte
NOP-equivalent sleds, it achieves a lower-rate due to an incomplete NOP-
equivalent instruction list. Fnord also fails to detect sleds with multi-byte
NOP-equivalent instructions, but it should be possible to update its list of
NOP-equivalents to include them as well. However, this is as far as Fnord
can get. Indeed, Table 2 shows that Fnord fails to detect sophisticated sleds,
such as 4-byte aligned and trampoline sleds.

Table 2 suggests that the APE method is able to detect simple NOP sleds,
sleds with one-byte and multi-byte NOP-equivalent instructions, as well as
four-byte aligned sleds with a 100% success rate. However, APE cannot
detect trampoline sleds. This was expected, because trampoline sleds reach
the core attack code by executing only a small number of jump instructions,
while APE bases its detection method on the sequential execution of a long
sequence of instructions.

It is interesting, however, to point out that although APE can not detect
trampoline sleds, it is able to detect some of the more difficult obfuscated
trampoline sleds. Indeed, as Figure 5 shows, APE is able to detect as many
as 6% of the obfuscated trampoline sleds for small MEL. This is because the
NOP-equivalent instructions that are used for the obfuscation cause an
increase of the overall execution steps of the sled, which can now reach a
low MEL threshold. Nevertheless, the detection rate of APE is still very low,
at 6%, even for the minimum suggested MEL value.

Finally, STRIDE is able to detect simple NOP sleds, sleds with one-byte
or multi-byte NOP-equivalent instructions, as well as four-byte aligned sleds
and plain or obfuscated trampoline sleds with 100% success, as expected.

5.2 False Positives

The results of the false positives rate evaluation for the four methods with
real traces are shown in Figure 6. In this experiment STRIDE has a sled
length parameter of 130 bytes and APE has a MEL value of 35 instructions
with 100 samples per kilobyte. With these parameters APE is sensitive, like
STRIDE, to sled lengths of about 130 bytes and above.

The Snort shellcode signatures have zero false positives, because there
was no sufficiently long NOP-sequence in our traces. Fnord also has almost
0% false positives, because there were very few sequences of bytes in the
traces which corresponded to sequences of NOP-equivalent instructions.
Although both Snort and Fnord have an attractive practically 0% of false
positives rate, they are severely limited in their ability to detect elaborate
sleds, such as trampoline sleds. Figure 6 shows that APE has a false positive

STRIDE: Polymorphic Sled Detection 13

rate of 0.006%. Finally, STRIDE has a false positive rate of 0.00027%, close
to an order of magnitude smaller than APE. Overall, we see that STRIDE
seems to strike a good balance between true positives and false positives.
That is, it is able to find more true positives than any other method, while
keeping the false positives as low as those of Fnord and Snort.

The interested reader should notice that the exact value of false positives
for APE and STRIDE depends heavily on their parameters. To explore the
influence of the parameters to the false positive rate of APE and STRIDE,
we investigate the false positives rate for both methods as a function of MEL
and sled length, and display the results in Figure 7. We see that as the size of
MEL increases, the percentage of false positives for APE decreases. How-
ever, we should point out that larger MEL values also decrease the number
of detected true positives, as can be seen in Figure 5. Figure 7 also shows
that the percentage of false positives for STRIDE decreases with the sled
length, and reaches zero for sled length larger than 230 bytes. This is an
encouraging result, since typical sleds are usually longer than 250 bytes.
Overall, our results suggest that STRIDE is able to have a true positive rate
of 100% (Table 2), while having a false positive rate of (close to) 0%.

5.3 PERFORMANCE

Besides being accurate, a worm detection method should also be fast, so
as to be able to detect worms in real-time. To evaluate the speed of STRIDE
we measured the CPU time consumed by STRIDE with a sled length value
of 200 bytes, and compared it to the execution time of APE with a MEL
count of 35 on a Pentium 4 machine (2.6GHz clock speed, 512KB cache
size) for a trace with 1,093,249 requests. The CPU time for processing this

0

1

2

3

4

5

6

7

 30 35 40 45 50

D
et

ec
tio

n
R

at
e

(%
)

MEL (Number of instructions)

APE - Obfuscated Trampoline Sled

0

1

2

3

4

5

6

7

0 0.002 0.004 0.006 0.008 0.01

D
et

ec
ts

 u
p

to
 S

le
d

Ty
pe

False Positives (%)

STRIDE

APE

Fnord

Signatures

Figure 5. Detection rate for APE when
applied to obfuscated sleds as a function of
MEL.

Figure 6. Comparative effectiveness of the
various detection schemes. The results for
APE are for a MEL value of 35 with 100
samples per kilobyte and for STRIDE for
sled length 130 bytes.

14 P. Akritidis, E. P. Markatos, M. Polychronakis, K. Anagnostakis

trace was 25 sec for APE (22.9 usec per request) and 4.85 sec for STRIDE
(4.4 usec per request). We see that STRIDE outperforms APE by a factor of
5. This is mostly due to the different handling of branch instructions by the
two algorithms. Indeed, when APE encounters a branch instruction, whose
target can be determined statically it follows both branches, a decision,
which may potentially lead to the exploration of an exponential number of
execution paths. Unlike APE, when STRIDE encounters a branch instruc-
tion, it assumes that it found a valid sequence, without making any attempt
to follow the branch. By being conservative, STRIDE avoids the exponential
explosion and significantly reduces the associated run-time cost.

6. DISCUSSION

Although our evaluation has shown that STRIDE has some benefits, we
should mention that it still has limitations. For example, STRIDE can only
be applied to buffer-overflow-based attacks which use sleds. If an attack
does not make use of a sled, then it can not be detected by STRIDE. In
addition, STRIDE still cannot detect self-modifying sleds. It is, however,
possible, to extend it with a decoder that is capable of identifying memory
write operations and handle the sequences that contain them the way it
currently handles jump instructions: consider them valid, because they
cannot be proved invalid with static analysis. Finally, a worm writer could
blind STRIDE by adding invalid instruction sequences at suitable locations
in the sled. Note that this would most likely lead to a fraction of the infection
attempts crashing the remote process and would most certainly slow down
the spread of the worm, while also exposing it to other detection components
that look for anomalous behavior at the process-level.

0

 0.002

 0.004

 0.006

 0.008

0.01

 0.012

 0.014

50 100 150 200 250

Fa
ls

e
Po

si
tiv

es
(%

)

Sled Length (Bytes)

STRIDE

0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 30 35 40 45 50

Fa
ls

e
Po

si
tiv

es
(%

)

MEL Threshold (number of sled instructions)

APE

Figure 7. False positives rate for APE and STRIDE with varying parameters.

STRIDE: Polymorphic Sled Detection 15

7. SUMMARY AND CONCLUDING REMARKS

We have presented STRIDE, a new approach for network-level detection
of buffer overflow attacks, which relies on the identification of the sled
component that is usually part of such attacks. Because it operates at the
network-level, STRIDE can be used for detecting worms that replicate
through buffer overflow exploits, even if they involve elaborate obfuscation.
Our analysis allows us to make three main observations:
• STRIDE can detect several classes of sleds that cannot be identified by

previous proposals. As presented in Section 2.5, trampoline sleds can be
used by attackers in order to evade current sled-based detection mecha-
nisms. STRIDE detects such sleds, even in their obfuscated variations.

• STRIDE achieves high detection rates while maintaining low false posi-
tive rates. Snort and Fnord have few false positives but can only detect
basic sled types. APE detects more complex sleds, but has an order of
magnitude more false positives compared to STRIDE, while also missing
two classes of sleds. Our approach can detect all types of sleds presented
in this paper, except for Static Analysis Resistant sleds, with a detection
rate of 100%, and a false positive rate that reaches 0% for reasonable al-
gorithm parameters. As suggested in Section 6, it may also be possible to
detect Static Analysis Resistant sleds. This question, however, requires
additional analysis and is outside the scope of this paper.

• STRIDE is more efficient in terms of processing cost. As shown in Table
3, STRIDE has relatively low computational cost, outperforming APE by
a factor of 5. This suggests that STRIDE can operate on high-speed links
and remain effective even under heavy loads, at a reasonable cost.
The high accuracy, low false positive rate, and low processing cost

achieved by STRIDE suggest that it is likely to be highly useful as part of an
automated network-level defense mechanism against both targeted attacks
and large-scale zero-day worm outbreaks, especially as worms become more
aggressive and more sophisticated.

ACKNOWLEDGEMENTS

This work was supported in part by the IST project NoAH (011923) funded
by the European Union and the GSRT project EAR (USA-022) funded by
the Greek Secretariat for Research and Technology. The work of K. Anag-
nostakis is also supported by OSD/ONR CIP/SW URI through ONR Grant
N00014-04-1-0725. P. Akritidis, E. P. Markatos, and M. Polychronakis are
also with the University of Crete. The work of K. Anagnostakis was done
while at ICS-FORTH.

16 P. Akritidis, E. P. Markatos, M. Polychronakis, K. Anagnostakis

REFERENCES

1. Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), Nov. 1996. http://www.
phrack.org/phrack/49/P49-14.

2. A. Baratloo, N. Singh, and T. Tsai. Transparent run-time defense against stack smashing
attacks. In Proceedings of USENIX Annual Technical Conference, June 2000.

3. C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. Formatguard: Automatic
protection from printf format string vulnerabilities. In Proceedings of the 10th USENIX
Security Symposium, August 2001.

4. J. J. C. Cowan, S. Beattie and P. Wagle. PointGuard: Protecting pointers from buffer
overflow vulnerabilities. In Proceedings of the 12th USENIX Security Symposium, Au-
gust 2003.

5. C. Cowan, C. Pu, D. Maier, M. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proc. of the 7th USENIX Security Symposium, January 1998.

6. M. Frantzen and M. Shuey. StackGhost: Hardware facilitated stack protection. In Pro-
ceedings of the 10th USENIX Security Symposium, August 2001.

7. I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A Secure Environment for
Untrusted Helper Applications: Confining the Wily Hacker. In Proc. of the 5th USENIX
Security Symposium, 1996.

8. V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program
sheperding. In Proceedings of the 11th USENIX Security Symposium, 2002.

9. T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk. Polymorphic shellcode
engine using spectrum analysis. Phrack, 11(61), Aug. 2003. http://www.phrack.org/
phrack/61/p61-0x09_Polymorphic_Shellcode_Engine.txt.

10. C. Nachenberg. Understanding and managing polymorphic viruses. White Paper, July
1996. http://www.symantec.com/avcenter/reference/striker.pdf.

11. O. Kolesnikov, D. Dagon, and W. Lee. Advanced polymorphic worms: Evading IDS by
blending in with normal traffic, 2004. http://www.cc.gatech.edu/άok/w/ok_pw.pdf.

12. P. Szor and P. Ferrie. Hunting for metamorphic. White Paper, Sept. 2001. http://www.
symantec.com/avcenter/reference/hunting.for.metamorphic.pdf.

13. M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of
USENIX LISA 99, Nov. 1999. (software available from http://www.snort.org/).

14. D. Ruiu. Fnord: Multi-architecture mutated NOP sled detector, Feb. 2002. http://www.
cansecwest.com/spp_fnord.c.

15. T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract payload execu-
tion. In Proceedings of the 5th International Symposium on Recent Advances in Intrusion
Detection (RAID), Oct. 2002.

16. K2. ADMmutate. http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.
17. Metasploit project, 2004. http://www.metasploit.com/.
18. IA-32 Intel Architecture Software Developer’s Manual vol. 1-3. http://developer.intel.

com/design/ pentium4/manuals/index_new.htm.
19. K. S. Gatlin. Windows data alignment on IPF, x86, and x86-64, Feb. 2003. MSDN

Library, http://msdn.microsoft.com/.
20. Prelude IDS. http://www.prelude-ids.org/.
21. NIDSFindShellcode. http://www.ngsec.com/downloads/misc/NIDSfindshellcode.tgz.
22. T. Toth. Apache buffer overflow detector module, Mar. 2002. http://www.infosys.tuwien.

ac.at/Staff/tt/abstract_execution/.

