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ABSTRACT
Code reuse attacks have been a threat to software security since
the introduction of non-executable memory protections. Despite
significant advances in various types of additional defenses, such
as control flow integrity (CFI) and leakage-resilient code random-
ization, recent code reuse attacks have demonstrated that these
defenses are often not enough to prevent successful exploitation.
Sophisticated exploits can reuse code comprising larger code frag-
ments that conform to the enforced CFI policy and which are not
affected by randomization.

As a step towards improving our defenses against code reuse at-
tacks, in this paper we present Shredder, a defense-in-depth exploit
mitigation tool for the protection of closed-source applications. In
a preprocessing phase, Shredder statically analyzes a given appli-
cation to pinpoint the call sites of potentially useful (to attackers)
system API functions, and uses backwards data flow analysis to
derive their expected argument values and generate whitelisting
policies in a best-effort way. At runtime, using library interposi-
tion, Shredder exposes to the protected application only specialized
versions of these critical API functions, and blocks any invocation
that violates the enforced policy. We have experimentally evalu-
ated our prototype implementation for Windows programs using
a large set of 251 shellcode and 30 code reuse samples, and show
that it improves significantly upon code stripping, a state-of-the-art
code surface reduction technique, by blocking a larger number of
malicious payloads with negligible runtime overhead.
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1 INTRODUCTION
After more than two decades of advances in code reuse attacks [24,
36, 51, 52], defending effectively against return-oriented program-
ming (ROP) [63] and its recent more sophisticated forms [12, 15,
21, 26, 59, 61, 65, 66] remains a challenging problem. By diverting
the hijacked control flow into carefully selected existing code frag-
ments (dubbed “gadgets”) or even whole functions, modern exploits
can bypass not only non-executable memory protections, but also
(depending on the application and various other conditions) an
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array of additional exploit mitigation approaches, such as control
flow integrity, code diversification, and code pointer protection.

Control flow integrity (CFI) [2] confines control flow transfers
within a set of targets, preventing the execution of gadgets that
are not part of the legitimate control flow graph. Recent works,
however, have shown that exploitation is still possible by trans-
ferring control to gadgets or functions without violating the en-
forced policy [12, 15, 26, 59, 61]. Address space layout randomiza-
tion (ASLR) [69] randomizes the load address of shared libraries and
main executables, while code randomization [44] alters not only
the location but also the structure of code, breaking ROP payloads
that rely on gadgets present in the original code.

By leveraging a memory leakage vulnerability, however, exploit
code can dynamically harvest gadgets and construct a functional
“just-in-time” ROP (JIT-ROP) payload for a particular diversified
process [65]. Recent leakage-resilient protections against JIT-ROP
exploits, which rely on the concept of execute-onlymemory to block
the on-the-fly discovery of gadgets [6, 13, 18, 20, 32, 57, 67, 73], can
under certain conditions also be bypassed [59]. Code pointer protec-
tions prevent code reuse attacks at their initial step, by preventing
the corruption of pointers in memory. Even this strong form of
protection, however, can be bypassed when certain code constructs
are present, by corrupting non-pointer data [70].

Despite these shortcomings, the continuous deployment of ex-
ploit mitigation technologies has undoubtedly beenmaking vulnera-
bility exploitation harder, as evident by the complexity and sophisti-
cation of the above exploitation techniques [12, 15, 26, 59, 61, 65, 70].
Especially when orthogonal mitigations are combined (e.g., control
flow integrity and code pointer integrity), bypassing all of them
becomes challenging even under favorable conditions [70]. Unfor-
tunately, in practice, most of the above protections have not seen
widespread deployment due to their reliance on source code or de-
bug symbols, and the often non-negligible runtime overhead they
incur. It is thus pertinent to focus part of our defense efforts on ap-
proaches that i) can complement existing protection mechanisms to
collectively provide stronger protection, ii) can be transparently de-
ployed for the protection of (closed-source) third-party applications,
and iii) introduce negligible runtime overhead.

A promising approach that fulfills the above requirements is code
surface reduction through the removal of unused code [48, 50, 58].
Code reuse attacks rely on the abundance of code in the address
space of a vulnerable process. For most applications, the bulk of this
code comes from libraries: DLLs on Windows or shared libraries
on UNIX systems. These libraries are either bundled with the ap-
plication, or are provided by the OS to expose system interfaces
and services. Applications typically use only a fraction of these
functions, so a natural approach for reducing the code surface of
a process is to remove any unneeded functions from its address
space after each DLL is loaded [50, 58].
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A particular implementation of this approach for closed-source
Windows programs is dubbed code stripping [50]. Removing un-
used system API functions not only reduces the number of gadgets
that can potentially be used by an attacker, but also restricts what
potentially harmful OS operations (e.g., the allocation of executable
memory) can be performed in the first place. For example, server
applications often do not need to create new network connections
(just accept incoming connections); removing connect() will thus
break any exploit code (either shellcode or ROP code) that attempts
to connect back to an attacker-controlled system [50].

As an added benefit, the removal of unused code can eliminate
potential vulnerabilities due to bugs in “forgotten” parts of the
code. At the same time, this approach does not incur any addi-
tional overhead (in fact, it may slightly improve performance due
to reduced memory utilization), and is applicable to closed-source
third-party applications. This is particularly important in the Win-
dows ecosystem, which is probably the most severely plagued by
ROP exploits against vulnerable third-party applications—Mulliner
and Neugschwandtner [50] have demonstrated the benefits of code
stripping for the protection of commonly targeted closed-source
Windows applications such as Adobe Reader.

Unfortunately, although unneeded code removal reduces the
number of ROP gadgets at the disposal of attackers—and evenwhole
potentially useful (for attackers) system API functions—the code of
several system operations that are essential for both legitimate and
malicious code is unlikely to be removed. For instance, consider
kernel32.dll, which is typically loaded by all Windows processes,
as it provides a host of useful system operations. Among its exported
functions are VirtualAlloc() and VirtualProtect(), which are
used by ROP exploits to either allocate writable and executable
(WX) memory, or change the permissions of existing memory to
WX (to facilitate the execution of second-stage injected shellcode
or malicious DLLs). These functions are also indispensable to most
programs for generic memory allocation, and thus cannot be simply
removed. We observe though that, with a few exceptions, most
programs rarely need to allocate executable memory—precisely
what malicious code needs.

Based on the observation that part of an API function’s capabil-
ities may not ever be needed by the target program, in this work
we propose API specialization, a defense-in-depth approach that re-
stricts the interface of the loaded instances of critical API functions
according to the actual needs of a given program. This is achieved
by neutralizing any unneeded functionality which may be essential
for malicious code, such as the allocation of executable memory
(e.g., by not accepting “X” as an allowable permission).

We have developed a prototype of this approach for the protec-
tion of closed-source Windows applications, called Shredder. In a
preprocessing phase, Shredder statically analyzes a given program
to pinpoint the call sites of sensitive system API functions, and
uses backwards program data flow analysis to derive their expected
argument values in a best-effort way. At runtime, using library
interposition, Shredder exposes to the protected application only
the specialized versions of these functions, and blocks any invo-
cation that violates the enforced policy. We have experimentally
evaluated Shredder using a large set of 251 shellcode and 30 ROP
payload samples from real-world and proof-of-concept exploits.
When applied for the protection of 10 popular Windows 64-bit

applications, Shredder blocked significantly higher number of ma-
licious payloads compared to code stripping [50], with negligible
runtime overhead.

In summary, our work makes the following main contributions:

• We propose API specialization, a best-effort code slimming
technique for close-source applications that limits the func-
tionality of system API functions to the absolutely necessary
operations that a given program needs.

• We have implemented a prototype tool, call Shredder, that
employs API specialization to transparently protect Win-
dows applications by blocking the execution of shellcode or
ROP code that violates the enforced policy.

• We have experimentally evaluated Shredder with popular
Windows applications and a large set of exploit code, and
demonstrate that it breaks 18.3% more shellcode and 298%
more ROP code samples compared to code stripping [50],
while incurring a negligible runtime overhead.

2 BACKGROUND AND MOTIVATION
The first stage of recent exploits (typically implemented as a ROP
payload) usually performs a simple task, such as enabling the exe-
cution of a more complex second-stage shellcode, or dropping and
invoking a malicious executable. This unavoidably requires some
interaction with the OS through the system call interface, e.g., to
carry out system operations related to file and network activity,
memory allocation, and module loading.

In Unix-like systems, the system call interface is exposed to user
space through a single library (e.g., libc), which provides a mostly
one-to-one mapping between the available system calls and the
exported API functions that programs can invoke. Windows, in
contrast, does not expose system calls to user-level programs in
such an obvious and direct way. Instead, programs interact with
the OS through the Windows API [47], which is organized into
several DLLs. In turn, these DLLs call functions from the (largely
undocumented) Native API [60] (implemented in ntdll.dll) to
invoke kernel-level services.

In both cases, the overall set of system operations available to
user programs through the provided APIs is quite large. Depending
on the application, however, it is unlikely that all available system
operations will be needed. For instance, a program might never
need to create network connections or write files to disk. Still, as
long as a program needs to perform even a single system operation,
it has to import the corresponding function from the respective
system library (e.g., libc.so in Linux or kernel32.dll in Win-
dows), which means that the whole library will be loaded into
the process’ address space. Although none of the other API func-
tions will ever be used, they are still available in the address space
of the process to be used as part of exploit code. As an example,
kernel32.dll is almost always imported byWindows applications,
and provides a large variety of critical functionality for exploit code
(e.g., change memory permissions to bypass non-executable mem-
ory protections, connect to remote hosts and download malicious
components or exfiltrate information, or create new processes and
threads to perform malicious actions).

If an API function will never be used by a given application,
why making it available to attackers? This is the idea behind code
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Table 1: Number of imported functions from Windows API
DLLs for various 64-bit programs.

DLL name: kernel32 advapi user32 ole32

Exported functions: 1941 902 1152 167

Imported functions by:
7Zip 94 19 84 12
Google Chrome 201 36 33 8
Microsoft Edge 46 - - -
Mozilla Firefox 105 29 8 -
iTunes 336 52 212 29
PhotoViewer 115 16 136 23
Notepad++ 173 13 177 2
Powershell 80 13 1 6
VLC 38 2 1 -
Winrar 180 26 152 12

stripping [50], which at load time identifies all the non-imported
functions from external system libraries and removes them from the
address space of the protected process. In addition, code stripping
is combined with image freezing, which prevents the addition of
new code, i.e., new executable memory pages, once the process has
been initialized. This is achieved by filtering through API hooking
the memory-related functions that may receive an “execute” flag. A
function that tries to use the “execute” flag succeeds only if it was
part of the original program. Both code stripping and image freezing
essentially have no runtime overhead, as both are performed only
during startup.

Given that invoking system calls directly is usually not an op-
tion in Windows exploits (due to the frequent system call number
changes across different Windows versions, and the complexity
of the Native API [55, 64]), if the API function for a given system
operation is missing, any exploit code that relies on it will break.
This would prevent attackers from, for instance, accessing the net-
work, if a given application never has to do it. At the same time,
by actually removing the code of each unneeded function from the
process’ memory, the number of ROP gadgets at the disposable of
attackers is reduced, while any potentially exploitable bugs present
in those functions are also effectively eliminated.

To give an intuition about the great potential of this approach
for attack surface reduction, Table 1 shows the number of exported
API functions by four commonly used Windows 10 system DLLs
(upper part), and the number of actually imported functions from
those DLLs by a set of popular Windows applications (lower part).
As evident, all applications use only a fraction of the available
functions, which means that code stripping can potentially prevent
exploits from performing a wide range of system operations.

Unfortunately, however, although part of the system APIs may
be neutralized by code stripping, it is very likely that some system
functions that may be critical for malicious code will also be needed
by the protected application—this is especially true for larger and
more complex applications. Consequently, depending on the func-
tionality of the shellcode or ROP payload and the needs of the
targeted application, code stripping may not be able to block some
exploits. Indeed, as we later show in our experimental evaluation

(second column of Table 2) the number of remaining critical system
functions after code stripping for the same set of applications is
quite high. For the purposes of this work, we consider as critical a
set of 51 functions from kernel32.dll, ws2_32.dll, wininet.dll,
msvcrt.dll, urlmon.dll, and ntdll.dll, which we found in use
by a collection of 251 shellcode and 30 ROP payload samples (about
which more details are provided in Section 5). Our set is very simi-
lar to the set of critical API functions protected by other runtime
exploit prevention systems like ROPGuard [29] and kBouncer [55].

Based on the above, we are motivated to explore whether further
attack surface reduction is possible by neutralizing parts of the logic
of the critical functions that cannot be removed by code stripping.
As we show in the rest of this paper, the needs of malicious code
and user applications when it comes to those remaining critical
functions are quite divergent, allowing us to enforce strict policies
that break the functionality of exploit code without affecting the
normal operation of the protected application.

Threat Model
Our aim is to protect user applications that may contain exploitable
memory corruption vulnerabilities. We assume that the attacker is
able to hijack the control flow of the process and execute malicious
ROP code (and possibly second-stage shellcode), which interacts
with the OS to achieve the attacker’s end goal (e.g., remote control,
DLL injection, malware installation). In that sense, data-only attacks
(e.g., modifying a user authentication variable in memory [17]),
which do not result in the invocation of system calls, are out of the
scope of this work.

We also assume that common exploit mitigations, such as non-
executable memory and ASLR, have been deployed on the system.
Although Shredder offers the same defense capabilities irrespec-
tive of these defenses, as a defense-in-depth approach, it is mostly
meant to be used in combination with other defenses to collectively
raise the bar for successful exploitation, and prevent circumven-
tion. As a defense based on API hooking, Shredder’s policy checks
must be protected so that an attacker cannot simply bypass them
(e.g., by jumping over the check, or even invoking system calls
directly). This can be achieved through various means, such as API
checkpointing [55] or CFI [2]—we discuss in detail such possible
safeguards in Section 4.2.

3 API SPECIALIZATION
The main idea behind API specialization is to create application-
specific versions of the critical system API functions that a given
application needs to use (and which cannot be simply removed by
code stripping [50]). Especially in Windows, many critical system
API functions have rich and complex interfaces that allow for in-
creased versatility in carrying out a broad set of operations. By
restricting this interface to the absolutely necessary functionality,
and neutralizing any provided capabilities that are not needed, API
specialization can be an effective last-resort defense for blocking
crucial system interactions that exploit code needs to perform.

The specialization of a given API function requires a thorough
analysis of how that function is used by the application, i.e., what
are its expected argument values across all possible invocations.
This information is then used to derive a policy that will be enforced
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Imported

Functions

Critical

Functions

VirtualProtect()
CreateProcessW()

ReadFile()
recv()
...

...
.text:1C call ds:VirtualProtect

...
.text:45 call ds:VirtualProtect

...
.text:7C call ds:VirtualProtect

...
.text:A3 call ds:VirtualProtect

...

push eax ; lpflOldProtect

push 0x20     ; flNewProtect

push 0x1000   ; dwSize

push esi ; lpAddress

call ds:VirtualProtect

(1) Identify all imported critical functions (2) Pinpoint all call sites (3) Analyze arguments of each invocation

Figure 1: Overview of the offline preprocessing phase. After pinpointing the call sites of all critical API functions in the binary,
each call site is analyzed using backwards data flow analysis to derive its argument values.

at runtime to block any unanticipated invocations. Although there
already exist ways to manually define similar policies at the system
call level (e.g., using seccomp or seccomp-bpf in Linux), our goal
is to develop an automated solution that derives more fine-grained
whitelisting policies at the function argument level for closed-source
Windows applications—our focus on Windows stems from the fact
that it is among the most highly targeted platforms.

Our broader goal is to develop a practical defense-in-depth tool
for the protection of closed-source software. Although policy extrac-
tion could be performed using more sophisticated program analysis
techniques at the compiler level, our assumption is that no source
code or debug symbols are available, and that no modifications (e.g.,
binary instrumentation) can bemade to the application—the latter is
an important requirement for achieving deployment transparency
and ensuring interoperability with existing exploit mitigations with-
out causing compatibility problems. In that sense, Shredder follows
a similar deployment model as existing hardening toolkits, such as
Microsoft’s EMET [49].

The process of protecting a given application comprises of two
steps. In the initial offline phase, the application is statically ana-
lyzed to derive the specialization policy for the critical API functions
used. After the policies are derived, a runtime enforcement module
intercepts each critical function invocation and checks if it violates
the policy for the given function. If a critical function is invoked
using an unanticipated combination of arguments, then the system
terminates the process and notifies the user.

3.1 Offline Policy Generation
To protect an application, Shredder first statically analyzes its main
executable and any associated modules to identify the superset of
critical system API functions used, and then derives a specialization
policy for each one of them. This offline process must be performed
only once per application, and the extracted policies are stored in a
separate file on disk for future executions.

Figure 1 illustrates the main steps of the offline preprocessing
phase. After identifying the set of imported critical functions, the
binary is scanned to pinpoint all call sites of each function. Although
accurately and fully disassembling the code of Windows binaries is
a challenging problem [5], fully accurate disassembly is not needed
for our purposes. As we focus only on the call sites of imported
functions, these can be accurately pinpointed by looking for code
references to the respective entries of the import table. Having the

control flow instruction of each call site as a trusted reference, we
can then perform backwards analysis to accurately extract the code
(within the function that contains the call site) that is involved
in the preparation of the arguments. For each function argument,
we then attempt to derive its possible values by performing inter-
procedural backwards data flow analysis. In contrast to pinpointing
call sites, this later analysis stage is subject to disassembly and inter-
procedural static code analysis inaccuracies (as ideally complete
control flow graph information is needed), and is thus performed
in a conservative, best-effort way.

There are three main types of arguments we have to deal with:
i) constant values, ii) stack variables, and iii) register values. Note
that we care about obtaining the argument values, and not the
way they are passed to the callee (i.e., through the stack in 32-bit
systems, or through registers in 64-bit systems). Given that our
data flow analysis handles propagation through both registers and
memory, it can support both 32-bit and 64-bit executables.

For stack variables, the callee typically accesses passed argu-
ments and local variables in relation to the frame pointer, and thus
we use a similar method to find their values, by tracing back to the
caller function and identifying any statically derived pushed argu-
ments. Register values are usually the result of arithmetic or logic
operations that may involve other registers or memory locations.
Our backwards data flow analysis can derive a set of possible values
for a given register using a lightweight form of symbolic execution,
as long as they originate from static data or constant values.

When the backwards data flow analysis reaches the beginning
of the function that contains the call site being analyzed, it moves
on to its previous caller(s) as long as the relevant control flow
graph information is available. As we discuss in Section 4, due to
the exponential growth of backwards control flow paths, in our
current implementation we have set a conservative depth of three
functions to keep the analysis time short. Obviously, in many cases
it is impossible to derive the values of some arguments, either
because these will only be determined at runtime (e.g., file names,
memory addresses, process IDs), or due to the limitations of our
control and data flow analysis. On the other hand, many argument
values are derived from static data that is quite easily reachable
through data flow analysis (e.g., access modes, memory protection
flags, allocation sizes, network connection parameters, hard-coded
names). In fact, as we show in Section 5, we found that it is possible
to extract “known” values for more than half of the arguments of
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the analyzed critical functions. More importantly, many of these
arguments have clearly disparate value sets for the needs of benign
and malicious code, allowing us to derive effective policies.

After the end of our analysis for the whole program, a given ar-
gument is classified as either known or unknown. Known arguments
belong to one of the following types:

(1) Flag Argument: Each flag value has a special meaning, and
multiple flags can be combined through a logic OR operation.

(2) Range Argument: A numeric range specifies an upper and
lower limit on the expected values (these often correspond
to memory address ranges).

(3) Distinct Value Argument: A set of possible distinct values that
this argumentmay take (e.g., numbers or strings). Arguments
such as allocation sizes (of which we observe only a few
distinct values) often fall into this category.

An argument is considered unknown, if a constant value cannot be
determined for each and every call site of its function. We follow this
conservative approach despite the fact that we can often determine
the values of a given argument for the majority of a function’s call
sites, and just miss a few. In such cases, API specialization is coupled
with CFI to restrict further the set of attacker-controllable invoca-
tion points, by enforcing call-site-specific policies. Although our
prototype currently supports call-site-specific policies (the design
and implementation of which we present in the appendix), given
that only a few Windows applications are currently CFI-enabled,
we leave the evaluation of such a scheme as part of our future work.
As we demonstrate in Section 5, our current more coarse-grained
approach using a single program-wide policy per function is still
quite effective in thwarting real exploits.

In some cases, even if some arguments are unknown, they can
still take part in policy specification by considering relationships
across two or more arguments that are reflected in the argument
preparation code of call sites. For instance, from an instruction se-
quence like push eax; push eax; push ebx; call <function>,
we can infer that the first two arguments have the same value, even
if the actual value is unknown. If this invariant holds for all call sites
of a given function, then it can be captured as part of the enforced
policies for that function.

Example policies generated by our backward data flow analysis
algorithm are:

(1) VirtualProtect(): (arg3 = 0x20 AND arg2 = 0x1000)
OR (arg3 = 0x104)

(2) VirtualAlloc(): (arg1 == arg2)

3.2 Runtime Policy Enforcement
After the preprocessing phase is completed, the resulting policies
are ready to be used for runtime protection. Shredder relies on
library interposition to check the arguments of a sensitive API func-
tion invocation before permitting it to proceed. A call is permitted
to proceed only if its arguments are in accordance with the policy
for the given function. If not, the call is dropped.

Although we assume that code stripping [50] has already been
applied to the target application, even if this is not the case, Shredder
does partly provide equivalent protection by also blocking the
invocation of any function that is not present in the import table of
the protected application. This provides the same level of protection

when it comes to whole-function reuse, but does not help with ROP
gadget reuse from the code sections of the non-imported functions,
as their code is still present in the address space of the process—this
code removal feature could of course be incorporated into Shredder
with some engineering effort, as we further discuss in Section 6.

4 IMPLEMENTATION
To demonstrate the effectiveness of API specialization, we have
developed Shredder, a prototype protection tool for Windows PE bi-
naries (both main executables and dynamic link libraries). Shredder
has been developed and tested on the 64-bit version of Windows 10,
and consists of two main components: an offline static policy extrac-
tor, and a user-space thin interposition layer between applications
and Windows API functions. We have also developed a shellcode
and ROP payload analysis framework to evaluate the effectiveness
of the derived policies in blocking existing exploits.

4.1 Static Policy Extraction
Our policy extraction pass has been implemented on top of the IDA
Pro disassembler through its IDAPython scripting environment.
Our IDAPython tool reads each input executable and initially scans
it to find all call sites of critical API functions (we assume that the
complete set of an application’s modules is available in advance
for analysis). Note that call sites can be accurately pinpointed even
without any debug or symbolic information (e.g., PDB files), by
identifying the respective references through the import table.

For each identified call site, the tool then performs backwards
inter-procedural data flow analysis to derive the function argu-
ment values used in that particular call site. Due to the inherent
imprecision of code disassembly and control flow graph extraction,
unfortunately we cannot rely on existing sophisticated data flow
analysis frameworks that operate at the source code or intermediate
representation (IR) layers. Although we initially explored the use
of IR-lifting tools (e.g., McSema [1]) that would enable data flow
analysis at the IR level, we found that the analysis results were not
significantly better (from a policy extraction perspective) for our
purposes, compared to our custom, argument-focused data flow
analysis implementation.

Of particular usefulness is IDA pro’s stack variables window data
structure, which contains local variables and function arguments
extracted during static analysis. If a value is derived by an input
from a previous function, we leverage the computed control flow
graph to perform backwards data flow tracking and attempt to
identify its source. For our current implementation, we have set
a limit of three functions for the recursion depth to keep analysis
time low. Based on our experimentation, higher recursion values
provided only diminishing returns.

If the value of an argument is not found within these iterations,
the value is considered unknown. As reported in Section 5, despite
the best-effort nature of our approach and the limitations of our
data flow analysis, it still achieves good coverage for the particu-
lar arguments of critical functions, providing high discriminatory
capacity between benign and malicious code.
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4.2 Runtime Interposition Layer
Our current implementation uses Microsoft Detours [30] frame-
work to selectively intercept protected API calls. During initial-
ization, the extracted policies are loaded from its respective file,
and are verified at runtime against each intercepted invocation. If
there is no policy violation, the actual API function is then called,
otherwise an alert message is displayed and the process then ter-
minates. Due to the conservative nature of our policy extraction
phase, there is no false positive issue, as the policies rely only on
statically-derived argument values observed through the whole
application code.

As any other defense based on function hooking, if no other
precautions are taken, attack code could bypass Shredder’s policy
check by either jumping over Detour’s hook, or by invoking the
respective system call directly (e.g., through ntdll.dll).1 In the
context of code-reuse attacks, which is our primary focus, this
issue can be addressed by ensuring that system calls can be solely
invoked throughWindows API functions, and not directly. This can
be achieved in several ways. If the protected application employs
CFI, then the enforced CFI policy will prohibit arbitrary control
transfers to the middle of API functions or even straight to system
call wrapper functions.

Even if CFI is not an option, previous systems (e.g., kBouncer [55])
have proposed a checkpointing mechanism that relies on the kernel
to perform the policy enforcement at the entry point of the API
function, and set a checkpoint that is checked upon system call
entry. Tying the checkpointing code after the policy check ensures
that exploit code cannot fake a checkpoint without violating the
enforced policy. We refer the interested reader to description of
this mechanism by Pappas et al. [55] for more details. More light-
weight hook protection mechanisms, such as those employed by
Microsoft’s EMET [49], could also be employed. As hooking pro-
tection is an orthogonal issue for which solutions already exist, we
have left its implementation as part of our future work.

5 EVALUATION
In this section, we present the results of our experimental evaluation
of Shredder in terms of runtime overhead and effectiveness against
real-world exploits. All experiments were performed on a system
equipped with an Intel Core i7-5650U CPU, 8GB RAM, 256GB SSD,
running the 64-bit version of Windows 10 Education.

5.1 Data Set
To evaluate the effectiveness of Shredder against real-world exploits,
we gathered a diverse set of 251 shellcode and 30 ROP code samples
from Metasploit, Exploit DB, and individual real-world and proof-
of-concept exploits. We consider both shellcode and ROP payload
samples, as in modern exploits ROP code is typically used just
to enable the execution of a second-stage shellcode, by giving it
execute memory permission. The shellcode then performs further
malicious activities, and typically invokes many more system API
functions. However, although ROP code is much more complex to
construct, sophisticated exploits may avoid the use of second-stage

1Although direct system call invocation is much more challenging in Windows com-
pared to Linux [64], this is still an option for highly targeted exploit code constructed
for a particular victim system [3].
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Figure 2: Worst-case runtime overhead of Shredder’s run-
time policy enforcement, for artificial stress-test cases that
repeatedly invoke critical API functions.

shellcode altogether, and implement the whole functionality using
reused code [9]. In either case, the exploit code unavoidably has
to invoke several system API calls. To get a better insight about
which stage Shredder is more effective in blocking, we present our
results separately for shellcode and ROP payloads.

To evaluate the effectiveness of our policy extraction against
these payloads, we use a set of 10 popular Windows applications
that are typically targeted by in-the-wild attacks. As the choice of
payload used in a given exploit depends on the attacker’s goal, the
characteristics of the vulnerability, and the protections deployed on
the victim system, we make the conservative assumption that any
shellcode or ROP payload from our data set can be potentially used
as part of exploits against any of the considered applications. That
is, we do not make any assumptions about the actual functionality
of the exploit code (e.g., creating sockets, writing files, allocating
memory), but conservatively assume that any of these operations
may be performed. Similarly, only a subset of ROP payloads will
be applicable for a given application, depending on the available
gadgets in its code image. Still, we assume that all ROP payloads
may be applicable, as we care only about the API functions they
use, and not about the specific gadgets they rely on to invoke them.
Full details and sources for the particular ROP payloads used in our
evaluation are provided in Section B and Table 6 in the appendix.

5.2 Runtime Overhead
Measuring the performance impact of defenses based on API hook-
ing on real world applications like media players, text editors, and
web browsers, i.e., such as the ones we have included in our set, is a
challenging task due to their interactive nature. Instead, to measure
the runtime overhead of Shredder’s API call interception and policy
checking, we used a set of custom programs that repeatedly invoke
critical (hooked) API functions with various sets of argument values
and enforced policies—although this is a worst-case behavior that
is not encountered in real-world applications, it provides an upper
bound on what can be expected in practice.
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To measure API call overhead, each invocation is performed
with a different set of arguments, a check is made against 10 dif-
ferent policies (a larger number than needed in practice), and each
test case invokes a given function 100 million times, which is or-
ders of magnitude more than the average number of calls made
by the applications we tested for typical workloads. As shown in
Figure 2, for all tested API functions, the total execution time when
using Shredder compared to the original test cases is only slightly
increased.

Using further micro-benchmarks, we found that the per-call
overhead on average is less than 20ns. We also applied Shredder
on the SPEC2006 benchmarks, and found no measurable over-
head. The main reason is that the benchmarks are designed for
CPU performance evaluation, and thus invoke very few API calls
that need protection (ExitProcess(), WriteFile(), ReadFile(),
CloseHandle(), CreateFileW()).

5.3 Policy Generation
The entire premise of Shredder’s protection is that we can often
differentiate between legitimate and malicious invocations of criti-
cal API functions, due to the disparate set of argument values used
in each case. To evaluate the extent to which Shredder is capable of
generating restrictive policies regarding the expected values of crit-
ical API function arguments, we used a set of 10 popular—and often
targeted by in-the-wild exploits—Windows applications, listed in
Table 2. The results of this section focus only on the remaining
critical API functions after the application of code stripping [50],
the arguments of which Shredder can restrict further.

5.3.1 Analysis Time. Each application is first analyzed with IDA
Pro using its standard code disassembly and control flow extraction
settings (we refrain from using any optional more aggressive dis-
assembly heuristics). Then Shredder’s offline analysis phase takes
place to identify all critical API function call sites, and perform
backwards data flow analysis to derive their known argument val-
ues. As shown in the second and third columns of Table 2, the
number of imported critical functions and respective call sites is
typically small, with iTunes and Firefox having the highest number
of critical functions. Due to the low number of call sites that need to
be analyzed, Shredder’s data flow analysis takes only a few seconds,
as shown in the fourth column (the reported time excludes the time
IDA Pro needs for code disassembly).

5.3.2 Function Argument Identification. Depending on the accuracy
of the analysis, the nature of the arguments used, and the complexity
of the application, the number of extracted policies varies across
different applications, and roughly grows linearly with the number
of critical functions, as shown in the fifth column of Table 2. The
highest number of policies (61) is derived for Notepad++, which
involve 11 functions (as shown in the sixth column). On the other
hand, only five policies could be generated for VLC, which though
still prevent the majority of shellcode samples and some of the
ROP payloads. This is a worst-case scenario, as VLC has a few
invocations of VirtualProtect() performed with the executable
memory flag set, which prohibit the extraction of any meaningful
policy (i.e., all possible values for that argument may be legitimately
observed).
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Figure 3: Percentage of critical API functions with at least
one known argument, for the tested applications. The break-
down in each bar corresponds to the actual number of
known arguments.

To get a better understanding about the cases in which Shred-
der fails to generate a policy, Table 3 lists the functions for which
a policy could not be generated, ordered according to their pop-
ularity in terms of number of call sites (third column) across all
applications. We see that the most frequently challenging functions
are CloseHandle() and DuplicateHandle(), which both take as
argument a handle to an object, which can only be determined
at runtime, followed by file-related functions, which also usually
involve non-static arguments. Although all arguments remain un-
known (last column) in all call sites of these two functions, this
does not impact Shredder’s effectiveness significantly, as these
functions cannot have any significant security impact on their own,
and are mostly used in combination with other API functions in
some shellcode samples. On the other hand, for some truly critical
functions like VirtualProtect(), Shredder can still derive known
arguments for the majority of call sites—but not for all of them,
hence the inability to derive a policy. In such cases, more fine-
grained per-call-site policies can be used to force the attacker to use
only the callsites with unknown argument instances, as discussed
in Appendix A.

Fortunately, for most functions, Shredder is able to derive all
possible values for a given argument (in which case it becomes a
known argument, as discussed in Section 3.1). Figure 3 shows the
percentage of critical functions in each application with at least one
known argument. In addition, each bar shows the breakdown in
terms of the number of arguments with known values. For instance,
in 7zip, about 20% of the imported critical functions have one known
argument, 20% have two known arguments, and there are also
a few functions with three and six known arguments. Overall,
with the exception of Chrome, Edge and VLC, Shredder is able
to derive known argument values for more than half of the critical
functions. Usually, a larger number of known arguments for a given
function leads to a larger number of policies, as there is a higher
potential for deriving further restrictions across different argument
combinations, as discussed in Section 3.1.
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Table 2: Policy generation and protection effectiveness results for a set of Windows 64-bit applications.

Application Critical Call Analysis Generated Functions Broken Exploit Payloads
Functions Sites Time (sec) Policies w/ Policies Shellcode ROP ROP Equiv.

7Zip 8 39 1.2 14 7 242 ( 96%) 30 (100%) 30 (100%)
Google Chrome 14 113 3.4 29 9 251 (100%) 30 (100%) 30 (100%)
Microsoft Edge 15 337 4.8 28 12 248 ( 98%) 30 (100%) 30 (100%)
Mozilla Firefox 20 104 1.8 54 17 244 ( 97%) 30 (100%) 30 (100%)
iTunes 33 315 2.3 59 25 246 ( 98%) 22 ( 65%) 1 ( 3%)
PhotoViewer 8 17 1.4 21 6 228 ( 91%) 30 (100%) 30 (100%)
Notepad++ 12 84 1.1 61 11 244 ( 97%) 30 (100%) 30 (100%)
Powershell 5 5 0.4 14 4 246 ( 98%) 30 (100%) 30 (100%)
VLC 12 24 0.5 11 5 216 ( 86%) 9 ( 30%) 1 ( 3%)
Winrar 10 120 1.3 34 8 242 ( 96%) 30 (100%) 30 (100%)

Table 3: Functions for which Shredder cannot derive a policy
in some applications.

API Function Apps Call Known Unknown
Sites Instances Instances

CloseHandle() 10 124 0 124
DuplicateHandle() 7 13 0 13
DeleteFileW() 6 12 0 12
ReadFile() 2 3 1 2
WriteFile() 1 1 0 1
VirtualProtect() 5 6 3 3
ExitThread() 4 6 1 5
ioctlsocket() 1 3 2 1
CreateProcessW() 1 5 4 1
InternetReadFile() 2 4 3 1
InternetOpenW() 2 4 2 2
ExitProcess() 3 3 0 3
bind() 1 1 0 1
closesocket() 1 1 0 1

5.4 Protection Effectiveness
After generating API specialization policies for each application,
we set out to explore their effectiveness against real-world exploits,
and the added protection benefit compared to code stripping [50],
i.e., simply removing any non-imported system API functions.

5.4.1 Effectiveness Against Real-world Exploits. Based on our con-
servative assumption that any of the 251 shellcode and 30 ROP
payload samples (for brevity, we collectively refer to both as “pay-
loads” in the rest of this section) in our data set can be used against
any application, we used our custom payload analysis framework
to run each sample and capture all critical API function invocations.
We then compare these invocation patterns with the API special-
ization policies of each application to determine whether Shredder
is able to block a given payload. A payload is broken if at least
one of the API functions it uses violates one the enforced policy.
This means that either the function is not imported and used at all
(in which case code stripping alone would also block it), or that
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Figure 4: Number of shellcode samples broken by code strip-
ping [50] and Shredder. Bar segments denote the distribu-
tion of broken critical API functions in each case.

all invocations of the function use unanticipated argument values,
compared to the set of known arguments that Shredder expects.

As shown in Table 2 (columns “shellcode” and “ROP”), Shredder
is able to break 90–100% of the payloads for most applications.
Especially for ROP payloads, the only cases Shredder is not able to
break all of them are iTunes and VLC. Upon further inspection, this
is because: for iTunes and Reader, there are VirtualAlloc() call
sites that set the executable memory flag, and for VLC, there are
four VirtualProtect() call sites, two of which set the executable
memory flag, and two other in which the arguments are unknown.

5.4.2 Comparison with Code Stripping. We compare the added
benefit of Shredder over code stripping [50] i.e., just removing any
non-imported API functions, by repeating the same experiment,
this time without enforcing any policies to the remaining (imported)
critical API functions. Code stripping alone can break payloads by
prohibiting the use of critical API functions that are needed by the
payload but not by the application.

Figures 4 and 5 show the number of broken shellcode and ROP
payloads, respectively, for code stripping and Shredder. The break-
down in each bar of Figure 4 denotes the number of functions
broken in each case (as shellcode typically uses several API calls).
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Figure 5: Number of ROP payloads broken by code strip-
ping [50] and Shredder for 64-bit applications. Shredder
breaks all ROP payloads for eight out of the 10 applications.

For instance, in the case of Chrome, Shredder blocks all 251 shell-
code samples by breaking up to 14 functions (although the first
invalid invocation will lead to process termination, here we want
assess how comprehensive the derived policies are). In contrast,
code stripping blocks only about 70% of the shellcode samples. In
all cases Shredder offers a significant benefit over code stripping.

When it comes to ROP payloads, the benefits of Shredder are
even clearer. Memory-related functions like VirtualAlloc() and
VirtualProtect() are typically used by both legitimate applica-
tions and exploit code, and thus in most cases code stripping cannot
remove them. In contrast, Shredder blocks all 30 ROP payloads in
eight out of the ten applications, 22 of them in one application, and
nine in case of VLC (for reasons we explained earlier). Overall, it is
clear that API specialization achieves better protection than code
stripping alone for both types of payloads, and especially for ROP
payloads, which have become indispensable for modern exploits.

5.4.3 Robustness to Circumvention Attempts. The fact that Shred-
der blocks most of the tested payloads in the context of the given
applications does not mean that attackers cannot modify their
shellcode or ROP code so that it conforms to the enforced API spe-
cialization policy. Knowing that Shredder is in place, an attacker
could pick a different set of API functions to achieve the same goal.
Although assessing this possibility in general is a challenging task,
due to the multiple combinations of API calls that an attacker could
use for a given task, we attempted to explore it by considering
classes of equivalent functions (or function combinations) that can
achieve the same goal.

For ROP payloads, we focus on functions that aim to give exe-
cute permission to a second-stage shellcode. Given that there are
two main ways to achieve this, we consider the equivalence of
VirtualAlloc() and VirtualProtect(), which (with adequate
code restructuring) could be used interchangeably. Consequently, if
for a given application only one of them is blocked, then attackers
could use the other one in their payloads to circumvent Shredder.
To assess the robustness of Shredder against such a circumvention
attempt, we repeated our evaluation by making the conservative as-
sumption that both functions can be used interchangeably in the 30
ROP payloads. As shown in the rightmost column of Table 2, even
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Figure 6: Percentage of equivalent shellcode variants broken
by Shredder for 64-bit applications. Bar segments denote the
distribution of broken function classes in each case.

under these unfavorable circumstances, Shredder can still block all
ROP payloads for eight applications. For the rest two, it manages to
block only the single ROP payload that relies on WinExec(), and
the other 29 payloads become usable, as Shredder has managed
to derive policies only for one of the two memory-related func-
tions in those applications. Despite its best-effort nature, Shredder
still meaningfully raises the bar against exploitation, as in many
cases it considerably restricts the options an attacker has for the
construction of the ROP payload.

For the set of 251 shellcode samples, we derived 14 sets of equiv-
alent functions for different types of generic functionality. For ex-
ample, allocating memory with VirtualAlloc() could be replaced
by heapAlloc(), globalAlloc(), localAlloc(), malloc(), or
new(). A detailed list of all such equivalence classes is provided in
Table 7 in the appendix. Given these classes, we create all possible
variants of the 251 shellcode samples in our data set, totalling more
than 23 million samples. Figure 6 shows the percentage of shellcode
variants that Shredder can still block. For most applications, the
numbers are approaching 100%. This stems from the fact that many
of the equivalent functions are rarely used, or when used, they are
restricted by Shredder’s policies.

5.4.4 Real-world Use Case. To demonstrate the benefits of the at-
tack surface reduction that API specialization offers, we evaluated
Shredder using a real-world exploit against Chakra, the JavaScript
engine used in Microsoft Edge. The exploit [43] takes advantage
of two vulnerabilities (CVE-2016-7200 and CVE-2016-7201) to gain
code execution on Windows 10, while bypassing all exploit mitiga-
tions incorporated into Edge (at the time the exploit was written),
including: heap spray disruptors, by precisely allocating a mini-
mal amount of memory; ASLR, by leveraging a memory disclosure
vulnerability; export address table filtering (EAF+), by using hard-
coded addresses for critical API functions instead of dynamically
looking them up; and control flow guard (CFG), as well as gadget
chain detectors like kBouncer [55] and ROPGuard [29], by using
only two gadgets to set up a VirtualProtect() call, which is made
through a legitimate wrapper function—conforming this way to the
legitimate control flow graph enforced by CFG’s CFI policy and
avoiding any stack disruption.
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We verified that the above exploit works correctly against Edge
v40.17017.0.0 on Windows 10, and then tested it again with Shred-
der enabled. When the ROP code invoked VirtualProtect() to
give execute permission to the second-stage shellcode, Shredder re-
ported a policy violation and terminated the Edge process. Although
all previous exploit mitigations were bypassed, API specialization
helped as a last-resort measure to block the exploit.

6 LIMITATIONS AND FUTUREWORK
Shredder’s conservative approach, even when call-site-specific poli-
cies are used, is not able to prevent all attacks. This stems from
the fact that if there is even one call site that cannot be restricted,
then attackers are likely to be able to use it with adequate effort.
However, as all exploit mitigations, Shredder’s goal is not to provide
a silver bullet solution, but to deprive attackers from the current
unrestricted convenience of using any API function they will, in
any way possible. In doing so, Shredder does not introduce any
measurable overhead, and is fully compatible with existing applica-
tions and exploit mitigations. Consequently, it should be viewed as
a step towards improving the security of a system by limiting the
“latent complexity” that works in favor of attackers [25].

A limitation of our current prototype is that it simply relies on
Microsoft’s Detours [30] framework for library interposition. As dis-
cussed in Section 4.2, this issue can be addressed with adequate en-
gineering effort by employing a secure function hooking technique,
such as the checkpoint-based approach used in kBouncer [55].

In contrast to code stripping [50], Shredder currently does not
actually remove any code from the address space of the protected
process, but just restricts the use of i) non-imported API functions
(similarly to code stripping), and ii) remaining (i.e., imported) criti-
cal functions, according to the derived policies. Although identify-
ing and removing all code dependencies of a given unused function
(including any non-exported internal functions that are not needed
anymore) is already a challenging problem when source code is
not available [50], in principle, program slicing techniques could be
used to remove parts of unnecessary code from within remaining
functions, according to the derived policies. We leave such more
fine-grained code removal techniques as part of our future work.

7 RELATEDWORK
As non-executable memory protections and address space layout
randomization (ASLR) are not enough for the prevention of modern
ROP exploits (due to the proliferation of memory disclosure vulner-
abilities [42, 65]), there has been active research on a wide variety
of additional defenses. Two main approaches that we can identify
include static protection and runtime monitoring techniques.

Approaches of the former type include i) compiler-level tech-
niques for applying control flow integrity (CFI) [2], enforcing the
integrity of code pointers and the stack [41], or protecting indirect
control transfers [45, 53], and ii) binary-level techniques for apply-
ing code diversification [54, 72] or various forms of CFI [75, 76]. Run-
time monitoring approaches augment the execution of a process at
various levels (e.g., instruction, system call) to prevent attacks using
various techniques, such as performing anomaly detection by check-
ing for an unusually high frequency of ret instructions [16, 22],
ensuring the integrity of the stack [23], randomizing the locations of

code fragments [35], or preventing illegal indirect transfers [19, 55].
In this section, we focus on the areas of API-level monitoring and
code surface reduction, which are more closely related to our work.

7.1 API-level Monitoring
Monitoring execution at the system call or API level strikes a good
balance in terms of performance (system call or API function invoca-
tions are infrequent, e.g., compared to monitoring at the instruction
level) and analysis accuracy (given that malicious code has to even-
tually interact with the OS). Consequently, similar to Shredder,
many previous defenses rely on system call or API call interception
to perform various types of checks in order to block the execution
of malicious code.

In the front of defending against return-oriented programming
(ROP) exploits, several approaches rely on the idea of performing
runtime checks to identify control flow abnormalities that usually
appear when ROP code is executing. Given that checking all con-
trol flow transfers at runtime introduces a very high performance
overhead, systems like kBouncer [55] and ROPGuard [29] perform
these checks only before the execution of critical API functions.

In particular, kBouncer [55] relies on the Last Branch Record
(LBR) feature of recent processors to inspect the sequence of indi-
rect branch instructions that led to the intercepted API function
invocation. Similarly, ROPGuard [29] performs a variety of checks,
such as validating whether the return address to the caller func-
tion points to a call-preceded instruction, and checking whether
the stack pointer falls within the boundaries of the actual stack.
Many of ROPGuard’s checks have been incorporated to Microsoft’s
Enhanced Mitigation Experience Toolkit (EMET) [49], which also
implements many of its exploit mitigation technologies by inter-
cepting critical API calls.

Several years before EMET, the security community used similar
approaches to build protections for Windows systems by enforcing
policies or implementing detection heuristics at the system API
level. WHIPS [8] is a host-based intrusion detection system (HIDS)
for Windows 2000/XP/2003 that enforces rules kept in an access
control database by intercepting Native API calls. The creation of
the enforced rules is an orthogonal issue not addressed in that work,
which the authors mention, can be performed either in a manual or
automatic manner. Anderson et al. [4] implemented a host-based
code injection attack detector by using Detours to intercept and
inspect network inputs for the presence of an excessive number of
NOP instructions, which frequently precede the shellcode.

Similar systems were prototyped for Linux even earlier. For in-
stance, the REMUS system [10] implements a reference monitor for
system call invocations as a loadable Linux kernel module. Libsafe
and Libverify [7] aim to transparently prevent buffer overflow ex-
ploits by enforcing buffer sizes and verifying return addresses on
the stack through library interposition. Many other systems rely
on system call interposition to enforce blacklisting or whitelisting
policies [31, 33, 56]. Numerous other works in the span of more
than two decades have proposed systems that rely on system call
interposition to defend against intrusions using anomaly detec-
tion [11, 27, 28, 37, 46, 62, 71, 74].
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7.2 Code Surface Reduction
Several works have started exploring the concept of “slimming
down” the code surface of applications, by removing any unneces-
sary code. This overall strategy has the dual goal of reducing the
threat of exploitation by removing any vulnerabilities that were
present in the unused code, and make exploit construction harder
(especially for code reuse), by reducing the potential functions or
ROP gadgets that could be used by an attacker.

Software winnowing [48] is one such approach that applies this
concept to specialize the code of applications and libraries. The au-
thors have implemented a code specialization tool on top of LLVM,
called OCCAM, (Object Culling and Concretization for Assurance
Maximization), which generates specialized versions of applica-
tions according to a given configuration or deployment context.
OCCAM supports both intra-module and inter-module winnowing,
and can perform sophisticated code specialization by taking into
account all program dependencies. Piecewise Debloating [58] is
another approach for debloating libraries and main executables. At
compilation and link time, the framework collects accurate control
flow graph information, which is embedded into the resulting bina-
ries. At run time, this information is used to load only the relevant
portions of code to the memory. The unused portions are replaced
by illegal instructions thus shrinking the attack surface.

Shredder employs some similar ideas, but as we have already dis-
cussed, the constraint of operating transparently on closed-source
applications severely limits the types of program analysis that we
can rely on. Furthermore, it is complementary to the above ap-
proaches, as i) it moves one step further, by debloating further the
remaining code, in terms of what part of function interfaces remains
operational, and ii) focuses on system API libraries, instead of a
program’s own modules.

Similar code surface reduction approaches have been proposed
for the Linux kernel, the multi-purpose nature of which makes the
underlying code base immense. Kurmus et al. [38] implemented
kRazor, a system that limits the amount of kernel code accessible
to an application. In a training phase, the system uses dynamic
instrumentation of all the kernel functions to collect the set of used
functions under certain workloads. In the enforcement phase, the
system then limits usage to that set of functions. Similar methods
have been employed by other systems [39, 40, 68] to create custom
minimized kernels suited for specific workloads, achieving a code
surface reduction in the range of 50–85%. While the above systems
create custom single-purpose kernels for certain workloads, Face-
Change [34] uses multiple minimized kernels, one tailored to each
application, which are swapped accordingly upon context switch.

8 CONCLUSION
Motivated by the concept of attack surface reduction, and by the
need for practical and composable defense-in-depth mitigations
that can be readily and transparently applied for the protection of
applications that are targeted by in-the-wild attacks, in this work
we have presented Shredder, an exploit mitigation tool forWindows
programs. Shredder uses API specialization to restrict the interface
of critical system API functions according to the actual needs of the
protected program, and neutralize parts of their functionality that
are often crucial for the operation of malicious code. The results of

our experimental evaluations show that Shredder offers a significant
improvement over code stripping [50], a previous code surface
reduction technique for closed-source Windows applications, by
blocking the execution of 18.3% more shellcode and 298% more ROP
code samples, while incurring a negligible runtime overhead.
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APPENDIX
A CALL-SITE-SPECIFIC SPECIALIZATION
In many cases, it is possible to determine the values of a given
argument for the majority of a function’s call sites, but miss just a
few call sites in which the values for the same argument remain
unknown, preventing the specification of a global policy. In such
cases, Shredder’s policies can be refined so that instead of having a
single “weak” policy for all call sites of a given function (or no policy
at all), different policies can be enforced according to the actual call
site from which the function was invoked. The main benefit of such
a call-site-specific specialization approach is that for cases in which
an effective global policy cannot be derived for a given function, at
least the majority of its call sites can still be protected. For instance,
when just a few call sites of VirtualProtect() legitimately use
the execute permission in a given application, then an attacker
would have to invoke it only through those particular call sites, as
part of a ROP payload that needs to allocate executable memory.

In a sense, this approach creates multiple versions of the original
function, each with different stripped functionality. The aggres-
sively stripped-down version becomes the default (as it is of no use
for attackers), while invocations to the more “dangerous” version
of the function can be permitted only from the specific code loca-
tions that really require the sensitive functionality (i.e., allocating
executable memory). To prevent attackers from simply jumping to
particular call sites and reusing the sensitive version of the function,
the invocation points can be protected further by applying context-
sensitive and type-based control flow integrity [14]. Assuming such
a form of CFI is in place, this enforcement complicates significantly
the construction of a functional ROP payload, as the attacker has
now less freedom in picking appropriate ROP gadgets that include

…
VirtualProtect (..	,	..	,	0x2 ,	..)

…
VirtualProtect (..	,	..	,	0x104 ,	..)

…
VirtualProtect (..	,	..	,	..	,	..)

…

VirtualProtect(0x4f, 512, 
0x40, 0xff3)

Shredder
Policy	Check

Attacker	Code Attacker	Code

App.exe

VirtualProtect(0x4f, 512, 
0x40, 0xff3)

X

X

Figure 7: Call-site-specific policies restrict the call sites that
can be reused by an attacker to a fraction of all available
call sites. In this example, when Shredder is enabled, only
the third call site remains usable.

the non-protected call sites, while at the same time not violating
the CFI policy [12, 15, 26, 59, 61].

Figure 7 illustrates this case further. The attacker’s code attemtps
to use VirtualProtect()with the third parameter set to 0x40. The
application in this case has three different call sites for that function,
two of which has known, hard-coded values (0x2 and 0x104), which
now become part of the call-site-specific policy. Given that these
known values are different than what the attacker needs to use
for the exploit code, if any of the first two call sites is reused as
part of a ROP payload, then Shredder will identify the argument
mismatch and prevent the attack. Only if the last call site is used
by the attacker, then the attack will succeed.

Call-site-specific policies are implemented by including call site
identifiers to the policies. Every call site of a critical function is
recorded along with the set of input arguments. The address of
each call site is kept with respect to the subroutine it is part of and
with respect to the base of the binary image. Also, the name of the
module (executable or shared library) which makes the call is also
recorded as part of the policy.

A policy for a given call site includes the following fields:
(1) Critical function name
(2) Module name
(3) Offset within the module
(4) Tuple with “known” and “unknown” arguments for this par-

ticular call site
For every call of a sensitive function, the runtime interposition
layer traverses the stack of the process to determine the origin of
the call. For the current process, we use EnumProcessModule(),
GetModuleFileName() and GetModuleInformation() to get the
image base addresses of all the modules loaded by the application.
With this information, an intercepted call is verified against the
policies of all modules.

Table 4 shows the number of call sites for which Shredder was
previously unable to create global policies (second column), and
their subset for which site-specific policies can be derived. In several
applications, we see that a majority of the previously unprotected
call sites are now protected. Still, there are cases like 7zip and

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
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Table 4: Number of call sites for which site-specific policies
can be derived.

Application Call sites without Call sites with
global policies site-specific policies

7Zip 12 0 ( 0%)
Google Chrome 42 31 (75%)
Microsoft Edge 94 52 (55%)
Mozilla Firefox 28 12 (43%)
iTunes 108 76 (70%)
PhotoViewer 4 2 (50%)
Notepad++ 18 0 ( 0%)
Powershell 2 0 ( 0%)
VLC 5 2 (40%)
Winrar 47 11 (23%)

Notepad++ for which even site-specific policies could not be derived.
As discussed in Section 5.3.2, this is again mostly due to input
arguments that can only be derived at runtime.

B ROP PAYLOAD DATA SET
Table 6 shows a detailed list of the ROP payloads used in our eval-
uation (some sources contain multiple distinct payloads). We did
not include payloads that would not be functional in the consid-
ered Windows 10 environment (e.g., ROP payloads that rely on
setProcessDEPPolicy(), which works only onWindows XP). The
vast majority of the payloads use either VirtualProtect() to give
execute permission to the memory area where the second-stage
shellcode resides, or VirtualAlloc() to allocate some executable
memory and copy the shellcode there. To achieve this, there are
specific sets of values for certain arguments that exploit code must
use. For instance, the flNewProtect or flProtect argument, re-
spectively, should be one of PAGE_EXECUTE, PAGE_EXECUTE_READ,
PAGE_EXECUTE_READWRITE (most commonly encountered), or PAG
E_EXECUTE_WRITECOPY. In applications that these memory protec-
tion constants are never used, Shredder is able to derive policies that
effectively prevent their use. We also encountered a few payloads
that use WinExec() or NtSetInformationProcess().

Table 5: Set of criticalWindows API functions considered by
Shredder for policy enforcement.

kernel32.dll

CloseHandle GetSystemDirectoryA
CreateFileA GetSystemDirectoryW
CreateFileMappingA GetTemplatePathA
CreateFileMappingW GetTemplatePathW
CreateFileW LoadLibraryA
CreateProcessA LoadLibraryW
CreateProcessW PeekNamedPipe
CreateRemoteThread ReadFile
DeleteFileA Sleep
DeleteFileW VirtualAlloc
DuplicateHandle VirtualProtect
ExitProcess WaitForSingleObject
ExitThread WinExec
GetCurrentProcess WriteFile

ws2_32.dll

accept recv
bind send
closesocket socket
connect WSASocketA
ioctlsocket WSASocketW
listen WSAStartup

wininet.dll

InternetOpenA InternetOpenW
InternetOpenUrlA InternetReadFile
InternetOpenUrlW

msvcrt.dll

_execv fopen
fclose fwrite

urlmon.dll

URLDownloadToFileA URLDownloadToFileW

ntdll.dll

NtSetInformationProcess



Shredder: Breaking Exploits through API Specialization ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Table 6: List of Windows ROP payloads used in our experimental evaluation.

1–5) Direct RET: The ROP Version with Immunity Debugger, Direct RET: Generic parameter generation for ROP
Direct RET: NtSetInformationProcess(), Direct RET: WinExec(), Direct RET: Using VirtualAlloc()
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/

6) ASLR/DEP bypass exploit - BlazeDVD5.1
https://thesprawl.org/research/corelan-tutorial-10-exercise-solution/

7) A DEP evasion technique
http://woct-blog.blogspot.com/2005/01/dep-evasion-technique.html

8) Buffer overflow attacks bypassing DEP
http://www.mastropaolo.com/2005/06/05/buffer-overflow-attacks-bypassing-dep-nxxd-bits-part-2-code-injection/

9) TrailOfBits Practical ROP
https://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf

10) The Audio Converter Case
http://tekwizz123.blogspot.com/2014/02/bypassing-aslr-and-dep-on-windows-7.html

11) DEP Bypass
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/june/writing-exploits-for-win32-systems-from-scratch/

12) Defeating DEP with ROP
https://samsclass.info/127/proj/rop.htm

13) Vulnserver DEP Bypass Exploit
https://web.archive.org/web/20121110045053/http://www.violentpython.org/wordpress/

14) Malicious PDF in Adobe Reader
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0569

15) Malicious SWF in Adobe Flash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2010-2883

16) Abusing Non-ASLR’d Modules
https://exploitresearch.wordpress.com/2012/06/23/abusing-non-aslrd-modules-on-windows-7/

17) Buffer Overflow on Vulnserver
http://resources.infosecinstitute.com/return-oriented-programming-rop-attacks/

18–19) DEP bypass with msvcr71, mona.py, DEPS-Precise Heap Spray - Firefox, IE10
https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/

20) Bypassing Win ASLR using “skype4COM”
http://www.greyhathacker.net/?p=641

21) Whitepaper on Bypassing ASLR/DEP
https://www.exploit-db.com/docs/17914.pdf

22) An Easy Guide to Bypass DEP using ROP
http://securitydynamics.blogspot.com/2015/11/an-easy-guide-to-bypass-dep-using-rop.html

23) A-PDF All to MP3 Converter
http://www.exploit-db.com/exploits/17275/

24) Integard Pro v2.2.0.9026
http://www.exploit-db.com/exploits/15016/

25) Mplayer Lite r33064
http://www.exploit-db.com/exploits/17124//

26) Adobe Acrobat Bundled Int Overflow
http://www.exploit-db.com/exploits/16670/

27) Adobe Flash “newfunction” Invalid Ptr
http://www.exploit-db.com/exploits/16687/

28) Adobe CoolType SING “uniqueName”
http://www.exploit-db.com/exploits/16619/

29) Adobe Flash “Button” Remote Code Exec
http://www.exploit-db.com/exploits/16667/

30) Winamp v5.572
http://www.exploit-db.com/exploits/14068/

https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://thesprawl.org/research/corelan-tutorial-10-exercise-solution/
http://woct-blog.blogspot.com/2005/01/dep-evasion-technique.html
http://www.mastropaolo.com/2005/06/05/buffer-overflow-attacks-bypassing-dep-nxxd-bits-part-2-code-injection/
https://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://tekwizz123.blogspot.com/2014/02/bypassing-aslr-and-dep-on-windows-7.html
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/june/writing-exploits-for-win32-systems-from-scratch/
https://samsclass.info/127/proj/rop.htm
https://web.archive.org/web/20121110045053/http://www.violentpython.org/wordpress/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0569
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2010-2883
https://exploitresearch.wordpress.com/2012/06/23/abusing-non-aslrd-modules-on-windows-7/
http://resources.infosecinstitute.com/return-oriented-programming-rop-attacks/
https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/
http://www.greyhathacker.net/?p=641
https://www.exploit-db.com/docs/17914.pdf
http://securitydynamics.blogspot.com/2015/11/an-easy-guide-to-bypass-dep-using-rop.html
http://www.exploit-db.com/exploits/17275/
http://www.exploit-db.com/exploits/15016/
http://www.exploit-db.com/exploits/17124//
http://www.exploit-db.com/exploits/16670/
http://www.exploit-db.com/exploits/16687/
http://www.exploit-db.com/exploits/16619/
http://www.exploit-db.com/exploits/16667/
http://www.exploit-db.com/exploits/14068/
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Table 7: Sets of equivalent Windows API functions considered for the construction of shellcode variants with the same func-
tionality (used in the experiments of Section 5.4.3).

1) VirtualAlloc, coTaskmemAlloc, globalAlloc, heapAlloc, localAlloc, malloc, new
2) VirtualProtect
3) CreateThread, CreateRemoteThread, CreateProcess, ShellExecute, ShellExecuteEx, system, WinExec
4) CloseHandle, FindClose
5) CreateFile, CreateTextFile, WriteAllText, WriteAllLines, Write, WriteLine, WriteAsync, WriteTextAsync, WriteLinesAsync,

WriteLineAsync, AppendLinesAsync, AppendTextAsync, AppendAllLines, AppendAllText, AppendText, WriteFile,
FtpGetFile, FtpPutFile, FileOpenPicker

6) OpenFile, FtpOpenFile, ReadFile, CreateFileMapping
7) DeleteFile, remove, unlink, MoveFileEx, MoveFileTransacted, MoveFileWithProgress, FtpDeleteFile, _wremove
8) DuplicateHandle, CreateFile, WSADuplicateHandle
9) ExitProcess, ExitThread, TerminateProcess, _tsystem
10) closesocket, shutdown
11) ioctlsocket, WSAAsyncSelect, WSAEventSelect, WSAIoctl, recv with MSG_PEEK
12) URLDownloadToFile, ShellExecute, libcurl, InternetReadFile, InternetOpenUrl
13) InternetOpen, open, WinInet, HttpOpenRequest, HttpSendRequest, InternetOpenUrl, FtpGetFile, FtpGetFileEx, FtpOpenFile
14) send, HttpSendRequest
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