
Protecting COTS Binaries from
Disclosure-guided Code Reuse Attacks∗

Mingwei Zhang
Intel Labs

Hillsboro, OR, USA
mingwei.zhang@intel.com

Michalis Polychronakis
Stony Brook University
Stony Brook, NY, USA

mikepo@cs.stonybrook.edu

R. Sekar
Stony Brook University
Stony Brook, NY, USA

sekar@cs.stonybrook.edu

ABSTRACT
Code diversification, combined with execute-only memory, pro-
vides an effective defense against just-in-time code reuse attacks.
However, existing techniques for combining code diversification
and hardware-assisted memory protections typically require com-
piler support, as well as the deployment or modification of a hy-
pervisor. These requirements often cannot be met, either because
source code is not available, or because the required hardware fea-
tures may not be available on the target system. In this paper we
present SECRET, a software hardening technique tailored to legacy
and closed-source software that provides equivalent protection to
execute-only memory without relying on hardware features or re-
compilation. This is achieved using two novel techniques, code space
isolation and code pointer remapping, which prevent read accesses to
the executable memory of the protected code. Furthermore, SECRET
thwarts code pointer harvesting attacks on ELF files by remapping
existing code pointers to use random values. SECRET has been
implemented on 32-bit Linux systems. Our evaluation shows that
it introduces just 2% additional runtime overhead on top of a state-
of-the-art CFI implementation, bringing the total average overhead
to about 16%. In addition, it achieves better protection coverage
compared to compiler-based techniques, as it can handle low-level
machine code such as inline assembly or extra code introduced by
the linker and loader.

1 INTRODUCTION
The deployment of non-executable memory protections in oper-
ating systems prompted a shift of attacks from code injection
to code reuse, and in particular, return-oriented programming
(ROP) [28, 38, 61]. After hijacking control flow, ROP attacks di-
vert execution to code snippets (“gadgets”) that already exist in
the vulnerable process. One of the key requirements for ROP at-
tacks is the knowledge of the memory locations of gadgets. Recent
research [12, 64] has demonstrated that this requirement can be
eliminated by exploiting a memory leakage vulnerability to harvest
code pointers and disclose code memory on-the-fly. Armed with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2017, December 4–8, 2017, San Juan, PR, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5345-8/17/12. . . $15.00
https://doi.org/10.1145/3134600.3134634

this knowledge, gadget chains can be constructed dynamically by
malicious script code at the time of exploitation.

In the face of such “just-in-time” ROP (JIT-ROP) attacks, tra-
ditional code randomization defenses [10, 27, 35, 49, 72] do not
offer any meaningful defense. As a response, recent proposals [6,
13, 17, 20, 32, 51, 66, 74] introduce a new security primitive that
enforces diversified code pages to be executable but not readable.
Such an execute-only policy can be implemented using page table
manipulation [6], split TLBs [32], hardware virtualization exten-
sions [20, 66, 74], or a form of software-fault isolation [13, 51].

A common characteristic of many of these approaches [13, 20, 32,
51] is that they rely on the recompilation of the target application,
which is inconvenient at best, and impossible at worst (for code
available only in binary form). As a result, they cannot be applied
if source code is unavailable. In fact, even open-source software is
typically distributed in a binary form, e.g., through package man-
agement systems such as apt. It is inconvenient for users to have
to obtain all the necessary source code and recompile packages.
Moreover, source-code based approaches are incomplete in that
they do not protect low-level code written using inline assembly,
or binary code that is automatically added by compilers and link-
ers. In contrast, techniques operating at the binary level can work
seamlessly with the prevalent model of binary distributions, while
protecting all code (including low-level code) that can potentially
be used by an attacker.

A second limiting factor of many execute-only protections [17,
20, 32, 66, 74] is that they rely on hardware features that may not
always be available on a given system. For instance, HideM [32]
requires split TLB support, and is thus not applicable on current
systems that use a shared code and data TLB. More recent pro-
posals [20, 66, 74], on the other hand, rely on the extended page
table (EPT) feature introduced in Intel VT-x, which allows setting
code pages to be executable but not readable. Enabling this primi-
tive requires support by both a thin hypervisor as well as the OS
kernel. For already virtualized systems (e.g., cloud or enterprise
environments) this will entail either nested virtualization, which
may incur a significant runtime overhead [8] without architecture
support, or the incorporation into existing hypervisors, affecting
their performance and increasing the trusted computing base. For
end-user or legacy systems, besides the fact that the deployment
of new hypervisors and modified OS kernels is challenging, the re-
quired hardware support might not be available at all. For instance,
NORAX [17] is applicable only on the AArch64 platform.

∗This work was supported in part by grants from ONR (N00014-15-1-2378 and N00014-
17-1-2891) and NSF (CNS-1319137).

https://doi.org/10.1145/3134600.3134634

Overview of Approach and Summary of
Contributions
In this paper we present SECRET, a protection against JIT-ROP at-
tacks that is fully compatible with COTS binaries. SECRET enforces
a policy equivalent to execute-only memory, with no reliance on
any specific hardware features or any modifications to the virtu-
alization setup. This achieved by enforcing a “What You Target Is
Not What You eXecute (WYTINWYX)” property. This property is
useful in thwarting attacks based on code-pointer harvesting: even
if attackers find valid code pointers in memory, it is not possible to
determine the code they point to. This not only applies to normal
code pointers, but also to pointers that arise during exceptions. SE-
CRET is based on static binary instrumentation, and is implemented
over the PSI platform [78] (originated from BinCFI [79]).

The WYTINWYX property enforced by SECRET stems from two
key techniques: code space isolation (CSI), and code pointer remap-
ping (CPR). Code space isolation thwarts JIT-ROP attacks by (a)
hiding the executing code in a large address space, turning it into
shadow code, and (b) ensuring the absence of any pointers to it.
Since static binary instrumentation systems such as BinCFI [79]
and Reins [73] maintain the original code in addition to the instru-
mented version that is executed, JIT-ROP attacks could still work
by reading the original code. We therefore present static analysis
techniques to identify any embedded data and wipe out the rest
of the original code. To break an attacker’s ability to inject valid
code pointers, code pointer remapping maps pointers to random
values over a large range. This requires accurate identification of
code pointers—a challenging problem for COTS binaries. SECRET
leverages (when available) the DWARF and RTTI metadata typi-
cally contained in binary executables to accurately identify code
pointers, and applies CPR to a wide range of pointers: return ad-
dresses (RAs), jump table pointers, and exported functions. Note
that the vast majority of usable gadgets left unprotected by control
flow integrity (CFI) approaches lacking a shadow stack correspond
to RAs—there is very loose protection for such “call site gadgets” in
coarse-grained CFI implementations, whereas SECRET constrains
them effectively. Return address protections (e.g., shadow stacks)
pose a significant compatibility challenge due to non-standard use
cases [23]. CPR exploits the capabilities of address translation in a
novel way to sidestep these challenges.

Completeness and ease of deployment are two key benefits of the
proposed technique. By working directly at the binary level, SE-
CRET achieves complete program instrumentation even for stripped
executables and shared libraries, without the need for any recom-
pilation which would complicate deployment. SECRET is applied
to all code within a process, including low-level modules such as
the dynamic loader (ld.so), system libraries (e.g., libc.so), and
vDSO. In contrast, existing compiler-based execute-only memory
protections leave out a significant amount of low-level code, such
as hand-coded assembly, or code automatically added by linkers
and loaders. Indicatively, glibc contains 56 KLoC of assembly code,
excluding inline assembly. Additionally, compiler-based solutions
cannot protect third-party libraries compiled using a different com-
piler. Systems like Readactor [20] also face compatibility problems
with signals and C++ exceptions due to potential leakage of code
pointers when they are stored in readable memory. By ensuring that

no original code pointer points to shadow code, SECRET ensures
that pointers cannot be leaked in such cases.

In summary, our work makes the following main contributions:
• We present two complementary static analysis techniques for
the separation and protection of code against JIT-ROP attacks
that rely on direct or indirect code disclosure. Code space isola-
tion prevents direct code disclosure by moving code sections at
random locations determined at load-time. Code pointer remap-
ping thwarts indirect code disclosure through harvesting point-
ers from memory by replacing code pointers with randomized
values scattered across a large address space.

• We have designed and implemented SECRET, a static binary
instrumentation tool built on top of the PSI platform [78] that
relies on CSI and CPR to protect COTS binaries on Linux.

• We experimentally evaluate SECRET and demonstrate its practi-
cality. Our results show that SECRET protects all code, including
low-level code that is available only in assembly or machine
code format, while introducing a modest 2% additional runtime
overhead over the base cost of PSI [78]. The total overhead,
including CFI enforcement, is about 16%.

2 BACKGROUND
Static binary instrumentation (SBI) techniques instrument whole
binaries prior to execution, while dynamic binary instrumentation
(DBI) techniques perform instrumentation at runtime. DBI systems
have tended to be more robust and provide better compatibility for
complex code, but suffered from high performance overheads. SBI
techniques significantly reduce these overheads, but have tended
to be less robust on complex and/or low-level code. The primary
goal of our earlier BinCFI [79] and PSI [2, 78] works was to address
these robustness issues for large and complex binaries. In particular,
we will summarize two features we use in this regard: (i) the use of
two code versions, and (ii) address translation. This will be followed
by a discussion of BinCFI’s limitations against disclosure-guided
code reuse attacks, which motivate the techniques developed in
this paper.
Two code versions. Since data may be interspersed with code, it is
not safe to overwrite original code, as this may result in overwriting
of embedded data as well. Hence, many SBI systems leave the
original code in place, and create a second instrumented copy that
gets executed. The original code version is made non-executable,
while the second (instrumented) code version is executable.

Since code pointer values may be stored anywhere in the data
or code segments, it is not feasible to identify all such pointers
with 100% accuracy. For this reason, BinCFI does not attempt to
identify or modify these pointers, so all code pointers will continue
to point to addresses within the original code. This approach, used
previously in DBI systems, makes instrumentation transparent,
and hence provides better backward compatibility. It works with
applications that may use code pointer values for purposes such as
C++ exception handling, computing the location of static variables,
or to read their own code. Such code will examine the original
code version, and hence avoid any confusion that may result from
instructions introduced during instrumentation.
Address translation. As described above, code pointers continue
to target the original code. This means that indirect control transfers

need special treatment, or else they will jump to the original (now
non-executable) code. To avoid this, BinCFI uses address translation,
a technique originally developed in DBI systems. In particular, code
pointer values are translated just before their use in indirect control
transfers, so that they will now point to the corresponding locations
within the instrumented code version. This process, called address
translation, relies on a hash table lookup at runtime.

BinCFI uses address translation not only to fix-up code addresses,
but also to enforce CFI. In particular, control transfer instructions
are grouped into classes such that all instructions in a class share
the same set of valid targets. A separate address translation table is
used for each class, and this table limits translations to only those
targets that are valid for the class.

For modularity, each address translation table is divided into a
global translation table (GTT), and a per-module (i.e., per binary file)
local translation table (LTT). The GTT is populated by a modified
loader, and it maps the most significant bits of an original code
address to the corresponding module. The LTT of the module is
then used to obtain the target address within that module.
BinCFI limitations against code disclosure-based attacks. Al-
though BinCFI employs coarse-grained CFI that limits the available
ROP gadgets, previous research [25, 33] has shown that a suffi-
cient number of usable gadgets remain, and these can be used to
achieve arbitrary code execution. Moreover, usable gadgets remain
unchanged between the original and the instrumented versions of
the code. Indeed, by reading the contents of GTT and LTT, an at-
tacker can access the instrumented code version as well. As a result,
even an attacker that doesn’t know the original code can perform
a JIT-ROP attack by reading the uninstrumented code version. The
techniques described in this paper are hence necessary to thwart
such disclosure-guided code reuse attacks.

One way to improve BinCFI is to remove gadgets available to
attackers. However, this is not feasible since those are valid indirect
targets that may be used by legitimate control flows. While fine-
grained CFI approaches would reduce the average number of such
gadgets available in each context, attackers may still find the “right”
context where there are sufficient gadgets available, since they
could read code. In fact, it is very likely that such code locations
exist (e.g., code dispatchers) despite the use of fine-grained CFI.
We therefore develop an alternative approach in this paper that
relies on hiding code and hiding code pointers. This is a two-step
approach: we hide the real executable code and remove the original
code away. We then randomize code pointer values.
Benefits and challenges of our approach. An obvious benefit of
hiding code is that it prevents gadget discovery by scanning code.
In addition, by randomizing stored code pointer values, we break
the attackers ability to reason about relative distances between
pointers. For instance, they cannot read a return address from the
stack, and then use it to target a gadget that occurs at a specific
offset preceding (or following) it. Note that the use of randomized
code pointers entails no new overhead: address translation needs
to be performed any way, and it takes no extra effort to translate a
randomized pointer, as compared to the original code pointer.

While there are many benefits to code hiding and randomizing
stored code pointers, these techniques pose several new challenges
as well. Hiding requires removal of the original code. This requires
more accurate static analysis than the techniques used in BinCFI.

Otherwise, any removal of embedded data would cause the program
to crash, or function incorrectly. Code hiding also requires a dy-
namic code relocation, or else attackers will be able to identify the
location of new code by simply adding a fixed offset to the base of
the original (uninstrumented) code location. This too is unavailable
in BinCFI, since the instrumented code is always appended just
behind original binary.

Randomizing code pointer values is even more challenging, since
it requires static identification and modification of code pointers.
Static code pointer identification is known to be a very difficult
problem on stripped binaries. Nevertheless, we have been able
to develop techniques that can identify and randomize the vast
majority of such pointers. We describe our approach in more detail
in the following section.

3 SYSTEM DESIGN
Just-in-time ROP attacks rely on reading the code memory of an ex-
ecuting process to assemble gadgets on the fly. Such attacks may be
used to bypass code diversification [24, 64], or to achieve reliability
for frequently updated software [1, 5, 37]. SECRET thwarts such
attacks using code space isolation (CSI) and code pointer remapping
(CPR), two novel techniques that realize an execute-but-no-read
capability using only binary instrumentation (and no hardware or
VMM support).

Recall that static binary instrumentation systems such as BinCFI
[79] and Reins [73] maintain two copies of code: (i) the original
code, which is readable but not executable, and (ii) the instrumented
code, which is readable and executable. Hence, JIT-ROP attacks may
operate by reading either of these copies. CSI precludes reads of
original code by clearing it out. This is enabled by a static analysis
approach we describe in Section 3.1.

We obviously cannot clear out the instrumented code, so we need
alternative approaches to thwart attempts to read this code version.
In the absence of any hardware or VMM features to prevent reads of
code segments, there are three basic approaches an attacker could
follow. The simplest approach is to find the base address of the
code section(s) and scan them. CSI prevents this by locating instru-
mented code sections at random locations determined at load-time,
so the attacker cannot predict these locations in advance. A second
strategy available to the attacker is that of brute-force memory
search. CSI renders brute-force scans impractical by distributing
code over a very large address space. As a result, the probability of
discovering a code page using a random probe is negligible.

These measures leave an attacker with only one option for ex-
amining code: reading data memory to discover code pointers, and
following these pointers to inspect code. To thwart this class of
attacks, we introduce a new technique called code pointer remapping
(CPR). CPR replaces code pointers with randomized (“encrypted”)
values scattered across a large address space. It is important to note
that these code pointer values are unrelated to the actual code locations
targeted by them. This is made possible by the “magic” of address
translation: at runtime, when an indirect control transfer instruc-
tion is executed, an “encrypted” code pointer value is translated
into the correct location for the corresponding code.

Both CSI and CPR protections are applied on all modules and
all low-level code and code pointers to prevent code reuse attacks.

Original Code and
Embedded Data

(read only)

Original
Data

Instrumented Code
(read and executable)

g:
/* code wiped out */
ret

f’:
...
call lookup_call
R’:

g’:
...
jmp lookup_ret

ELF
meta
data

lookup_call(orig):
...
reg = LTT[orig]
...
jmp *reg

g’genc

lookup_ret(orig):
...
reg = LTT[orig]
...
jmp *reg

random
distance

Local address
Translation Table LTT

Binary Disassembly and Instrumentation

frame_f

Renc

frame_g

obj:
 vtable_ptr
 ...

Stack:

Heap:

Original Code Wiped Out

struct:
 func *fenc
 func *genc

Executable Shadow Code

R’Renc

embedded data
RA LTT

FP LTTf:
/* %eax = &g */
/* call *%eax */
R:
…

User Memory

● Identified code pointers remapped
to different values

● vtable ptr points into new data

Relocation
from static analysis
removed after
loading finished

obj_A:
 vtable_ptr
 ...

Patch code/data
ptrs at runtime

New Data
(read only)

Fig. 1: Architecture of SECRET. Discovered code pointers are remapped to randomized memory regions, which is not related to either original code or shadow
code. The actual instrumented code is hidden in a randomly allocated memory region with no data references to it. All code pointers are translated at runtime.
During address translation, any accesses to the address translation table are performed through a private TLS to avoid memory leaks.

Compared to existing compiler-level techniques with the same
goals [20], SECRET gains the following additional benefits due to
its ability to operate on COTS binaries:
• No changes to existing platforms: Our technique does not require
hardware support, OS support, modifications to compilation
tool chains, or recompilation of existing programs. Besides the
fact that source code is not always available, applying protec-
tions at the binary level is advantageous even for open-source
applications, since it is compatible with the current deployment
model of distributing identical binaries to every user.

• Completeness of protection: Defenses applied at the source code
level may leave hand-written assembly code unprotected. More
importantly, low-level code automatically inserted by tools such
as linkers or compilers would also be unprotected. As discussed
in previous research [19], many low-level code constructs such
as context switches could be exploited by attackers to bypass
existing defenses.

• Transparent remapping and exception-based attacks: By design,
SECRET ensures that no original code pointer points to shadow
code. Neither signals nor C++ exceptions leak code pointers.
(Signal delivery is intercepted to modify the code address on
the stack.) Both signals and C++ exceptions pose compatibility
problems or leak pointers in the case of previous techniques
such as Readactor [20].

3.1 Code Space Isolation (CSI)
Figure 1 illustrates our overall approach for protecting the original
and the instrumented code. This figure illustrates both code space

isolation, the topic of this section, and code-pointer remapping, a
topic discussed in the next section.

CSI relies on static analysis to identify data embedded within
the original code, and eliminates the rest of the code. CSI also
incorporates techniques to decouple the locations of instrumented
code from that of the original code. Decoupling is also applied to
address translation tables (specifically, LTTs) that contain pointers
to instrumented code. Finally, code that uses LTTs is implemented
in such a manner that avoids storing instrumented code addresses
in memory (other than the LTT itself). These measures turn the
instrumented code into shadow code that is designed to be outside
the attacker’s reach.

3.1.1 Identifying embedded data
To properly identify the original code, we need to identify any data
in the middle of code. To solve that problem, we have developed
a static analysis pass to identify embedded data. The goal of this
analysis is to be conservative: when in doubt, bytes should be
marked as data and preserved, rather than being erased.

There are two types of embedded data: (a) data in the middle of
functions, and (b) data between functions. The first type usually
corresponds to jump table data, so we reuse existing techniques
for jump table discovery to identify such data. For the second type
of data, we leverage the information in two sections of COTS ELF
binaries: .eh_frame and .eh_frame_header. These two sections
are generated in the DWARF format used for C++ exception handling
at runtime. Their purpose is to tell the C++ runtime how to unwind
function frames. They include information such as function bound-
aries, the position of the saved frame pointer in a stack frame (or

the stack height, in case the frame pointer is not available), and the
positions of callee-saved registers saved in the frame.

We have made an important observation about binaries gener-
ated from C programs, as well as several low-level binaries con-
taining assembly code: all such binaries contain .eh_frame and
.eh_frame_header sections. This is because C++ code may call non-
C++ code and vice-versa. In order to properly handle exceptions, all
function frames between the exception thrower and catcher must
be available. In our experiments these two sections were available
in all the COTS Linux binaries we have tested, including libraries
with hand-written assembly code, e.g., glibc. Over 90% of the func-
tion boundaries were identifiable using this information. For the
remaining cases, our current implementation falls back to the con-
servative binary analysis already incorporated into PSI. A better
approach would be to use some of the recent techniques [54] for
function boundary identification that achieve high accuracy.

3.1.2 Protecting shadow code
Our implementation platform places instrumented code at a mem-
ory location that follows the original code. Such an approach would
make it easy for attackers to identify the location of shadow code. To
prevent this, we redesigned the format of instrumented binaries in
SECRET to decouple the locations of the original and instrumented
code, turning instrumented code into shadow code.

To protect the shadow code in the 32-bit x86 architecture, we
use segmentation to prevent its access from non-shadow code. This
is achieved by isolating the shadow code as well as its LTT from
any other readable user memory using a sandbox implemented
by segmentation. The details of this technique are omitted since
similar approaches have also been implemented in several previous
works [4, 31, 39].

On architectures such as x86-64 where hardware segmentation
enforcement is missing, software fault isolation (SFI) [71] can be
used to protect the instrumented code, but the associated overheads
can be significant. Moreover, instrumenting all memory accesses
can be an engineering challenge due to the complexity of the x86
instruction set. We therefore opted for the alternative of base ad-
dress randomization to protect the instrumented code. The large
address space on x86-64 allows for sufficient entropy that makes
guessing attacks very difficult if not impractical.

In our implementation, the shadow code of each module is lo-
cated at a random distance from its original code. The random
distance is determined at runtime by our modified loader, and can
range over the entire address space available. The loading locations
of different modules are determined independently.

3.2 Code Pointer Remapping (CPR)
Although shadow code has been isolated and hidden from the at-
tacker, it still needs to be reachable. In particular, there will neces-
sarily be pointers within data memory (stack, heap, or static areas)
that can be used as control-flow targets. In the JIT-ROP threat
model, it is impossible to prevent attackers from simply reusing
such code pointers that they harvested by reading data memory.
In other words, one cannot block attacks consisting solely of gad-
gets beginning at harvested code pointers. However, we want to
prevent attackers from discovering additional usable gadgets from

these harvested pointers. Specifically, CPR is aimed at blocking the
following attack avenues:
(1) follow harvested code pointers to examine the shadow code

and discover additional gadgets, or
(2) use prior knowledge of the victim program’s code to compute

the locations of additional usable gadgets, e.g., by adding an
offset to a harvested code pointer value, or by repeatedly
probing several nearby locations.

CPR achieves its goal by storing only transformed code pointers
in memory. This transformation could be thought of as a crypto-
graphic hash. Since a hash function cannot be inverted, it becomes
infeasible to compute shadow code locations from the transformed
code pointers stored in memory. This blocks the first attack avenue.
For the second attack avenue, note that cryptographic hashes de-
stroy correlations between their inputs, e.g., it is not possible to
predict the hash of x + 1 given the hash of x . Thus, there is no way
for an attacker to probe “nearby” gadgets.

For performance and other reasons, our implementation does not
use a cryptographic hash. One limitation, dictated for compatibility
with C++ exception handling, is that transformed code addresses of
one function cannot be interspersed with that of another. However,
we do transform the code locations within a function into an address
space that is many orders of magnitude larger. Other than this need
to avoid interspersing different functions, the transformed address
space bears no relation to the actual locations where the target code
is stored.

The CPR implementation consists of components that operate at
instrumentation time and load time. At instrumentation time, CPR
requires the identification of all code pointer constants in a binary,
and their replacement with transformed values. Unfortunately, it is
not always feasible on binaries to determine whether a constant
represents a code pointer. As a result, a small fraction of code
pointers are not transformed. However, these pointers will point
to original code locations that have been cleared out by CSI, thus
preventing them from being used to discover the location of shadow
code.

At load-time, CPR requires changes to the system loader ld.so.
At the time of loading a module, this modified loader reserves a
range for transformed code addresses corresponding to this module.
Code pointer values in the module are updated to use values over
this address range. In order to speed up the loading process, we
generate relocation information at code instrumentation time. This
relocation information can be used by the loader to quickly fix
up the code pointers within the module so that they use these
transformed addresses.

In addition to replacing code references within the module, it
is also necessary to set up the address translation tables so that
they can map transformed code addresses into the corresponding
locations where the shadow code is loaded. Specifically, the LTT
needs to be updated so that it maps transformed code addresses
into the corresponding locations within the shadow code.

Of the two components of the CPR implementation, the instru-
mentation time component is by far the most complex, and hence
we describe it in more detail below.

3.2.1 Identifying code pointers
As discussed above, CPR requires the identification of code pointer
constants in a binary, and replacing them with a transformed ad-
dress. Clearly, such a transformation is safe only if we have very
high confidence that we are dealing with a code pointer. However,
it can be challenging to identify code pointer constants in COTS
binaries with the requisite degree of confidence. We address this
problem using a three-step approach:
• Develop static analysis techniques that are specialized for fre-
quently used code pointer categories, e.g., return addresses and
virtual functions.

• Develop a static analysis technique that can identify a subset of
remaining function pointers with a high degree of confidence.

• Develop an approach for handling possible code pointers that
are not detected in the previous two steps.

Sections 3.2.2 through 3.2.5 are devoted to the first step, while we
detail our approach for the other two steps here. In particular, for
the second step, our analysis identifies a constant as a code pointer
if (1) it is an operand of an instruction or a constant inside data
section and (2) it matches a function boundary address identified
by DWARF section. Our experiments show that all code pointers
inside SPEC benchmarks and binaries in coreutils could be correctly
identified using this simple method. It is less successful on shared
libraries.

For possible code pointers not recognized by the second step, we
leave them as is, i.e., we do not remap them. So they will continue
to point within the original code section. During address transla-
tion, these will be mapped into the corresponding locations within
shadow code. As a result, compatibility will be preserved without
leaking the location of shadow code. However, possible gadgets
beginning at un-remapped pointers remain accessible using their
original code addresses, and thus lose out the principal benefit of
CPR. Fortunately, as we show in the evaluation, the vast majority
of the pointers are remapped, so the number of gadgets accessible
are rather small.

3.2.2 Remapping return addresses
Changing return addresses has two potential implications, since
they may be used for purposes other than a return. Our experiments
have shown that all such uses fall into one of the following cases
on GNU/Linux:
• C++ exception handling: the return address is used to identify
whether the caller of the current function has a handler for the
current exception.

• Caller checking: the return address is used to determine the
source of the call. Such checks occur in the dynamic loader.

• PIC data access: there are two cases: (a) jump tables, where the
return address is popped off the stack and used to compute the
base address of a jump table, and (b) static data accesses, where
the return address is popped off the stack and an offset is added
to find the base address for static data access.

For cases where return addresses are used for C++ exception han-
dling, we update the corresponding DWARF metadata information.
This is to ensure that the stack unwinding mechanism can work cor-
rectly with randomized return addresses. In particular, we update

the DWARF information for each function by changing the func-
tion boundaries. The randomized function boundaries are currently
equally distributed in the large random region for the whole mod-
ule, but an alternative distribution that is proportional to the sizes
of the functions could also be used. Since the C++ exception han-
dling mechanism checks return addresses against their originators’
function boundaries, to make such that checking works as intended,
we must ensure that remapped return addresses still fall within
their corresponding randomized function range.

The second case we have observed occurs in the dynamic loader,
in which some internal functions check the location of callers. In
particular, they require that callers only come from libc.so or
libpthread.so. The check uses the loader’s internal data structure
link_map, which contains information about all modules. In order
to cope with this, we change the link_map data structures so that
base addresses correspond to the randomized address space. By
doing so, the remapped return addresses can be correctly identified.
In addition, to make sure all metadata can be accessed, we also
adjust other related fields in link_map, such as offsets to metadata
segments of the module. This is to ensure that our modifications
are transparent to accesses of ELF metadata sections.

For the remaining cases, we rely on a static analysis pass to detect
that the RA is being used as a data pointer, and avoid remapping it.
The analysis determines that those addresses will not be used as
part of actual return instructions (as they are popped off the stack),
and avoids including them in the list of valid targets for return
instructions.

3.2.3 Remapping C++ virtual functions
Since C++ programs on Linux follow the Itanium ABI, virtual func-
tion call sites andVTable assignments follow certain code signatures
that can be captured statically [52]. We leverage metadata of COTS
binaries, such as DWARF and runtime type identification (RTTI)1,
in combination with our static analysis, to identify VTables and
virtual function pointers. Our current implementation supports all
types of VTable recovery using RTTI, including those owned by
multi-inherited classes.

As in previous work [63], we begin by scanning read-only data
sections for the locations of the symbols __class_typeinfo,
__si_class_typeinfo, and __vmi_class_typeinfo to recover all
locations of typeinfo objects. In position-independent code (PIC),
these symbol references are available as part of the dynamic re-
location information, while in non-PIC, we identify the locations
by searching the entire section. Using these typeinfo locations,
we further scan the entire section for their references. Any loca-
tion with a valid typeinfo address preceded by a zero is the base
location of a VTable.

In case RTTI information is not available, we use static binary
analysis to reliably recover VTable locations. In particular, we detect
VTable assignment instructions using the following steps: 1) iden-
tifying constructor functions: In C++ programs, creating an object
usually requires calling a runtime function new, followed by its
constructor function where VTables are assigned (we discuss ex-
ceptional cases in Section 6). We can easily identify all call sites

1DWARF sections are mandatory for C++ programs in Linux because of exception
handling, while RTTI is optional but is by default turned on

of new (mangled names are _Znwj/_Znwm) and look into the next
call instruction that takes the return value of new as the first ar-
gument. 2) identifying all VTable assignments: We scan the code
of callee functions using a simple data flow analysis. VTable as-
signments are identified by checking the following properties: a)
a constant with a value pointing to read-only data is the source,
and b) the target location is the head of the object (first argument
of the constructor function). Due to multi-inheritance, multiple
VTable assignments may exist in one constructor. To identify all
other VTable assignments, we identify the co-appearance of their
corresponding constructor functions. A constant assignment in-
struction is a VTable assignment only if it is preceded by a call
instruction whose first argument matches the target address.

Once VTable base addresses and assignments are discovered, we
proceed to detect VTable boundaries. Note that compilers such as
gcc and llvm generate a VTable as a contiguous chunk of code
pointers. However, in practice, a VTable may be contiguous with an
adjacent VTable, rendering the boundary analysis incorrect. To deal
with this challenge, we follow the approach of previous work [52]
and conservatively scan each VTable linearly until we reach a non-
code pointer such as zero. Note that, in the code of many libraries,
several VTables may contain only zeros in the entire region. This
happens usually because the class of the VTable is exported and all
virtual functions can only be decided at runtime. We deal with this
issue by following the dynamic relocation table present in COTS
binaries.

Once all VTable assignment instructions and VTable boundaries
have been determined, we relocate each VTable to a new data sec-
tion and modify the corresponding vtable assignment instructions.
This process eliminates any prior knowledge of an attacker about
the original binary.

3.2.4 Exported functions and related code pointers
Remapping exported functions is necessary because these pointers
will be propagated by the dynamic loader into the Global Offset
Tables (GOT) of dependent modules. Attackers may use this in-
formation to infer other module base addresses. These pointers
are remapped by updating the dynamic symbol table in each ELF
image at runtime. Other than exported functions, there are several
sections, such as .init_array, .fini_array, .ctors, and .dtors,
which are known to contain code pointers.

3.2.5 Protecting jump table pointers
Code pointers in jump tables may point to useful gadgets. Because
jump table pointers are computed in a register and used immediately
afterwards, we rely on a simpler strategy that eliminates them
from program memory. This is achieved by transforming code
pointers used in jump tables and putting them into a new table
along with the instrumented code (this means that the jump table is
hidden from the program in the same manner as the instrumented
code). In addition, we change indirect jumps that look up old jump
tables to ensure that they check the corresponding new tables in
the instrumented code. By doing so, jump tables will enjoy better
performance since no translation is needed. In addition, jump table
targets are eliminated from the address translation table to improve
the strength of the CFI policy.

Table 2: Code pointer remapping coverage. Column 2 shows the total number
of code pointers, columns 3–6 the number of remapped code pointers, and
the last column the percentage of code pointers that have been protected.

Name Total Return Jump Exception Exported %
Table Handlers Funcs. Remapped

400.perlbench 17548 14101 1542 0 3 89%
401.bzip2 512 365 48 0 2 80%
403.gcc 58264 47847 6496 0 7 93%
429.mcf 146 94 0 0 2 66%
445.gobmk 12220 9245 266 0 3 78%
456.hmmer 4426 3624 223 0 2 87%
458.sjeng 1436 1124 140 0 3 88%
462.libquantum 585 448 1 0 2 77%
464.h264ref 3738 3059 89 0 3 84%
471.omnetpp 21116 16700 956 3708 23 94%
473.astar 535 411 3 0 2 78%
433.milc 1881 1561 38 0 2 85%
435.gromacs 8491 6936 321 0 19 86%
437.leslie3d 693 631 0 0 2 91%
444.namd 1343 1157 8 16 3 87%
447.dealII 48927 37679 2801 6632 10 89%
450.soplex 6668 5237 570 493 5 91%
453.povray 13887 10559 1702 103 26 89%
454.calculix 19318 17699 206 0 2 92%
470.lbm 126 79 0 0 2 64%
482.sphinx3 2930 2530 5 0 2 87%
libc.so.6 26719 12117 12432 0 2163 98%
Total 251509 193203 27847 10952 2288 90.7%

4 EVALUATION
Since the base PSI platform works only on x86-32 Linux, we also
implemented SECRET on the same platform. We implemented both
segmentation-based and randomization-based protection for the
shadow code and all related data structures. Our evaluation was
carried out using SPEC benchmarks and a few real-world applica-
tions, including GUI applications such as Open Office. Unless stated
otherwise, experiments were performed on a 32-bit Ubuntu system
equipped with a Core i5 CPU and 4 GB RAM.

4.1 Effectiveness Evaluation
4.1.1 Code Pointer Remapping
We have evaluated the effectiveness of code pointer remapping on
the SPEC benchmark programs as well as libc. Table 2 shows the
fraction of code pointers that were remapped, for different types
of pointers. Our analysis illustrates that the majority (90%) of code
pointers have been handled, including all return addresses, all C++
virtual function pointers, all jump table pointers, and a subset of
function pointers, as described in Section 3.2.

As described in Section 3.2.1, we use a conservative approach for
identifying code pointers for remapping. In particular, for constants
that appear to be code pointers but cannot be confirmed using the
first two steps described in Section 3.2.1, we leave them as is, and
do not remap them. This is the reason why approximately 10% of
the code pointers is left unremapped in the results shown in Table 2.
However, since about 90% of the code pointes have been remapped,
the ability of attackers to construct successful ROP payloads is
significantly constrained. To support this claim, we performed an
an experimental evaluation using ROP payload generation toolkits.
We used ROPGadget [56] and Q [58] in this evaluation. Neither
tool was able to generate meaningful attack payloads using only
the gadgets beginning at unremapped code pointers.

Table 3: Number of remapped vtables and virtual functions.

Name # of Virtual Tables # of Virtual Functions
omnetpp 120 2572
soplex 29 790
dealII 727 2454
povray 28 86
namd 4 8
astar 1 3

Another interesting point is the experiment on libc.so (last line
in the table), as libc.so is a low level binary file that is compiled
from C code mixed with inline assembly code. Our system has
remapped 98% of code pointers. In addition, our experiment shows
that 56K lines of assembly code have been compiled into libc.so. In
this fraction of glibc code, there are 675 code pointers generated
by call instructions. All these code pointers are protected by code
pointer remapping.

Table 3 shows the results of remapping vtable and virtual func-
tion pointers. In particular, we have remapped all vtable and virtual
function pointers in the C++ benchmark programs used in our evalua-
tion, as well as their dependent libraries. As a result, advanced code
reuse attacks such as COOP [57] are defeated due to the random-
ization of virtual table addresses, as the remapped virtual tables
are located in a new data segment independent from the origi-
nal code. Consequently, it becomes challenging to retrieve further
information even if some of vtable pointers are leaked.

As previously discussed, all code pointers in a module are ran-
domly remapped to the shadow address space. To properly support
C++ exception handling, code pointer remapping is performed ac-
cording to the DWARF frame description entry (FDE), i.e., code
pointers within a piece of code covered by a single FDE (usually
a function) should be remapped into a contiguous region in the
randomized address space. As a result, if one of the return addresses
within an FDE is leaked, then the entropy of other return addresses
within the same FDE goes down to the size of that FDE in the ran-
domized address space. Our experiments show that the entropy of
these return addresses is 20 bits on average, while the entropy of
other remapped pointers can be 32 bits.

4.1.2 Identification of embedded data
We evaluated the ability of our static analysis for discovering embed-
ded data within code sections. As described earlier, the .eh_frame
section provides information on how to unwind stack frames. The
covered region consists of a list of debugging units, each of which
usually corresponds to a function or a code snippet. The frame
description entry (FDE) structure includes the range of the code
in each case. Table 4 shows the exception handling information
coverage for a set of SPEC binaries and Linux libraries. We summed
up the ranges of all entries and show in the second column how
much code was covered by the DWARF information. On average,
97.17% of the code is covered, which means that accurate function
boundary information is available for almost all of the functions of
these binaries.

With those boundaries as starting points, SECRET’s static analy-
sis pass can follow control flows within the already known regions
and discover any missing code, as well as data in between and in

Table 4: Coverage of exception handling (DWARF) information.

Name .eh_frame Coverage
spec2006 97.54%
libc.so.6 97.87%
libm.so.6 96.16%
libgfortran.so.3 98.58%
libquadmath.so.0 99.63%
libstdc++.so.6 95.44%
libcrypto.so.1.0.0 87.23%
Average 97.17%

Table 5: Embedded data regions identified by static analysis.

Name Invalid
Regions

Valid
Regions Reason

libc.so.6 40 0 Alignment padding
libffi.so.6 0 1 ffi_call_SYSV

libcrypto.so.1.0.0 0 16 Lookup table for
crypto algorithms

the middle of functions. After analyzing 491 ELF system binaries in
Ubuntu 14.04, we have found a few cases of data embedded in code.
However, in most of these cases, the gap region indicated in the
.eh_frame section was simply the padding data in between function
or section boundaries. There were only a few cases in which data
was embedded in the code as part of jump tables. Table 5 provides
details about these cases. We found 40 locations totaling 390 bytes
of data in libc.so.6, all of them used as padding. Since the value
of the padding is zero, they can cause disassembly errors if not
handled properly. In libffi.so.6 on x86, we found a jump table in
the middle of code inside the ffi_call_SYSV function. The same
library on x86-64 has two jump tables identified by our algorithm.
Finally, libcrypto.so.1.0.0 contains 16 data regions (correspond-
ing to approximately 20KB) in the middle of code in both 32-bit and
64-bit versions. All these data regions are located after function
returns.

4.1.3 Randomization Entropy
To ensure that our shadow code leverages the full entropy of the
address space, we implemented our own code loading primitive as
part of our modified loader to hide the location of shadow code.
Although SECRET is currently limited to 32-bit systems, we wanted
to evaluate achievable entropy on 64-bit systems. We hence ported
our modified loader in the x86_64 glibc 2.19 running in Ubuntu
14.04. We then performed an experiment using Chrome 43.02 by
forcing our modified loader to load the browser code as well as
its dependent libraries. In this experiment, we used instrumented
code of the same size as the code in the original binary, i.e., when
a module is loaded, our loader immediately loads a corresponding
code piece whose size is the same as the text segment of the module.
In our experiment, all 24 processes of Chrome were tested.

Our experiments illustrate that the size of the instrumented code
used by chrome is 514 MB. The instrumented code pages allocated
are scattered in the whole user address space. The address range
is different on each process, but the overall range of the address
space that instrumented code occupies across different processes is
between 953 and 1021 TB. Since instrumented code is not targeted

Table 6: Low-level indirect control transfer instructions protected by SECRET.

Name Return Indirect Jump Indirect Call Syscall
glibc 603 146 675 2
vDSO 1 0 0 1

by any code pointers, the probability of a memory leak is calculated
as the size of the code divided by the address space used, which is
about 5 × 10−7.

We note that isolation based on information hiding may not
be strong in some scenarios, especially if an attacker has the ca-
pability of probing information about the memory layout using
timing channels [30], or other side channels such as the size of
unallocated memory [47]. At the same time, it is clear that high
entropy randomization substantially increases the attacker’s work
factor.

4.1.4 Low-level Protection Coverage
To evaluate the completeness of our approach, we have evaluated
several low-level binaries that are used by most programs: ld.so,
libc.so, libgcc_s.so and vDSO. The hand-written assembly code
contained in these binaries exceeds 56K LoC.

Table 6 shows all the low-level indirect control transfer instruc-
tions that are protected by SECRET. In particular, we found 218 call
instructions in native assembly code in glibc. The rest of low-level
calls (457) were used for system calls (e.g., call %gs:0x10). In
addition to low-level calls, we have found that three quarters of
indirect jumps are low-level instructions. In particular, we found
256 indirect jumps written in assembly code, 230 of which are used
as part of jump tables. Our experiments illustrate that there are
1545 code pointers used by these low-level jump tables and 457
return addresses could be generated by low level calls. All these
low-level code pointers are fully protected by SECRET.

4.2 Runtime Performance
4.2.1 SPEC 2006 Benchmarks
We have evaluated SECRET’s runtime overhead using the SPECINT
2006 benchmarks. Since code space isolation does not introduce
any extra overhead, we include this feature on by default except
in the baseline BinCFI system. We compare between three differ-
ent modes: 1) BinCFI: baseline protection; 2) SECRET.seg: shadow
code protected using memory segmentation; and 3) SECRET.rand:
shadow code protected using base address randomization. In all
cases, SECRET transforms the main executable and all six depen-
dent libraries. The results for each benchmark are shown in Figure 7,
while Table 8 shows the average overhead for SPECINT, as well as
the total for all 21 SPEC CPU benchmarks.

In the SECRET.seg mode, the average overhead for SPECINT
is 14.41% (the total SPEC CPU overhead is 15.64%). In this mode,
both the instrumented code and its LTT are located outside of the
memory sandbox. The overhead in this mode mostly comes from
memory access through a segment register when performing ad-
dress translation. In the SECRET.rand mode, the average runtime
overhead for SPECINT is 13.54% (the total SPEC CPU overhead is
14.48%). Compared with SECRET.rand, there are two main differ-
ences in this mode: (a) the address translation trampolines perform

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

BinCFI SECRET.seg SECRET.rand

Fig. 7: Runtime overhead of SECRET on the SPECINT 2006 benchmarks.

Table 8: Summary of SPEC 2006 runtime overhead results.

Programs BinCFI SECRET.seg SECRET.rand
SPECINT 12.84% 14.41% 13.54%
Total 14.20% 15.64% 14.48%

Table 9: Completion time (sec) for real-world programs.

Test Suite Base SECRET.rand Description
python 4.709 5.022 Run bincfi script

to transform /bin/ls
dd 99.46 99.6 Copy a 1GB file
md5sum 2.44 2.45 Checksum of file (1GB)
scp 2.78 2.96 Copy a 100MB file

two range checks (one for the original and one for the randomized
code address space) instead of one, adding a bit more overhead,
and (b) SECRET.rand does not require intensive memory access
through our TLS. Our experiments show that the average over-
head of SECRET.rand is slightly lower than SECRET.seg. Compared
with the baseline system, the average runtime overhead added by
SECRET.seg is less than 2%, and by SECRET.rand is less than 1%.

In our experiments, the average code size increase on SPEC
programs was 3x, mostly due to LTTs, which consume a large
amount of space. Code pointer remapping also contributes to the
size increase since it duplicates many jump tables. Other than binary
size, we also measure the physical memory overhead at runtime.
In our experiment, for simplicity, we measured the peak usage
of resident memory for each SPEC program. We observed that
SECRET uses up to 4.3% extra memory over the original binary.
This is reasonable despite the larger increase of binary size, since
most of the SPEC benchmark programs allocate large chunks of
data at runtime, and hence their memory use is determined more
by data memory size rather than code size.

4.2.2 Commonly Used Applications
In addition to the SPEC benchmarks, we also evaluated SECRET
with several real-world programs. As the SECRET.rand mode in-
cludes all features and supports the recent x86-64 architecture, we
used this mode to compare with the performance of the original
programs. The results of Table 9 show that SECRET is practical

Table 10: Startup overhead for launching GUI programs.

Name Base (sec) BinCFI SECRET.rand
vim 0.6 60% 67%
lynx 0.02 100% 100%
evince 0.34 135% 168%
gcalctool 0.62 110% 161%
gedit 0.6 120% 165%
LibreOffice 1.4 51% 200%

for real-world usage. This experiment includes script interpreters
(python and perl), disk I/O tools (dd), as well as network related
tools (scp). In all experiments, the code of all main executables and
libraries was transformed to shadow code.

We also evaluated further the startup overhead of protected pro-
grams, as this may affect user experience. SECRET has noticeable
startup overhead due to its modified loader, which needs to perform
the following actions on each module: (a) load the instrumented
code as well as the LTT (b) initialize the corresponding entries in
the GTT, for code pointer remapping to work properly, and (c) wipe
out the original code. To better assess this overhead, we used a set
of GUI applications, since they typically depend on many more
libraries compared to the simple benchmark programs. As in the
previous experiment, we use the SECRET.rand mode to compare
with the original programs and the baseline system. Table 10 shows
the startup overhead of several well-known Linux applications, in-
cluding three GTK and two text user interface programs. The results
show that SECRET’s overhead is higher on GTK programs than
programs using a textual interface. This is because GTK programs
load many more libraries at program start up.

5 RELATEDWORK
5.1 Control Flow Integrity
Control flow integrity (CFI) [3] provides a principled foundation for
enforcing low-level security policies on binary code. The main idea
of CFI is to mediate indirect control flow transfers and permit only
allowed targets. CFI can be informally classified to coarse-grained
[77, 79], fine-grained [45, 46, 50, 68], and context sensitive [44, 69],
depending on the enforced policy. Although CFI enforcementmakes
code reuse exploits much harder, researchers have shown that they
are still possible [16, 25, 33, 34]. These attacks exploit the fact that
any static analysis used to infer intended control-flow must be
approximate, and hence cannot prevent attacks that exclusively
use gadgets that are determined to be legitimate by the analysis.
This factor motivates the approach developed in this paper so that
SECRET can provide stronger protection than what is achieved
using the coarse-grained CFI provided by our platform PSI. Our
approach complements CFI, including some of the recent advances
[50, 52, 70], bymaking it much harder to discover gadgets (by hiding
code), and to target them (by randomizing code pointer values).

Most of the CFI techniques referenced above are focused on
forward edges, which include indirect calls and indirect jumps. Re-
searchers have noted that protection of backward edges, i.e., returns,
is even more critical. Indeed, ROP attacks repeatedly violate back-
ward edge policies. Shadow stacks [18, 22, 26, 53] are a powerful

mechanism for highly accurate enforcement of backward edge poli-
cies. However, shadow stacks experience compatibility problems in
complex code due to non-standard use cases where return addresses
are generated by non-call instructions. Rui et al [55] developed a
static analysis to discover such non-standard cases, thus develop-
ing a robust shadow stack defense. SECRET provides fine-grained
protection for backward edges by randomly remapping return ad-
dresses. Non-standard use cases don’t pose a problem on our PSI
platform: code addresses generated by any non-call instruction
will be identified by PSI’s static analysis as a possible code pointer
analysis, and its use as a jump or return address will hence be
permitted.

Approaches complementary to CFI have also been developed to
defend against ROP. G-Free [48] implements an instruction transfor-
mation technique at the very last phase of compilation to eliminate
unintended gadgets. However, intended gadgets (i.e., legitimate
return targets) still pose a problem. Control-flow and code integrity
(CFCI) [80] limits the use of intended gadgets so that they cannot
be used to achieve the common attacker goal of loading injected
code, e.g., by executing an mmap call to make data executable.

5.2 Code Randomization
PaX team introduced one of the earliest implementations of ad-
dress space layout randomization (ASLR) [42] and non-executable
memory pages [67]. ASLR is an important and defense that miti-
gates code injection as well as code reuse attacks. However, it is
known that coarse-grained randomization, as used in PaX and other
early ASLR implementations [9, 40, 76] and is in wide use today,
has several weaknesses [29, 62]. Information leakage attacks are
arguably the biggest threat to ASLR today. By disclosing the base
address of a dynamically loaded module, the exploit code can dy-
namically adjust the gadget addresses used in the (pre-constructed)
ROP payload, and effectively bypass ASLR [29].

To thwart this attack, fine-grained code diversification offers an
additional layer of protection over ASLR, by randomizing not only
the location but also the internal structure of code within a code
section. Code diversification can be applied at varying granularities,
e.g., at the function [10, 36, 43], basic block [72], or instruction
granularity [27, 49].

Code randomization techniques that operate on source code
are capable of fully randomizing code locations. In contrast, tech-
niques that operate on COTS binaries can perform only a limited set
of conservative randomizations, e.g., in-place randomization [49].
This is because of the previously identified difficulties in accurate
identification of code pointers in binaries.

5.3 Code Disclosure Attacks and
Countermeasures

Code randomization is challenged by advanced attacks that leverage
memory disclosure vulnerabilities along with scripting capabilities
to dynamically construct ROP payloads [12, 64]. Such “just-in-time
ROP” (JIT-ROP) attacks [64] repeatedly use a memory disclosure
capability to read executable memory and chain discovered gadgets
to launch a ROP attack. BROP (blind ROP) [12] leverages a stack
buffer overflow in forking servers to repeatedly overwrite the stack

until the write function is located, which then is used to leak exe-
cutable process memory to the client. Under certain circumstances,
even if a memory disclosure bug is not available, gadget locations
can be inferred through side channels [60].

Recent research extends code randomization with dynamic re-
randomization to thwart JIT-ROP attacks. Bigelow et al. [11] pro-
pose TASR, a re-randomization approach that randomizes the code
upon each system call. Shuffler [75] provides a continuous code
re-randomization capability. However, TASR requires source code,
compiler, and kernel support, while Shuffler works on binaries but
relies on the compiler to provide symbolic and relocation informa-
tion. SECRET, in contrast, operates on stripped binaries without
needing any such information.

Oxymoron [7] applies fine grained code randomization that is
compatible with code sharing. However, page-level code random-
ization has been proven ineffective by Isomeron [24], which shows
that even leaking one page of memory may still allow a successful
ROP attack. Isomeron [24] thwarts JIT-ROP attacks by creating
execution path diversity with multiple code versions. Although
attackers can still read code, they do not know which version will
be actually executed. Therefore, the possibility of successful gadget
chain execution drops exponentially.

Another line of recent research efforts has focused on enforcing
an execute-only memory policy to prevent JIT-ROP attacks from
reading gadgets from memory [6, 13, 17, 20, 32, 51, 66, 74] This
can be achieved using page table manipulation [6], split TLBs [32],
hardware virtualization extensions [20, 21, 66, 74], or a form of
software-fault isolation [13, 51]. For instance, Readactor [20] and
Readactor++ [21] rely on the extended page table (EPT) feature
of Intel processors. In addition, they protect all code pointers by
forcing them to point to “proxy” pages that contain trampoline
code stubs. By doing so, JIT-ROP attacks that harvest code pointers
are defeated because leaked code pointers all point to non-readable
“proxy” pages that leak no further information to attackers. SECRET
provides a similar capability by using code pointer remapping with-
out relying on recompilation or special hardware features.

LR2 [14] prevents code and code pointer disclosure similarly to
our work. LR2 focuses on low-end ARM devices and confines mem-
ory reads on a certain memory range by masking load instructions.
All control flows to a function are intercepted by trampolines which
use direct jumps to relay control. LR2 operates at the source code
level, while SECRET operates directly on stripped binaries.

5.4 Dynamic Binary Instrumentation
Dynamic binary instrumentation (DBI) systems [15, 41, 59] use a
code cache to execute translated application code. Similar to shadow
code, the code cache is isolated, and indirect control transfer targets
are translated using an address mapping table. For performance
reasons, the code cache is isolated. For performance reasons, code
cache usually remains both writable and executable, which subjects
it to code corruption attacks. In contrast, shadow code is never
writable, so attackers cannot corrupt it. Recent research [65] has
shown how to secure code cache using two processes, one for code
generation and another for execution, but the technique has not
yet been incorporated into the above DBI platforms.

An important difference between a code cache, as used in DBI
systems, and shadow code is that the latter is self-contained and
executes independently, while the former requires constant orches-
tration by the DBI runtime. This orchestration requires many data
pointers in the code cache that point to critical data structures of
the binary translator, leaking the locations of both.

6 LIMITATIONS
Use of RTTI. Given our focus on COTS binaries, our ability to
identify code pointers is limited due to the lack of certain types of
information. For instance, with the help of RTTI in C++ programs,
we can reliably discover all virtual function information. When
such information is not available, however, we can only use con-
servative static analysis, relying on the direct data flow between
constructors and the new function. However, when an object is
created on the stack, the new function is not called, since memory
can be easily allocated on the stack. In such cases, SECRET cannot
detect these virtual tables. Fortunately, the majority of binaries do
contain RTTI, and most objects are allocated on the heap instead of
the stack. For code pointers involving non-virtual functions, we are
still working on further conservative techniques to improve upon
their identification.
Applicability to x86-64 platforms. Our current prototype cur-
rently supports only 32-bit x86 platforms, given the fact that it is
built on top of PSI, which only supports 32-bit systems. A few as-
pects of SECRET have been implemented and evaluated on x86_64,
as described in Sections 3.1.2 and 4.1.3. A more complete imple-
mentation requires significant implementation effort, but is not
conceptually more challenging.
DWARF information. One could argue that using DWARF in-
formation contradicts the claim of handling COTS binaries. The
DWARF information used by SECRET is not the same as the option-
ally generated debugging information, which is also emitted in the
DWARF format. The information we rely on is solely the exception
handling information located in the .eh_frame and .eh_frame_hdr
sections. This information is present even in stripped binaries, as it
is critical for exception handling in C++ programs, and even in C
programs, when stack unwinding involves stack frames of both C
and C++ code.

7 CONCLUSION
Defending against advanced code reuse attacks that take advan-
tage of memory disclosure vulnerabilities is becoming increasingly
important. To that end, breaking the ability of attackers to read
the executable memory segments of a process, or even to infer the
location of potential gadgets, can be a significant roadblock. In this
paper, we have achieved the above goal by designing and imple-
menting SECRET, which introduces two novel code transformation
techniques, code space isolation and code pointer remapping. The
former prevents read accesses to the executable memory of the
instrumented code (a protected version of an application’s original
code), while the latter decouples its required code pointers from
that of the original code. Our experimental results demonstrate that
SECRET can protect real-world COTS applications, while incurring
only a modest performance overhead.

REFERENCES
[1] 2013. MWR Labs Pwn2Own 2013 Write-up - Webkit Ex-

ploit. (2013). http://labs.mwrinfosecurity.com/blog/2013/04/19/
mwr-labs-pwn2own-2013-write-up---webkit-exploit/.

[2] 2014. PSI Version 1.1. http://www.seclab.cs.sunysb.edu/seclab/psi/. (2014).
[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

integrity. In CCS.
[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM TISSEC (2009).
[5] Brad Antoniewicz. 2013. Analysis of a Malware ROP Chain. (Oct. 2013). http://

blog.opensecurityresearch.com/2013/10/analysis-of-malware-rop-chain.html.
[6] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-

berger, and Jannik Pewny. 2014. You Can Run but You Can’T Read: Preventing
Disclosure Exploits in Executable Code. In CCS.

[7] Michael Backes and Stefan Nürnberger. 2014. Oxymoron: Making Fine-grained
Memory Randomization Practical by Allowing Code Sharing. In USENIX Security.

[8] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,
Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. 2010.
The Turtles Project: Design and Implementation of Nested Virtualization. In Proc.
of OSDI. 423–436.

[9] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. 2003. Address obfuscation:
an efficient approach to combat a board range of memory error exploits. In
USENIX Security.

[10] Sandeep Bhatkar, R. Sekar, and Daniel DuVarney. 2005. Efficient techniques for
comprehensive protection from memory error exploits. In USENIX Security.

[11] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely Rerandomization for Mitigating Memory Disclosures. In
CCS.

[12] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking Blind. In Security and Privacy.

[13] Kjell Braden, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2016. Leakage-Resilient Layout Randomiza-
tion for Mobile Devices. In NDSS.

[14] Kjell Bradeny, Stephen Crane, Lucas Davi, Michael Franz, and Per Larson. 2016.
Leakage-Resilient Layout Randomization for Mobile Devices. In NDSS.

[15] Derek L. Bruening. 2004. Efficient, transparent, and comprehensive runtime code
manipulation. Ph.D. Dissertation. MIT.

[16] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity. In USENIX Security 15.

[17] Yaohui Chen, Dongli Zhang, Ruowen Wang, Rui Qiao, Ahmed M Azab, Long Lu,
Hayawardh Vijayakumar, and Wenbo Shen. 2017. NORAX: Enabling Execute-
Only Memory for COTS Binaries on AArch64. In Security and Privacy (SP), 2017
IEEE Symposium on. IEEE.

[18] Tzi-cker Chiueh and Fu-hau Hsu. 2001. RAD: a Compile-Time Solution to Buffer
Overflow Attacks. In ICDCS.

[19] Mauro Conti and et. al. 2015. Losing Control: On the Effectiveness of Control-
FlowIntegrity under Stack Attacks. In CCS.

[20] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:
Practical Code Randomization Resilient to Memory Disclosure. In Security and
Privacy.

[21] Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,
Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael
Franz. 2015. It’s a TRAP: Table Randomization and Protection against Function
Reuse Attacks. In CCS.

[22] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2015. The Performance
Cost of Shadow Stacks and Canaries. In ASIACCS.

[23] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2015. The Performance
Cost of Shadow Stacks and Stack Canaries. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security (ASIACCS).
555–566.

[24] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and
Fabian Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-Time)
Return-Oriented Programming. In NDSS.

[25] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection. In USENIX Security.

[26] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender: a
detection tool to defend against return-oriented programming attacks. In ASI-
ACCS.

[27] Lucas Vincenzo Davi, Alexandra Dmitrienko, Stefan Nürnberger, and Ahmad-
Reza Sadeghi. 2013. GadgeMe if You Can: Secure and Efficient Ad-hoc Instruction-
level Randomization for x86 and ARM. In ASIACCS.

[28] Solar Designer. 1997. Getting around non-executable stack (and fix). http:
//seclists.org/bugtraq/1997/Aug/63. (1997).

[29] T. Durden. 2002. Bypassing PaX ASLR protection. Technical Report. Phrack
Magazine, vol. 0x0b, no. 0x3b.

[30] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang,
Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi.
2015. Missing the Point(er): On the Effectiveness of Code Pointer Integrity. In
Security and Privacy.

[31] Bryan Ford and Russ Cox. 2008. Vx32: lightweight user-level sandboxing on the
x86. In USENIX ATC.

[32] Jason Gionta,William Enck, and Peng Ning. 2015. HideM: Protecting the Contents
of Userspace Memory in the Face of Disclosure Vulnerabilities. In Proceedings of
the 5th ACM Conference on Data and Application Security and Privacy (CODASPY).
325–336.

[33] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of Control: Overcoming Control-Flow Integrity. In Security and Privacy.

[34] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and
Georgios Portokalidis. 2014. Size Does Matter: Why Using Gadget-Chain Length
to Prevent Code-Reuse Attacks is Hard. In USENIX Security.

[35] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack Davidson.
2012. ILR: where’d My Gadgets Go?. In Security and Privacy.

[36] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization
of Commodity Software. In ACSAC.

[37] Vadim Kotov. 2014. Dissecting the newest IE10 0-day exploit (CVE-
2014-0322). (Feb. 2014). http://labs.bromium.com/2014/02/25/
dissecting-the-newest-ie10-0-day-exploit-cve-2014-0322/.

[38] Sebastian Krahmer. 2005. x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique. http://www.suse.de/~krahmer/no-nx.pdf. (2005).

[39] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In OSDI.

[40] Lixin Li, James Just, and R. Sekar. 2006. Address-Space Randomization for Win-
dows Systems.

[41] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
PLDI.

[42] the PaX team. 2001. Address Space Layout Randomization.
http://pax.grsecurity.net/docs/aslr.txt. (2001).

[43] Matt Miller, Ken Johnson, Nitin Goel, and Vanegue Julien. 2011. Intra-modular
Displacement Randomization. (2011).

[44] Ben Niu and Tan Gang. 2015. Per-Input Control-Flow Integrity. In CCS.
[45] Ben Niu and Gang Tan. 2014. Modular Control-Flow Integrity. In PLDI.
[46] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-In-Time Compilation Using

Modular Control-Flow Integrity. In CCS.
[47] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano

Giuffrida. 2016. Poking Holes in Information Hiding. In USENIX Security.
[48] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda.

2010. G-Free: defeating return-oriented programming through gadget-less bina-
ries. In ACSAC.

[49] Vasilis Pappas, Michalis Polychronakis, and Angelos Keromytis. 2012. Smashing
the Gadgets: Hindering Return-Oriented Programming Using In-place Code
Randomization. In Security and Privacy.

[50] Mathias Payer, Antonio Barresi, and Thomas R. Gross. 2015. Fine-Grained Control-
Flow Integrity through Binary Hardening. In DIMVA.

[51] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychron-
akis, and Vasileios P. Kemerlis. 2017. kR^X: Comprehensive Kernel Protection
against Just-In-Time Code Reuse. In Proc. of EuroSys. 420–436.

[52] Aravind Prakashm, Xunchao Hu, and Heng Ying. 2015. vfGuard: Strict Protection
for Virtual Function Calls in COTS C++ Binaries. In NDSS.

[53] Manish Prasad and Tzi-cker Chiueh. 2003. A Binary Rewriting Defense against
Stack Based Overflow attacks. In USENIX ATC.

[54] Rui Qiao, , and R. Sekar. 2017. Function Interface Analysis: A Principled Approach
for Function Recognition in COTS Binaries. In Dependable Systems and Networks.

[55] Rui Qiao, Mingwei Zhang, and R Sekar. 2015. A Principled Approach for ROP
Defense. In ACSAC.

[56] Jonathan Salwan. 2012. ROPGadget. http://shell-storm.org/project/ROPgadget.
(2012).

[57] Felix Schuster, Thomas Tendyck, Liebcheny Christopher, Lucas Davi, Ahmad-
Reza Sadeghiy, and Thorsten Holz. 2015. Counterfeit Object-oriented Program-
ming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applications.
In Security and Privacy.

[58] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2011. Q: exploit
hardening made easy. In the 20th conference on USENIX Security Symposium.

[59] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson, and M. Soffa. 2003.
Retargetable and reconfigurable software dynamic translation. In CGO.

[60] Jeff Seibert, Hamed Okhravi, and Eric Söderström. 2014. Information Leaks
Without Memory Disclosures: Remote Side Channel Attacks on Diversified Code.
In CCS.

http://labs.mwrinfosecurity.com/blog/2013/04/19/mwr-labs-pwn2own-2013-write-up---webkit-exploit/
http://labs.mwrinfosecurity.com/blog/2013/04/19/mwr-labs-pwn2own-2013-write-up---webkit-exploit/
http://www.seclab.cs.sunysb.edu/seclab/psi/
http://blog.opensecurityresearch.com/2013/10/analysis-of-malware-rop-chain.html
http://blog.opensecurityresearch.com/2013/10/analysis-of-malware-rop-chain.html
http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Aug/63
http://labs.bromium.com/2014/02/25/dissecting-the-newest-ie10-0-day-exploit-cve-2014-0322/
http://labs.bromium.com/2014/02/25/dissecting-the-newest-ie10-0-day-exploit-cve-2014-0322/
http://www.suse.de/~krahmer/no-nx.pdf
http://shell-storm.org/project/ROPgadget

[61] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In CCS.

[62] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the Effectiveness of Address-space Randomization. In
CCS.

[63] Igor Skochinsky. 2012. Compiler Internals: Exceptions and RTTI. In Recon.
[64] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout Randomization. In Security
and Privacy.

[65] Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee, and David Melski. 2015.
Exploiting and Protecting Dynamic Code Generation. In NDSS.

[66] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte:
Thwarting Memory Disclosure Attacks using Destructive Code Reads. In CCS.

[67] PaX Team. 2002. PaX SEGMEXEC. Technical Report.
[68] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX Security.

[69] Victor van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-
Sensitive CFI. In CCS.

[70] Victor van der Veen, Enes Goktas, Moritz Contag, Andre Pawlowski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A Tough Call: Mitigating Advanced Code-Reuse Attacks At The
Binary Level. In Security and Privacy.

[71] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient software-based fault isolation. In SOSP.

[72] RichardWartell, Vishwath Mohan, Kevin Hamlen, and Zhiqiang Lin. 2012. Binary
stirring: self-randomizing instruction addresses of legacy x86 binary code. In
CCS.

[73] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.
Securing untrusted code via compiler-agnostic binary rewriting. In ACSAC.

[74] Jan Werner, George Baltas, Rob Dallara, Nathan Otternes, Kevin Snow, Fabian
Monrose, and Michalis Polychronakis. 2016. No-Execute-After-Read: Preventing
Code Disclosure in Commodity Software. In Proceedings of the 11th ACM Asia
Conference on Computer and Communications Security (ASIACCS).

[75] David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code Re-
Randomization. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16).

[76] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. 2003. Transparent Run-
time Randomization for Security. Florence, Italy.

[77] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity &
Randomization for Binary Executables. In Security and Privacy.

[78] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar. 2014. A Platform for
Secure Static Binary Instrumentation. In ACM Virtual Execution Environments.

[79] Mingwei Zhang and R. Sekar. 2013. Control flow integrity for COTS binaries. In
USENIX Security.

[80] Mingwei Zhang and R. Sekar. 2015. Control Flow and Code Integrity for COTS
binaries: An Effective Defense Against Real-World ROP Attacks. In ACSAC.

	Abstract
	1 Introduction
	2 Background
	3 System Design
	3.1 Code Space Isolation (CSI)
	3.2 Code Pointer Remapping (CPR)

	4 Evaluation
	4.1 Effectiveness Evaluation
	4.2 Runtime Performance

	5 Related work
	5.1 Control Flow Integrity
	5.2 Code Randomization
	5.3 Code Disclosure Attacks and Countermeasures
	5.4 Dynamic Binary Instrumentation

	6 Limitations
	7 Conclusion
	References

