
Saffire: Context-sensitive Function Specialization against Code Reuse Attacks

Shachee Mishra
Stony Brook University

shmishra@cs.stonybrook.edu

Michalis Polychronakis
Stony Brook University

mikepo@cs.stonybrook.edu

Abstract—The sophistication and complexity of recent ex-
ploitation techniques, which rely on memory disclosure and
whole-function reuse to bypass address space layout random-
ization and control flow integrity, is indicative of the effect
that the combination of exploit mitigations has in challenging
the construction of reliable exploits. In addition to software
diversification and control flow enforcement, recent efforts
have focused on the complementary approach of code and
API specialization to restrict further the critical operations
that an attacker can perform as part of a code reuse exploit.

In this paper we propose Saffire, a compiler-level defense
against code reuse attacks. For each calling context of a
critical function, Saffire creates a specialized and hardened
replica of the function with a restricted interface that can ac-
commodate only that particular invocation. This is achieved
by applying static argument binding, to eliminate arguments
with static values and concretize them within the function
body, and dynamic argument binding, which applies a narrow-
scope form of data flow integrity to restrict the acceptable
values of arguments that cannot be statically derived. We
have implemented Saffire on top of LLVM, and applied it to a
set of 11 applications, including Nginx, Firefox, and Chrome.
The results of our experimental evaluation with a set of
17 real-world ROP exploits and three whole-function reuse
exploits demonstrate the effectiveness of Saffire in preventing
these attacks while incurring a negligible runtime overhead.

1. Introduction

Despite the continuous deployment of exploit mit-
igations, such as address space layout randomization
(ASLR) [54] and control flow integrity (CFI) [1], code
reuse [20, 37, 51, 52, 64] is still the most widely used
technique for achieving arbitrary code execution through
the exploitation of memory corruption vulnerabilities.

The unpredictability introduced by ASLR can be lifted
by leveraging a memory disclosure vulnerability to leak
the base address of code pages—and even scan them
dynamically [66]—to pinpoint the addresses of instruction
sequences that can be reused to construct a return-oriented
programming (ROP) [64] attack payload. The confinement
of indirect control flow transfers to only legitimate targets
enforced by CFI restricts significantly the instruction se-
quences that an attacker can reuse, but as recent works have
shown, successful exploits can still be constructed using
solely legitimate code fragments and control flow transfers.
This can be achieved by transferring control to legitimate
call sites in the middle of functions [13, 23, 31, 73], reusing

whole functions [19, 62], or through other more advanced
techniques, depending on the vulnerability [12, 61].

In addition to software diversification and control
flow enforcement, recent efforts in the defense front have
also focused on alternative approaches that can further
strengthen existing mitigations. In particular, the broader
area of attack surface reduction has seen a renewed
interest [33, 34, 42, 46, 47, 49, 50, 57, 69, 77, 78, 79], given
the benefits of removing unneeded code or functionality.
Besides neutralizing any (still undiscovered) vulnerabilities
in the unneeded code, removing code from a process’
address space means that i) fewer instruction sequences
are available to an attacker for building ROP payloads
(although the remaining ones are often still enough), and
ii) CFI enforcement is simplified due to fewer indirect
branches and branch targets that need to be checked.

Shared libraries, in particular, contribute a large amount
of unused code, as applications typically import only a
fraction of the functions exported by each library. Several
library customization techniques thus focus on removing
unneeded (i.e., non-imported) functions from loaded li-
braries [2, 50, 57, 69]. However, several critical functions
(e.g., related to memory allocation, process management,
and file system operations) are unlikely to be removed, as
they are typically needed by the application itself.

To mitigate this problem, library customization can be
complemented by API specialization [49], which restricts
the interface of the remaining critical API functions
according to the actual needs of a given program. The
main intuition behind API specialization is that essential
functionality for malicious code (e.g., giving “execute”
permission to some memory area that contains second-
stage shellcode) may not be required by the application.

Shredder [49] implements this approach by statically
analyzing Windows applications at the binary level, and
deriving application-wide policies for critical system func-
tions. Although Shredder’s policies are effective in blocking
ROP exploits in many applications, there is significant
room for improvement due to two major limitations: i) stat-
ically deriving the possible values of function arguments
at the binary level is complicated due to the imprecision
of code disassembly and control flow graph extraction,
and ii) the values of many arguments cannot be statically
derived at all, as they become known only at run time.

Aiming to broaden the scope of API specialization
and further restrict the extent to which an attacker can
influence the arguments of critical system functions, in
this paper we present Saffire, a compiler-level approach
for context-sensitive function specialization and hardening.
For each call site of a critical function, Saffire creates a

custom version of the function with a restricted interface
that can accommodate the needs of only that particular
call site. This is achieved by performing inter-procedural
backwards slicing and data flow analysis in a best-effort
way to identify the source of each argument, and concretize
its value (or set of possible values) in the body of the
customized function.

Besides static arguments, however, a key novelty of
Saffire is that it also protects dynamic arguments, such
as file descriptors, memory addresses, and user-supplied
inputs, which become known only at runtime—based on
our evaluation, about half of the arguments of critical
functions fall into this category, and are ignored by previous
works. To protect such arguments, we introduce dynamic
argument binding, which applies a narrow-scope form of
data flow integrity to restrict the argument values permitted
at runtime for a given call site, to only those that were
originally assigned at their respective initialization points.

We implemented a prototype of Saffire for Linux
applications as a transformation pass on top of LLVM,
and experimentally evaluated it with a set of real-world
code reuse exploits and applications, which demonstrate its
effectiveness and practicality. In particular, the lightweight
nature of its policy checks introduces negligible perfor-
mance overhead, while it blocks all 17 ROP payloads tested
in all but two of the 11 applications considered. We also
demonstrate how Saffire can protect against sophisticated
whole-function reuse attacks that aim to bypass CFI, by
evaluating it against three previously published proof-of-
concept exploits against Nginx [23], Firefox [62], and
Chrome [19].

In summary, we make the following main contributions:

• We propose a compiler-level defense-in-depth miti-
gation against code reuse attacks, which introduces
static and dynamic argument binding to restrict the
values that can be passed to critical API functions.

• We implemented Saffire, a prototype of the pro-
posed approach on top of LLVM, and applied it to
a set of 11 applications, including Nginx, Firefox,
and Chrome.

• We experimentally evaluated Saffire with a set of 17
real-world ROP exploits and three proof-of-concept
whole-function reuse exploits, and demonstrate its
effectiveness in preventing these exploits while
incurring negligible runtime overhead.

2. Background and Motivation

The main motivation behind the proposed approach is
the hypothesis that the system calls made by an application
are semantically different from the ones made by malicious
code. Specializing the exposed system API according to
an application’s actual needs can thus hinder attacks that
rely on functionality that is not used by the application.
In Linux, the system call interface is exposed to user
programs through the C Standard Library (libc). Although
libc exports more than 1,400 functions, programs typically
use only a fraction of them [49, 50, 57]. More importantly,
even for the functions that are used, only part of their code
is executed, depending on the subset of their functionality
actually used by the application [49].

2.1. Code Reuse Attacks and Function Reuse

Since their introduction in the form of return-to-
libc [20], code reuse attacks have been continuously evolv-
ing in response to an increasing number of deployed exploit
mitigations. Return-oriented programming (ROP) [37, 64]
and its variations [11, 15, 66], are currently the de facto
method of achieving arbitrary code execution through the
exploitation of memory corruption vulnerabilities. Typical
ROP exploits consist of a first-stage payload that aims to
bypass non-executable memory protections and enable the
execution of a second-stage shellcode. To achieve its goal,
the first phase relies on existing instructions (ROP gadgets)
to interact with the OS (through system calls), e.g., for
allocating executable memory or accessing the file system.

Recently, there has been an emergence of more ad-
vanced code reuse attacks that aim to bypass control flow
integrity (CFI) [1] defenses by reusing longer instruction
sequences or even whole functions that do not violate the
enforced control flow policy. Recent developments [13,
23, 62] have shown that instead of using just a set of
instruction sequences, using full functions as gadgets can
lead to arbitrary code execution.

2.2. Challenges of API-level Specialization

Some code debloating techniques focus on removing
unused functions from imported libraries, reducing this
way the amount of code that can potentially take part in
a code reuse attack. Such library debloating techniques
can be applied at either the binary [2, 50] or the source
code [57] level. Upon the application of library debloating,
API specialization [49] moves one step further and restricts
the allowable argument values that can be passed to the
remaining system API functions that cannot be removed
by library debloating. Instead of removing code, a runtime
interposition layer verifies the passed arguments against
a statically determined set of allowable values. This set
is created by analyzing the binary to identify library
functions and control flows within them that are required
by the application, and then in a best-effort way derive
the argument values used across their call sites.

Binary vs. Source Code Analysis: Prior API spe-
cialization approaches [49] face several challenges. First,
operating at the binary level impedes their ability of
accurately finding all valid control flow paths, and more
importantly, performing accurate data flow analysis to
identify statically determined argument values. Due to the
small number of general purpose registers, their values
are constantly overwritten, hindering argument extraction
even further. In this work, we perform more accurate and
comprehensive data flow analysis at the source code level,
to expand the set of known argument values.

Context-sensitive Policies: Second, finding known
arguments across all calling contexts of a function is not
always possible. Prior solutions do not distinguish one call
site of a library function from another, and the policies
generated are universally applied for the whole program.
Although this makes runtime policy enforcement simpler,
it misses many enforcement opportunities. For example,
in case a certain argument has its value known across all
but one call site, an application-wide policy would still
consider it unknown.

TABLE 1: Number of known argument values across all
call sites of some libc functions for Nginx.

Library Function Call Known Values

Sites Arg1 Arg2 Arg3 Arg4

open64() 21 0 19 18 21
write() 23 16 11 12 −
read() 3 0 0 1 −

pread64() 6 0 0 3 4

A few examples of such cases are shown in Table 1,
which reports the number of known argument values across
all call sites for some of the libc functions used by Nginx.
For instance, open64() is invoked by 21 call sites, and
although its fourth argument is known across all call sites,
the same is not true for the second and third arguments,
the values of which are known for all but two and
three contexts, respectively—application-wide policies thus
cannot be generated for them. This opens up the possibility
for attackers to reuse any of the available call sites with
their desired argument values, even though for most call
sites this could be prohibited. Creating application-wide
policies thus misses the opportunity to enforce stricter
policies for certain arguments that are known only in some
(but not all) calling contexts. In this work, we address this
issue by deriving and enforcing context-sensitive policies,
which restrict further the possibilities of call site reuse as
part of malicious code.

Dynamic Function Arguments Finally, and more
importantly, a significant challenge faced by API-level
specialization is that the actual values for many function
arguments cannot be derived statically at all. User inputs,
environment variables, file names, memory addresses, and
other types of arguments will only become available at
run time. Current systems mark arguments that hold such
dynamic values as unknown. Consequently, exploit code
can still rely on manipulating those arguments despite
the policies enforced by systems like Shredder [49]. In
this work, we address this issue by introducing a form
of narrow-scope data flow integrity for dynamic function
arguments to prohibit attackers from supplying arbitrary
values as part of code reuse exploits. As demonstrated by
our experimental evaluation results, our approach roughly
doubles the number of arguments that can be protected,
compared to using only statically-derived policies.

2.3. Threat Model

We assume an attacker who is able to hijack the control
flow of a process and execute malicious ROP code (and
possibly second-stage shellcode), which interacts with the
OS to achieve the attacker’s end goal (e.g., remote control,
DLL injection, malware installation). In that sense, data-
only attacks (e.g., modifying a user authentication variable
without using any system calls), are out of scope.

We also assume that common exploit mitigations,
such as non-executable memory and ASLR, have been
deployed on the system. Although Saffire offers the same
protection irrespective of these defenses, as a defense-
in-depth approach, it is mostly meant to be used in
combination with other defenses to collectively raise the
bar for successful exploitation, and prevent circumvention.

Similarly, Saffire’s protection becomes meaningful only
after existing software debloating techniques such as library
debloating [2, 50, 57] have first been applied. As Saffire’s
policy enforcement is performed by user-level code, we
assume that fine grained CFI is employed, so that an
attacker cannot simply bypass policy checks (e.g., by
jumping over the check, or even invoking system calls
directly). Alternatively, other hook protection mechanisms
such as API checkpointing [53] can be employed.

3. Function Specialization

Our main goal is to create multiple specialized versions
of API functions that can only be called from specific
locations within the application. Exploit code can use any
of the functions in the address space to carry out malicious
operations not intended by the application. Specializing
functions according to their invocation points reduces the
flexibility of an attacker in reusing them.

Control flow integrity confines the possible invocation
points of API functions to only legitimate call sites within
the program. On top of CFI, Saffire then confines further
the possible argument values that can be supplied to a
function to the absolutely needed ones by a given calling
context. For direct function invocation, the calling context
corresponds to the call site of a given function. For indirect
function invocation through function pointers, the calling
context corresponds to the union of all possible call sites
of a given function pointer (more details on this case
are provided in Section 4.1). For a given calling context,
Saffire creates a unique custom function that will be used
solely by that particular context.

Saffire’s custom functions “bind” arguments to their cor-
responding calling contexts. Every call to a library function
is now routed through a custom function wrapper which
first verifies the supplied arguments, and then invokes the
original library function after the verification is successful.
We should note that the use of wrapper functions is not
mandatory, and an alternative design could just create as
many specialized copies of the original function as needed,
and then completely remove the original function from
the address space (e.g., using existing library debloating
techniques [57]). We just chose this approach to simplify
our engineering effort. From a security perspective, both
approaches are equivalent, since the enforced CFI policy
still confines the allowable entry points to only the original
call sites of the program, i.e., an attacker cannot bypass
the wrapper and jump straight to the library function.

Creating specialized versions of library functions re-
quires precisely identifying as much of the state of their
arguments as possible for each calling context. We observe
that argument values broadly fall into two categories:
i) static, deterministic values that can be derived from
analyzing the code, and ii) values that are dynamically
generated at runtime. In the example below, ptr and
size can only be known at run time, while prot can be
determined statically, as it is a hard-coded value:

char *ptr = mmap(..); // Dynamic argument
int size = getpagesize(); // Dynamic argument
int prot = 2; // Static argument
mprotect(ptr, size, prot);

Custom Function Definitions

compiler, linker

Source
code

Bitcode
(.bc)

Li
br

ar
y

C
al

l S
pe

ci
al

iz
at

io
n

Specialized Application

@size_shadow = private constant i32 10

define i64 @custom_write1(i32, i8*) {
…
}

define i64 @custom_write2(i32, i8*, i64){
switch %2[

Case 1: …
Case 2: …

…
}

…
call i64 @custom_write1(..)
…
call i64 @custom_write2(..)
…

Constant Global Size of Shadow Memory

Updated Contexts

Custom Function Definition

custom_write1(arg1, arg2){
load gs:(48), shadow1
cmp shadow1, hash(arg1)
…
load gs:(56), shadow2
cmp shadow2, hash(arg2)
…
_write(arg1, arg2, 100)

}

(48) 0xdeadbeef

(56)
..

Application Loader

_write(){
…

}

(0)
..

(40)

Context Identification

Static Analysis

Static
Argument
Binding

fd = ...
store hash(fd), gs:(48)
...

call custom_write1(fd, buf)

Function Specialization

Specialized Process

Dynamic
Argument
Binding

Shadow Memory

custom_write1(
111, buf);

arg_mismatch_handler(){
Alert(“ Violation ”)

}

Figure 1: Overview of the proposed approach. Saffire identifies the call sites of specific library functions and performs
static analysis to instrument the code with static and dynamic argument binding in the combined bitcode file. At runtime,
dynamic values are hashed and copied into a shadow memory at creation time, and are compared with the supplied
arguments at verification time inside the customized function.

Static and dynamic arguments have to be treated in
different ways while specializing functions. In both cases,
static code analysis can be used to identify the point
where the values are generated. For static arguments, their
actual value (or set of possible values) can be enforced
by constructing a set of corresponding static rules, to
which we refer as static argument binding. For dynamic
arguments, however, this is not possible, since their values
may depend on external factors, such as user input and OS
state. Instead of leaving such arguments unprotected (as
done by previous API specialization approaches [49]), we
have developed an alternative protection mechanism called
dynamic argument binding. Using a narrow-scope form of
data flow integrity, dynamic argument binding restricts the
argument values permitted at runtime to only those that
were created at their respective initialization points.

Figure 1 shows an overview of our approach. The
core of Saffire’s static code analysis and instrumentation
is performed as an optimization pass in LLVM, which op-
erates on a combined bitcode file generated after link time
optimization. In this example, the specialized application
contains two call sites of the write() function, for which
Saffire creates two customized variants. According to the
number of statically known arguments, the actual number
of input arguments to these functions may be different. To
perform dynamic argument binding, the specialized process
keeps a 64-bit hash of dynamic argument values (at the
time of their creation) to a shadow memory area, which
are then used to verify the actual input arguments. In this
example, custom_write1() first compares the hash
values of its two arguments with their respective values in
the shadow memory, and proceeds to call write() only
if the verification is successful. When attackers attempt to
reuse the function with a different set of arguments, the
verification fails and control is redirected to a handler.

3.1. Static Argument Binding

For a given calling context, an argument is considered
known if all its possible values can be determined statically.

There are three main types of known arguments:

1) Hard-coded arguments: Arguments such as flags
or buffer sizes, are often known in advance.

2) Value sets: Multiple control flow paths may set
different values to a given argument variable, all
of which can still be identified statically.

3) Value ranges: For certain calling contexts involv-
ing loops, the start, limit, and increment values of
an integer variable can be determined statically,
resulting in a range of possible values.

Static argument values are defined somewhere on
the path leading up to call instructions. The analysis
phase of Saffire follows these control paths backwards,
starting from the call site, and tries to identify the value(s)
assigned to a given argument. The analysis continues over
function boundaries using inter-procedural analysis when
a tracked variable is passed from a previous caller to the
current function. We leverage the control flow information
available at the intermediate representation level to find
predecessors for function calls. We also use address-taken
information to find specific instances of functions assigned
to pointers. For each usage of a given function, the analysis
continues traversing backwards across functions until either
the value is found or we reach the beginning of main().
For example, when analyzing the call site of execve()
in Nginx, the analysis reaches main(), concluding that
the first execve() argument is a user-provided value.

The compiler front-end creates a set of object files,
which are then linked to create the final executable after sev-
eral rounds of optimizations. A particularly important one
for our purposes is constant propagation, which identifies
constants assigned to variables, propagates them through
the control flow graph, and substitutes their values at the
points where variables are used. This optimization reduces
the stack space requirements of the process, while also
reducing unnecessary arithmetic computations at runtime.

Saffire’s analysis goes deeper to find sets of possible
values for each calling context. By performing our analysis
on top of constant propagation, we are able to expand the

TABLE 2: Static and dynamic argument binding examples.

Original Specialized

St
at

ic
B

in
di

ng
:

Si
ng

le
A

rg
.

a = 2;
func1(a,NULL);

custom_func1();

custom_func1(){
func1(2, NULL);

}

St
at

ic
B

in
di

ng
:

Se
t

of
A

rg
s.

if(x)
a = 2

else
a = 3

func2(a);

if(x)
a = 2

else
a = 3

custom_func2(a);

custom_func2(int a){
if(a==2 || a==3)

func2(a);
}

D
yn

am
ic

B
in

di
ng

fd = open(....);
func3(fd);

fd=open();
shadow[1] = hash(fd);
custom_func3(fd);

custom_func3(int fd){
if(hash(fd) == shadow[1])

func3(fd);
}

set of possible known values further. As an example, the
first two parts of Table 2 list two simple call sites and their
specialized versions. In the upper part, constant propagation
would hard-code the integer value 2 passed as an argument
to func1, but cannot do so for func2 (middle part), as
argument a may take one of two possible values. Saffire
derives the set of possible values for this calling context
and enforces a corresponding policy beyond what constant
propagation alone could achieve.

Once all static argument binding policies have been
generated, Saffire creates instances of corresponding spe-
cialized functions and adds their definitions in the program.
To enforce static argument binding, these new functions
either verify at runtime the passed arguments according
to a set of known values (for value set or value range
arguments, e.g., middle row in Table 2), or omit the
arguments altogether (for hard-coded arguments, e.g., upper
part in Table 2). Finally, all call sites are adjusted to invoke
the newly added specialized versions.

3.2. Dynamic Argument Binding

Although many arguments can be statically derived,
based on our experimental evaluation, we observed that
about half of the arguments across the tested library
functions become known only at run time. These mostly
correspond to user input, memory or file operands, en-
vironment variables, and other OS-related states. As an
example, the value of fd in func3() in the bottom part
of Table 2 will depend on the file descriptor number the
OS will pick. To ensure that this particular call site will not
accept arbitrary values for argument fd, dynamic argument
binding ensures at runtime that the only acceptable value
will be the one returned by open().

Dynamic argument binding is in essence a narrow-
scope form of data flow integrity, enforced between variable
definitions and their use as input arguments. These dynamic
variables typically remain live for short periods, and are
relatively easier to track compared to full-program data flow
integrity. Similarly to the analysis used for static argument
binding, we perform backwards slicing to determine the
instruction where the argument value was defined or last

char buf[] = “text to write”;
FILE fp = fopen(argv[1], “w”);
…
if(fp){
 fwrite(buf, strlen(buf)+1,

 1, fp);
}

argv
[0]
[1]
..

myFile.txt

hmacFunction(ptr, len)

strlen(“myFile.txt”)

Shadow
Value

0x340x1A.. sizeof(struct(FILE))

Figure 2: Each shadow argument corresponds to the HMAC
of the argument’s actual value. Here, for fwrite(), the
input FILE struct is read from memory and is passed to
the HMAC function along with the size of the struct.

modified (whichever is later), and instrument that location
to generate a hash of the data and save it in a shadow
memory location. The specialized function reads the 64-
bit hash from the shadow memory and verifies the input
argument against it by hashing the received input argument,
before proceeding with the actual library call.

Each such dynamically defined variable has a pre-
defined index reserved for it in the shadow memory.
As this transformation is performed at compilation time,
these indexes are determined and inserted into the binary
statically. To ensure that the attacker is unable to write
arbitrary values to shadow variable, the shadow memory
area is kept isolated (see Section 3.2.2). This method can
be used for memory addresses, file descriptors, pointers
to variables, and other arguments of a similar nature.

Regarding memory address arguments, although these
are mostly assigned at run time, sometimes they receive
a NULL or other constant value that can be determined
statically (e.g., as shown in the upper part of Table 2).
This means that for some call sites of a given function,
we are able to extract these otherwise dynamic arguments
during static analysis, in which case they are protected
through static argument binding, while for the rest they are
protected through dynamic argument binding. This “hybrid”
treatment of arguments cannot be applied for pointers and
addresses that may be reassigned or have their values
change from declaration to usage time if they are passed to
other functions in between. A more sophisticated analysis
could track the use of pointers across multiple functions
and derive better bindings, but we leave this optimization
as part of our future work.

An overview of the shadow argument generation pro-
cess is shown in Figure 2. We use an HMAC (hash-based
message authentication code) with SHA-256 to generate a
64-bit shadow value for dynamic arguments. The secret key
for the HMAC is generated at start-up time and is saved at
index 0 in the shadow memory (a dedicated register could
also be used for this purpose). In this example, the input to
fopen() is a user-supplied filename. The pointer to the
filename and its length are supplied to the HMAC function
for generating the argument’s shadow value. This value
is compared with the shadow copy that was generated
using the same process at the prior point of the argument’s
definition (not shown here).

3.2.1. Function Pointers. When function pointers are
used, the same originating variable can be used as an
argument to any of the potential target functions. In
such cases, every such definition must be bound to every
target function. This is explained in Figure 3, where the

void (*fun_ptr)(int, void*, int);
char *buf = …;
int fd = open(…);
…
if(x){
 fun_ptr = read;
}
else{
 fun_ptr = write;
}
(*fun_ptr)(fd, buf, 20);

2fd/read

1buf/read
4fd/write

3buf/write

Shadow
Variables

void (*fun_ptr)(int, void*, int);
char *buf = …;
int fd = open(…);
…
if(x){
 fun_ptr = read;
}
else{
 fun_ptr = write;
}
(*fun_ptr)(fd, buf, 20);

2fd/read

1buf/read
4fd/write

3buf/write

Shadow
Variables

Figure 3: For function pointer arguments, dynamic binding
creates shadow copies for every pair of originating variable
and target function. Here, read and write are both
possible targets of func_ptr, and the buf and fd
variables are both passed as arguments, resulting in four
different shadow variables, one for each pair.

definitions of fd and buf are assigned two shadow loca-
tions each, one for each target (read() and write()).
Although the same shadow copy could be used for all target
functions, to simplify the implementation, we choose to
assign a different shadow copy for each target function.

3.2.2. Shadow Memory Protection. To prevent the at-
tacker from tampering with the shadow copies, the shadow
memory must be isolated. Intel’s Memory Protection
Keys (MPK) technology [18] provides an interface for
lightweight user-level memory protection switching for
individual pages, which can be used for in-process memory
isolation [71]. Despite the fact that MPK is only available
in very recent processors, managing permissions per page
means that we should either devote one page per variable,
or group multiple copies into the same page.

To avoid the ensued complexity and to maximize
compatibility, we opted for the use of memory hiding
to isolate the shadow memory. Similarly to previous
works [43], we devote one of the unused segment registers
for keeping the base address of the shadow memory. All
related operations use the segment register as part of the
indexing calculation without ever leaking its value into
memory, keeping this way the location of the shadow
memory secret from the attacker.

We should stress that the choice of the isolation mech-
anism used to protect the shadow memory is completely
orthogonal to Saffire’s operation, and if reliance on memory
hiding is a concern, then MPK-based isolation [71] or any
other similar mechanism can be used instead.

3.2.3. Multi-threaded Programs. For multi-threaded pro-
grams, every thread has its own shadow memory, which
is updated according to variable definitions. When a new
thread is created, it allocates memory to be used as its
shadow memory. To ensure that each thread has access
to variables declared by its parent process, the shadow
memory of the parent is copied to thread’s shadow memory
during thread creation, as shown in Figure 4. On every
iteration, the parent process always uses the same shadow
memory, while every thread gets a new shadow memory
instance, initially copied from the parent.

parent()

thread_create()

handler()

fd = open(file[i],...)

n = read(fd, …)

i
+
+

Variable
Binding [fd]

i = 1 i = 2 i = 3

Shadow Memory

fd = 8 fd = 9 fd = 10
Parent Thread

Thread1

Thread3

Thread2

time

fd = 10

fd = 9

fd = 8

M
e
m
o
r
y

S
p
a
c
e

Figure 4: Shadow memory for multi-threaded applications.
In the parent process, fd is returned by open(), which
is then passed to read() in handler(). There is only
one path, thus one shadow variable for fd. Newly created
threads contain an up-to-date shadow copy of fd, as their
shadow memory is initially copied from the parent.

4. Implementation

We have developed Saffire, a prototype of the pro-
posed approach for Linux 64-bit ELF binaries. Saffire is
implemented as a transformation pass on top of LLVM-8,
and has been tested on 64-bit Ubuntu 19.04. The input to
Saffire is a combined bitcode file created after link-time
optimization.

4.1. Static Argument Binding

Saffire performs backwards data flow analysis at the IR
level, starting from every call site of each protected API
function. The process begins by identifying the invocation
points of functions, which include i) direct calls, and
ii) indirect calls through function pointers.

Note that in the latter case, there is no need to determine
all possible targets of indirect calls. Instead, for a given
function assigned to a function pointer, all its possible uses
(call sites) are identified through LLVM’s def-use chains.
The custom function assigned to the function pointer is then
specialized according to the union of all possible call sites,
which we treat as its calling context. In the example below,
this means that custom_foo() and custom_bar()
will accept both 100 and 200 as allowable argument values.

int (*fp)(int);
if (x) {

fp = foo; //assigned to custom_foo(int)
}
else{

fp = bar; //assigned to custom_bar(int)
}

fp(100); //calls custom_foo or custom_bar
...
fp(200); //calls custom_foo or custom_bar

The type of each argument is identified using LLVM’s
Value::getType(). Integer arguments are extracted
directly to obtain their current value. If an argument’s value
is a constant, dyn_cast<ConstantInt>() returns
true. At this time, we also start preparing the specialized
function for this calling context. Constant values are never
passed via arguments, but are directly used within the body
of the specialized function. NULL values are detected
using dyn_cast<ConstantPointerNull>() and
are also removed from the input arguments.

4.2. Dynamic Argument Binding

For each dynamic argument, we first identify the
instruction where it was defined or last modified (using
the same inter-procedural analysis used in static argument
binding), and instrument the code at this point to create
its shadow value. At invocation time, this value will be
compared with the HMAC of the current input inside the
specialized function, before proceeding to the library call.

Struct members in LLVM-IR are accessed using the
getelementptr instruction. All def-use chains of the
structure are followed to find the last instruction where
the struct is written to. A getelementptr followed by a
store indicates that a struct member is being written to.
Dynamic binding follows right after the instruction.

When the point of last assignment to a pointer is
followed by another function call with this variable as
an argument, we mark the argument as unknown. This is
because its target address may be updated by the callee,
and in our current implementation we do not perform
forward tracking across functions. In the example below,
buf is initialized to buf_old as its last modified value
before write(), but func(buf) is called between the
definition and use of buf. This function may change the
value of buf, and thus we mark buf as unknown.

char *buf = buf_old;
int n = func(buf);
write(fd, buf, 20);

4.2.1. Shadow Memory. The integrity of dynamic argu-
ment binding relies on ensuring that only pre-specified
writes are allowed to the shadow memory. An attacker
must not have the ability to overwrite this memory with
malicious variable values and bypass the verification. In
our current implementation we rely on memory hiding to
prevent the attacker from accessing the shadow memory.
We use segment register %gs, which is not used in user
space by any binaries or libraries, to store the base address
of the shadow memory region. The same can be done with
any other register not used by the applications in consider-
ation, but we choose %gs to maximize compatibility with
existing libraries and programs.

The size of the shadow memory can be calculated
in advance based on the number of arguments that re-
quire dynamic protection, and the location of the region
is selected at random within the vast process address
space. We assign one 64-bit slot for each argument that
needs protection. Then the segment descriptor is allocated
and its various fields (e.g., base address and limit) are
initialized accordingly. Finally, using the system call
modify_ldt(), this segment descriptor is inserted into
the Local Descriptor Table. As modify_ldt() does
not have a libc wrapper, this call is directly made using
syscall(__NR_modify_ldt).

Once the segment selector is loaded to %gs, it remains
there unmodified for the entire duration of the process.
Every dynamic variable for every calling context has
a pre-defined index in the shadow memory. The target
index is specified using %gs:(offset). A linear address
calculation module extracts the base address from the
descriptor indexed by %gs and adds the appropriate offset
to obtain the address of a given argument’s shadow copy.

4.2.2. Shadow Arguments. We use Hash-based Message
Authentication (HMAC) using SHA-256 to create a 64-bit
digest of the entire data object passed as an argument. For
arguments passed by value (e.g., integer arguments), the
hash is directly created. For arguments passed by reference
(e.g., strings, arrays, lists, structs), length information
depends on the particular object type (strings are NULL-
terminated, the size of structs is known based on their type,
and so on). For complex objects containing pointers to
other second-level objects, only the parent object (including
all pointer values) is hashed. As we discuss in Section 6,
this is not a major limitation, as the security-critical API
functions we are concerned with (see Section 5.1) involve
simple objects, such as strings, pointers to raw memory,
and file descriptors. Recursive hashing can be implemented
to provide protection for complex objects if needed.

In our current prototype, the HMAC implementation
is part of an external library that is dynamically linked.
Functions to create, store, and verify the HMAC of an input
argument thus involve making a library call. Even with
these additional library calls, our experimental evaluation
shows that the overhead remains negligible.

4.3. Function Specialization

The static analysis phase returns a map, in which each
key corresponds to an argument and each value to a set of
possible argument values or an identifier to the instruction
where dynamic argument binding is performed. Specialized
functions are created by i) removing single assignment
variables from input arguments, ii) adding verification
checks for variables with multiple possible values, and
iii) performing dynamic binding. The specialized function
is inserted into the IR and a call instruction to it is added
immediately after the original call to the library function.
Next, all the uses of the return value of the original call are
replaced with the return value of the specialized function
using replaceAllUsesWith(). Finally, the original
call instruction is removed using eraseFromParent().

To prevent attackers from jumping over the specialized
wrapper functions, we enable LLVM’s CFI support. This
ensures that attackers cannot divert execution to arbitrary
addresses within the text section, and are restricted to
only use full functions (e.g., using COOP attacks [62]).
We use the -fsanitize=cfi option to enable strict
cast checks and type checking for indirect, virtual, and
non-virtual calls.

Table 3 presents examples of a transformed call to
mmap() at the source code and IR levels for the three
cases mentioned in the previous section. In the first case
(Table 3(a)), arguments 1, 3, 4, and 6 have known imme-
diate values, while arguments 2 and 5 remain unknown
(i.e., backwards analysis fails to locate their initialization
points), and thus custom_mmap takes only these two
arguments. In the second example, backwards analysis
identifies that the possible values for the second argument
are {2, 3}, and thus the wrapper function checks the second
argument of mmap() against these two values. Finally,
the third example presents a simplified version of the IR
transformation required for dynamic argument binding of
the fifth argument (offset). The argument value %11 is
hashed and the generated hash is copied into the shadow
memory. Inside the custom function, the shadow variable

TABLE 3: Example of function specialization for a call to mmap() (a) with four known arguments; (b) with a set of
known values {2, 3} for the second argument; and (c) with dynamic argument binding for the fifth argument. The upper
part shows the C code after transformation, and the lower part shows the corresponding LLVM IR code.

(a) Static argument binding (b) Static binding with set of values (c) Dynamic argument binding

Calling Context
ptr = custom_mmap(len, offset)

New Function
void* custom_mmap(int length,

int offset) {
return mmap(null, length,
1, 32770, offset, 0);

}

Calling Context
ptr = custom_mmap(len, offset)

New Function
void* custom_mmap(int length,

int offset) {
switch (length) {

case 2:
case 3:

return mmap(null, length,
1, 32770, offset, 0);

}
return -1;

}

Calling Context
offset = get_offset()
shadow1 = hash(offset)
ptr = custom_mmap(len, offset)

New Function
void* custom_mmap(int length,

int offset) {
if (hash(offset) == shadow1) {
return mmap(null, length,
1, 32770, offset, 0);

}
return -1;

}

Calling Context
%17 = call i8* @custom_mmap(

i64 %16, i32 %11)

New Function
define i8* @custom_mmap(i64, i32){
entry:

%res = call i8* @mmap(
i8* null, i64 %0, i32 1,
i32 32770, i32 %1, i64 0)

ret i8* %res
}

Calling Context
%17 = call i8* @custom_mmap(

i64 %16, i32 %11)
New Function
define i8* @custom_mmap(i64, i32){
entry:
switch i32 %0, label %4 [

i32 2, label %3
i32 3, label %3

]

; <label>:3: ;preds =%entry
%res = call i8* @mmap(

i8* null, i64 %0, i32 1,
i32 32770, i32 %1, i64 0)

br label %4

; <label>:4: ;preds =%entry,%2
%6 = phi i32 [%res, %3],

[-1, %entry]
ret i8* %6

}

Calling Context
%11 = call get_offset()
%12 = call hash(i32 %11)
store i64 %12 i32* %gs:(1)

%17 = call i8* @custom_mmap(
i64 %16, i32 %11)

New Function
define i8* @custom_mmap(i64, i32) {
entry:
%3 = load i64, %gs:(1)
%4 = call hash (i32 %1)
%5 = icmp eq i32 %3, %4
br i1 %5, label %6, label %7

; <label>:6: ;preds =%entry
%res = call i8* @mmap(

i8* null, i64 %0, i32 1,
i32 32770, i32 %1, i64 0)

br label %7

; <label>:7: ;preds =%entry,%6
%8 = phi i32 [%res, %6],

[-1, %entry]
ret i8* %8

}

is read to a local variable and the hash of the incoming
argument value is compared against it. The library call
proceeds only if these two values match. If the comparison
fails, the control moves to an argument mismatch handler
and returns -1.

5. Evaluation

In this section, we evaluate Saffire in terms of effec-
tiveness against real-world exploits and runtime overhead.
All experiments were performed on a system equipped
with an Intel Core i7-6700 CPU, 16GB RAM, 256GB
SSD, running 64-bit Ubuntu 19.04.

5.1. Data Set

To evaluate the effectiveness of Saffire against realistic
attacks, we collected 17 Linux-based ROP exploit samples
from Exploit-DB and individual real-world and proof-of-
concept exploits—a detailed list of all exploits is provided
in the Appendix. Given that implementing the entire
malicious code functionality using ROP is quite complex
(but not impossible), most of the available ROP exploits
use only a few system calls (e.g., to spawn a shell or to
enable the execution of a second-stage shellcode). In either
case, the ROP code has to interact with the OS by invoking
one or more system functions through library calls. As an
additional case study, we evaluated Saffire against proof-of-
concept COOP [19, 62] and Control Jujutsu [23] exploits,
which rely on whole-function reuse to bypass CFI defenses.

We tested Saffire with a diverse set of 11 popular
applications, including servers (Nginx, Lighttpd, Vsftpd),
various utilities (Gzip, OggEnc, OggDec, PuTTY, Ctags),
as well as OpenSSH, Google Chrome, and Mozilla Firefox.
The set of ROP exploits used for our evaluation are usually
meant for specific applications, but because they all rely on
libc functions to interact with OS, we make the worst-case
assumption that each of them can be used against each of
the applications tested—although an exploit meant for a
different application will not work, its ROP payload, and
in particular the library calls it makes, can equally well
be used against any application.

For most of our analysis (except the overhead analysis),
we identified a set of 15 critical system library functions
used by in-the-wild and proof-of-concept exploits. In
addition to the ROP payloads in our set of exploits
(mentioned above), we studied shellcode samples from
sources such as Metasploit, Exploit-DB, and academic
research, to finalize this set of functions. These calls include
mmap, mmap64, mprotect, open, open64, access,
execve, fstat, read, write, clone, pread64,
fopen, fwrite, fseek. For performance and memory
overhead analysis, we perform two rounds of experiments
by hardening i) the above 15 functions, and ii) all libc
functions. Although from a security perspective protecting
all functions is not necessary, as most of them cannot
carry out harmful operations, we wanted to stress-test our
implementation with a worst-case scenario.

R
un

tim
e

O
ve

rh
ea

d(
%

)
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

502.gcc_s

500.perlbench_s

505.mcf_s

520.omnetpp_s

523.xalancbmk_s

525.x264_s

531.deepsjeng_s

541.leela_s

548.exchange2_s

603.bwaves_s

607.cactuBSSN_s

619.lbm_s

649.fotonik3d_s

Figure 5: Saffire’s runtime overhead for the SPEC2017
benchmarks with all libc functions instrumented. The
average overhead across all benchmarks was 0.34%.

5.2. Runtime Overhead

Saffire inserts custom functions through interposition,
which can impact performance due to the additional indi-
rection and operations performed by the wrapper functions
for policy enforcement. To measure this overhead, we
conducted two experiments using a set of microbench-
marks and the SPEC2017 benchmarks. We started with a
worst-case scenario by stress-testing Saffire with sample
programs that repeatedly execute the instrumented library
functions with random inputs. Each experiment performed
10 million function calls and results are averaged over five
runs for each library function. We perform these tests with
no known arguments to ensure worst-case performance.
Across all functions, the average performance difference
measured with and without instrumentation is less than
3.2%. For instance, for fwrite(), the average slowdown
was 5.8%, while for read() it was 0.35%.

To assess the performance impact of Saffire further, we
used the SPEC2017 benchmarks. The SPEC benchmarks
do not involve many invocations of the above 15 critical
functions, and we thus assumed a worst-case scenario
in which all libc functions are protected—across all
benchmarks, Saffire created custom versions for 304 libc
functions (18 functions that do not take any arguments are
excluded). Figure 5 shows Saffire’s overhead (averaged
over multiple runs). The highest overhead of 1.08% was ex-
hibited by xalancbmk, while the average overhead across
all benchmarks is 0.34%. The infrequent invocation of libc
functions compared to the actual computation performed
makes Saffire’s performance impact quite negligible.

5.3. Inter-procedural Analysis

The static analysis phase of Saffire starts from a calling
context and traverses the code backwards to find the
assigned value to (or the source of) each argument. In many
cases, values are passed as input arguments from previous
functions. In such cases, the analysis proceeds backwards
to all call sites of the currently analyzed function, and keeps
traversing caller functions until either the assigned value
is found, or the analysis concludes that it was returned
from an unknown function call or passed as a user input.

Figure 6 shows the CDF of the number of caller
functions that were traversed to reach the definition of
protected arguments. We see that more than half (58.9%)

0
20

40
60

80
10

0

Number of Function Hops

P
er

ce
nt

ag
e

of
 P

at
hs

0 1 2 3 4 5 6 7+

58.9

20.8

6.81

6.92
2.24 1.12 0.94 1.83

Figure 6: Cumulative distribution of the number of caller
functions traversed during backward analysis for reaching
the definition of protected arguments. More than half of
the arguments are found within the same function.

of the argument definitions are found within the body of
the same function in which the analyzed call site is located.
For about 21% of the arguments, their initialization point
is located at the previous caller function, while there are
cases where several functions have to be traversed (16 in
the worst case).

We should note that the number of paths explored (Y
axis) is not the same as the number of arguments. To be
precise, although there are 1,837 arguments (for both static
and dynamic argument binding) across all calling contexts
in the 11 applications, the number of explored paths is
2,182. This is because, depending on the control flow of
an application, there can be multiple paths traversed for a
given argument and call site.

5.4. Code and Memory Overhead

Function specialization per call site unavoidably intro-
duces additional code for each of the wrapper functions
that correspond to the individual call sites. As shown in
Table 4, for the larger applications, the number of functions
increases by less than 7%. For example, there is an increase
of 3% in the number of functions for Nginx. The increase
is more pronounced for smaller utility programs, like Gzip.
By inspecting the code of Gzip, we found that there are
138 calls to write(), for each of which Saffire creates
a specialized instance.

Many of these functions, however, happen to be identi-
cal (i.e., they perform the same operations and enforce the
same argument policies), and thus could be combined into
one. This will greatly reduce the number of functions added,
while providing the same security benefit. We plan to
implement this optimization as part of our future work. As
the next column shows, the additional memory needed for
storing the hashes of the shadow arguments is negligible.

The overall impact of Saffire’s instrumentation is
reflected in number of instructions added to the binary. We
see that for most applications, the increase is less than 1%
in the number of IR statements added. Chrome and Nginx,
given their large sizes, have the lowest increase of 0.1%
and 0.2%, respectively. The worst increase is observed in
OggDec and OggEnc (15% and 45%), which is mostly
because these are smaller programs. We also report the
time taken by Saffire’s pass, which corresponds to the
increase in build time for the whole application. We see

TABLE 4: Code and memory increase, time for Saffire’s LLVM pass, and number of ROP payloads blocked (out of 17).

Application
of

Functions
Added

Size of Shadow
Memory per Thread

(8-byte units)

of IR
Statements

Added

Time Taken
to Run

Pass (sec)

of ROP
Payloads
Blocked

Nginx 58 (3%) 76 1291 (0.2%) 18.2 17
Ctags 27 (2%) 21 926 (0.3%) 8.4 17
Gzip 147 (120%) 39 2142 (8.1%) 3.7 17
Lighttpd 82 (13%) 77 2611 (2.9%) 10.2 12
Vsftpd 15 (6%) 15 784 (2.2%) 6.8 17
PuTTY 51 (4%) 64 2102 (0.8%) 14.2 17
OggEnc 28 (26%) 50 1327 (15.6%) 9.1 17
OggDec 9 (23%) 14 628 (45.3%) 11.3 17
Chrome 92 (1%) 132 3132 (0.1%) 52.5 17
Openssh 63 (11%) 111 2125 (1.3%) 21.2 12
Firefox 42 (10%) 26 684 (0.4%) 28.1 17

Number of Known Arguments
1 2 3 4 5

0
20

40
60

80
10

0

Nginx
Ctags Gzip

Lighttpd
Vsftpd

PuTTY
Oggenc

Oggdec
Chrome

Openssh
Firefox

P
er

ce
nt

ag
e

of
 u

se
d

lib
ra

ry
 c

al
ls

Figure 7: Percentage of critical library functions with at
least one known argument across all call sites. The break-
down represents the actual number of known arguments
in each application.

that Chrome takes the longest (52 sec). Compared to the
overall build time of each of these applications, the time
taken by this pass is negligible.

For completeness, we repeated the same analysis when
all system calls are protected, and present the results in
the Appendix. Even for such a worst-case scenario, there
is only a modest increase in code and memory size and
compilation time, demonstrating the practicality of Saffire
in protecting a large number of API functions.

5.5. Application-wide Function Specialization

We begin our analysis of Saffire’s static argument bind-
ing enforcement by considering application-wide policies
(i.e., binding an argument to a set of known values only
if this can be applied to all calling contexts of a given
function across the application), for the 15 critical functions
we have identified. This is in essence the same approach
followed by previous works on API specialization, such
as Shredder [49].

As shown in Figure 7, in most applications, Saffire
can identify arguments with known values across all call
sites for around 70% or more of the functions, with
the exceptions of Nginx and PuTTY. For example, in
Ctags, 50% of the tested library functions have one known

argument, while 25% have two known arguments. For
Nginx, in contrast, policies can be derived only for two
out of the six functions used (33.3%). Although there are
a few instances of functions with up to four or five known
arguments, in most cases only one or two arguments are
known. Overall, these results show that application-wide
policies are not very restrictive, and there is potential for
much more fine-grained policy enforcement.

5.6. Context-sensitive Function Specialization

In contrast to application-wide policies, Saffire cre-
ates context-specific policies that may restrict a different
number of arguments across different call sites of the
same function. Figure 8 shows the percentage of pro-
tected arguments across all call sites for each of the
critical functions used by each application (i.e., the Y
axis corresponds to each pair of argument and call site,
across all call sites of a given function). Light-colored
bars correspond to arguments protected with static binding.
For example, compared to Figure 7, in which only 33.3%
of functions in Nginx have known arguments across all
calling contexts, here we see that about 60% of the
arguments across all calling contexts can be statically
determined (as shown by the leftmost “Overall” bar).
Changing the protection mechanism to individual call sites
thus provides much better coverage. Next, as described
in Section 3.2, we include pointer arguments with known
values (medium-colored bars), which provide an additional
coverage increase for some functions. For example, the
first argument of mmap64() in Nginx is always a NULL
pointer, which can be statically enforced.

When including dynamic argument binding (dark-
colored bars), we observe that the number of protected
arguments almost doubles across most applications. Over-
all, the move from application-wide to per-context policies,
and the introduction of dynamic argument binding, achieves
complete or nearly complete coverage of all function
arguments, depending on the particular combination of
application and API function.

To gain more insight on the cases in which Saffire fails
to protect some arguments, Table 5 shows the percentage
of call sites in which a given argument is protected across
all applications. For each function, the second and third

P
er

ce
nt

ag
e

of
 K

no
w

n
A

rg
um

en
ts

0
20

40
60

80
10

0

O
ve

ra
ll

m
m

ap
64

op
en

64
w

rit
e

ex
ec

ve
re

ad
pr

ea
d6

4

O
ve

ra
ll

fo
pe

n
fw

rit
e

fs
ee

k

O
ve

ra
ll

op
en

w
rit

e
re

ad
fw

rit
e

O
ve

ra
ll

m
m

ap
64

op
en

64
w

rit
e

ex
ec

ve
re

ad
fw

rit
e

O
ve

ra
ll

m
m

ap
m

pr
ot

ec
t

op
en

64
ac

ce
ss

w
rit

e
re

ad

O
ve

ra
ll

op
en

w
rit

e
re

ad
fo

pe
n

fw
rit

e

O
ve

ra
ll

fo
pe

n
fw

rit
e

fs
ee

k

O
ve

ra
ll

fo
pe

n
fw

rit
e

fs
ee

k

O
ve

ra
ll

m
m

ap
64

m
pr

ot
ec

t
op

en
64

op
en

ac
ce

ss
w

rit
e

ex
ec

ve
re

ad
fo

pe
n

fw
rit

e
fs

ee
k

O
ve

ra
ll

op
en

ac
ce

ss
w

rit
e

ex
ec

ve
re

ad
fo

pe
n

fw
rit

e

O
ve

ra
ll

op
en

w
rit

e
ex

ec
ve

re
ad

fo
pe

n

Nginx Ctags Gzip Lighttpd Vsftpd PuTTY OggEnc OggDec Chrome Openssh Firefox

Static Argument Binding Known Dynamic Binding Dynamic Argument Binding

Figure 8: Percentage of protected arguments for the sensitive functions used by each application. Light-colored bars
correspond to static argument binding, medium-colored bars to statically enforced pointer arguments, and dark-colored
bars to dynamic binding. The leftmost bar of each group corresponds to the average across all functions.

columns correspond to the number of applications that
use it and the combined number of its calling contexts
across all applications, respectively. The rest of the columns
correspond to the individual arguments of each function,
and each cell contains the number of calling contexts
in which a given argument can be protected by static
or dynamic binding. Note that fstat and clone are
missing because they are not used by any of the tested
applications. We observe that some pointer arguments (e.g.,
addr and buf) are left unprotected, mostly because (as
discussed in Section 4.2) they may be passed as arguments
to other functions before reaching the final API call, in
which case dynamic argument binding cannot be applied.
In contrast, arguments corresponding to flags, protection
bits, file descriptors, and so on can be fully protected
across all call sites most of the time.

5.7. Security Evaluation

We evaluated the effectiveness of Saffire using a set
of 17 ROP samples. As discussed earlier, we make the
conservative assumption that each of these payloads can
be used against each of the tested applications, irrespective
of the malicious task they perform. For each combination
of ROP payload and application, we identify the library
functions used by the payload, and analyze the application’s
IR to determine if they are also used by the application. For
the subset of functions that are used by both, we evaluate
how Saffire’s context-sensitive policies affect them. In most
cases, the combination of library function and argument
values fails for at least one of the calls, and thus the attack
is prevented. For example, when attackers try to mark a
memory region as executable, they use either mmap() or
mprotect(). The arguments to these functions typically
never include executable flags in most applications, and
thus the calls made by the exploit code are blocked.

The results of this evaluation are presented in the last
column of Table 4. We consider an exploit unsuccessful if
at least one of the library calls it makes is stopped by static
or dynamic argument binding. Saffire was able to break all
the ROP payloads in all applications except two (Lighttpd
and OpenSSH). Of the 17 ROP payloads used, six use
execve() to spawn a shell by providing "/bin/sh"

Listing 1: execve("/bin/sh") used in Lighttpd.
//src/fdevent.c
static pid_t fdevent_open_logger_pipe_spawn(...) {

...
*(const char **)&args[0] = "/bin/sh";
...
pid = fdevent_fork_execve(args[0], args, ...);

}

pid_t fdevent_fork_execve(const char *name,
char *argv[], ...) {

...
execve(name, argv, ..);
...

}

as an argument. Unfortunately, as shown in Listing 1,
Lighttpd includes a call to fdevent_fork_execve()
with the command to run set as "/bin/sh", which
makes this a legitimate control flow transfer within the
application—precisely the exact control flow that exploit
code also needs. We find similar issues in OpenSSH, in
which there is a control path that leads to the execution
of execve("/bin/sh").

To further investigate Saffire’s effectiveness against
whole-function reuse attacks [19, 23, 62], we also per-
formed some case studies on Mozilla Firefox, Google
Chrome, and Nginx. Given that the full exploit code is
not available, our evaluation is performed according to the
steps and functions described in the respective papers.

5.7.1. Case Study: Control Jujutsu [23] against Nginx.
Nginx’s function ngx_execute_proc() contains a
call to execve(), as shown in Listing 2. We consider
the attack scenario in which the indirect call site at
core/ngx_output_chain() is used to steer the con-
trol flow to the target function ngx_execute_proc()
to spawn a shell. Our backwards analysis though deter-
mines that the only possible value for ctx->path is
the Nginx binary itself, i.e., this call is only used to re-
invoke Nginx. Saffire’s static argument binding enforces
this legitimate value, and thus attacks like Control Jujutsu
will fail to reuse it for spawning any other executable.

5.7.2. Case Study: COOP [62] against Firefox. Given
that we did not have access to the actual COOP exploit
code, we emulated it by loading Firefox’s main library

TABLE 5: Percentage of protected arguments across different calling contexts for all applications.

Number of
Apps

Number of
Calling Contexts Arg1 Arg2 Arg3 Arg4 Arg5 Arg6

mmap(64) 4 10 *addr
10 (100%)

length
10 (100%)

prot
10 (100%)

flags
10 (100%)

fd
10 (100%)

offset
10 (100%)

mprotect 2 11 *addr
7 (64%)

len
11 (100%)

prot
11 (100%)

open(64) 8 91 *pathname
85 (93.1%)

flags
91 (100%)

mode
91 (100%)

write 8 242 fd
242 (100%)

*buf
219 (90.5%)

count
242 (100%)

access 2 8 *pathname
8 (100%)

mode
8 (100%)

execve 5 13 *filename
13 (100%)

argv[]
13 (100%)

envp[]
13 (100%)

read 7 60 fd
60 (100%)

*buf
49 (81.6%)

count
56 (100%)

pread64 1 6 fd
6 (100%)

*buf
6 (100%)

count
6 (100%)

offset
6 (100%)

fopen 7 53 *pathname
50 (94.3%)

mode
53 (100%)

fwrite 7 92 *ptr
92 (100%)

size
92 (100%)

nmem
92 (100%)

*stream
91 (98.9%)

fseek 4 22 *stream
22 (100%)

offset
22 (100%)

whence
22 (100%)

Listing 2: execve() used in Nginx (ngx_process.c).
static void
ngx_execute_proc(ngx_cycle_t *cycle, void *data) {

ngx_exec_ctx_t *ctx = data;

if (execve(ctx->path, ctx->argv, ctx->envp) == -1) {
ngx_log_error(...);

}
}

libxul.so in the address space of a vulnerable ap-
plication. The gadgets of the exploit attempt to invoke
system("/bin/sh"). Using Saffire, we analyzed the
source code of Firefox v56.0.4 (64-bit) and found that
there are five call sites for system(), for all of which
static argument binding was able to extract the strings used
as the command path. This means that Saffire can prevent
those call sites from being reused to invoke a shell or other
attacker-controlled programs.

5.7.3. Case Study: COOP [19] against Google Chrome.
We used Saffire on Chrome v75.0.3732.0 (64-bit Developer
Build). As shown in Figure 8, all arguments in most call
sites of critical functions can be protected. For example, for
mmap64(), Saffire restricts the use of memory protection
flags, sharing flags, and the offset argument, along with
dynamic binding for the file descriptor argument in all of its
call sites. We provide a detailed breakdown in Table 6 for
three critical functions. For the ML-REC COOP attack [19],
the primitive used changes the permissions of a memory
region to enable the execution of a second-stage shellcode.
Using Saffire, we observe that none of the call sites that
change memory protection permissions in Chrome (using
either mprotect() or mmap()) can accept the “execute”
permissions, since it is not used by the application. In
addition, execve() is also restricted similarly to the
previous cases.

Table 7 summarizes the advanced whole-function reuse
attacks we considered. In all cases, Saffire can prevent
whole-function reuse by preventing the use of arbitrary
argument values in critical system functions.

TABLE 6: Known arguments for three critical library calls
used by whole-function reuse exploits in Google Chrome.

mprotect() mmap(64)() execve()

Args 3 6 3
Known Args 1 4 1

Known
Arguments

Memory
Protection

Memory
Protection

Flag

File Desc

Offset

Command
to run

TABLE 7: Saffire’s effectiveness against whole-function
reuse attacks for Firefox, Chrome, and Nginx.

Attack COOP
ML-G [62]

COOP
ML-REC [19]

Control
Jujutsu [23]

Application Firefox Chrome Nginx
Function system() mprotect(),mmap() execve()
Prevented �X �X �X
Mechanism Arg Value Arg Value Arg Value

6. Limitations and Future Work

Saffire is a best-effort, defense-in-depth defense that
is not meant to prevent all code reuse attacks. Inspired by
previous works on software debloating and specialization,
its goal is to hinder the construction of code reuse exploits.
As shown from our results, in most cases Saffire protects
all arguments for certain calling contexts, but not for all.
This means that even if there is one call site with some
unprotected argument(s), an attacker may be able to reuse
it and invoke the function with a desired argument, as long
as a valid control flow path to it can be found. We should
note, however, that dynamic argument binding significantly
improves coverage, and based on our evaluation, just a few
arguments in a few call sites remain unprotected—there
are no call sites in which all arguments are unprotected.
Consequently, if an exploit requires a specific combination

of arguments and none of those values are in the set of
known values, the exploit will fail.

Although Saffire falls into the category of software
debloating or specialization mitigations, it actually in-
troduces additional code into the protected application,
which may seem counter-intuitive in terms of attack surface
reduction. However, we believe that expanding the code
of the application should not be a concern for multiple
reasons. First, as our results demonstrate (Tables 4 and 8),
the amount of additional code is negligible, and thus the
amount of introduced ROP gadgets due to this code is
negligible too. More importantly, the use of CFI precludes
these gadgets from being used (except those at the entry
points of Saffire’s wrapper functions, in which though
the attacker is faced with per-context policy checks). In
addition, as discussed in Section 5.4, in many cases the
wrapper functions of different contexts are identical, and
thus can be combined into a single one—we plan to
implement this optimization as part of our future work.

To reduce implementation complexity, in our current
prototype, only the top-level object is hashed in dynamic
argument binding, and any pointers to other nested objects
are not followed (the pointers themselves still take part in
the hash calculation). This means that attackers can still
control the content of any second-level objects pointed to
by the parent object—but crucially, not the root object.
This is not a significant limitation, as the arguments of the
security-critical API functions we are mostly concerned
with (see Section 5.1) involve strings, raw memory buffers,
and file descriptors, which do not contain pointers to other
objects. Still, a recursive hashing scheme (of adjustable
depth) could be applied to provide even stronger protection
for other APIs that handle complex objects.

Currently, Saffire unconditionally protects all argu-
ments of a given function in a best-effort way. From a
security perspective, however, some arguments may not be
important, and thus could be left unprotected. Determining
which arguments are critical and protecting only those
would significantly reduce the extra code and shadow
memory space.

Saffire’s assumption of a fine-grained CFI mechanism
ensures that an attacker is unable to jump over our spe-
cialized function wrappers and call API functions directly.
This also ensures that the attacker is unable to steer control
to an instruction in the middle of the function. The current
implementation of Saffire uses LLVM’s inbuilt CFI to
provide these guarantees. While the CFI mechanism offered
by LLVM is not perfect, and under certain circumstances
it may still allow for code reuse (e.g., signature-based
CFI checks let a function pointer to be assigned to any
function with the same signature), for the simplicity of
our implementation we relied on this already integrated
capability, but other more fine-grained CFI mechanisms
can certainly be used [72].

7. Related Work

Non-executable memory [21] and address space ran-
domization [54] have been widely deployed in modern
operating systems. However, current exploits rely on code
reuse and memory disclosure vulnerabilities to bypass
these protections, which has increased the focus of recent
research efforts on additional defenses. In the rest of this

section, we focus on API-level protections, attack surface
reduction, data flow integrity, and advanced code reuse
attacks that rely on whole-function reuse—topics that are
more closely related to our work.

7.1. Advanced Code Reuse Attacks

Advanced code reuse attacks that can bypass coarse-
grained control flow integrity defenses have recently gained
popularity. Such attacks follow the same overall approach
of ROP in terms of chaining different pieces of code for
achieving arbitrary code execution, but differ in the type
of these pieces. While ROP gadgets are a few instructions
long and end in an indirect branch, advanced attacks try to
shape the control flow in accordance to the application’s
legitimate execution flow.

Counterfeit Object-oriented Programming (COOP) at-
tacks [19, 62] rely on creating a number of counterfeit
objects and call small functions in them that perform a
specific operation (e.g., read a file to a buffer) using virtual
function dispatch. Because these are virtual functions and
their call sites cannot be determined statically by con-
trol flow analysis, coarse-grained CFI protections cannot
prevent such attacks.

Control Jujutsu [23] reuses whole functions from the
code of applications like Nginx and Apache that invoke
system calls of interest to the attacker. The inputs to these
functions are passed to calls like execve() that can
lead to remote code execution. The example in Listing 2
demonstrates one such code path from Nginx.

7.2. Data Flow Integrity

In 2005, Chen et al. [16] presented non-control-data
attacks, which rely on corrupting application data related to
authentication or other security-critical operations, which
can lead to system compromise. Data flow integrity
was introduced by Castro et al. [14] as a means to
protect applications against non-control-data attacks by
generating a data flow graph. In a more recent work,
Kenali [67] performs similar enforcement for the Linux
kernel. These and most other works in the area of data flow
integrity and isolation [3, 10, 22, 45, 59, 68, 75] aim for
whole-application protection and ensure secure data flow
across different modules. In contrast, Saffire introduces
a lightweight, narrow-scope data integrity enforcement
that only ensures a data object is not altered between its
creation and its use as an argument to a library call.

7.3. API-level Monitoring

Monitoring execution at the system call or API level
strikes a good balance in terms of performance (system
call or API invocations are infrequent, e.g., compared
to monitoring at the instruction level) and monitoring
granularity. As most exploits have to interact with the
OS to perform harmful operations, this approach can block
this interaction with low performance overhead. Most such
protections rely on identifying control flow abnormalities
to prevent code reuse attacks. Systems like kBouncer [53]
and ROPecker [17] use the Last Branch Record feature
of recent processors to inspect the sequence of indirect

branches that lead to sensitive API calls. Similarly, ROP-
Guard [27] validates the call precedence of return address
and the location of the stack pointer.

Similar approaches have been used in the past by host-
based intrusion detection systems. For instance, WHIPS [7],
a host-based IDS for Windows 2000, enforces rules kept
in an access control database by intercepting native API
calls and validating them against the learnt values. Similar
systems [4, 48] have used machine learning algorithms to
create the policies or rules that are enforced at runtime
during the execution of API calls.

Systems following the same approach were prototyped
for Linux even earlier. For instance, REMUS [8] imple-
ments a reference monitor for system call invocations
as a loadable kernel module. Libsafe and Libverify [6]
aim to transparently prevent buffer overflows by enforcing
buffer sizes and verifying return addresses on the stack
through library interposition. Many other systems rely on
system call interposition to enforce policies based on allow
lists or deny lists [28, 29, 32, 35, 55, 58]. Numerous other
works in the span of more than two decades have proposed
systems that rely on system call interposition for intrusion
detection [9, 24, 25, 26, 39, 44, 63, 74, 76].

7.4. Attack Surface Reduction

Code reuse attacks can rely on any part of code that
exists in the address space of a vulnerable process—even
code that is not actually used by the application, such
as non-imported library functions. Reducing this “attack
surface” by removing unused code can thus contribute in
hindering the construction of code reuse exploits, although,
in most cases, more than enough code still remains to be
used by attackers.

As most applications use only a fraction of the func-
tions available in imported libraries, library specialization
is a simple and effective code debloating approach which
was initially explored for closed-source Windows applica-
tions [50]. Piece-wise debloating [57] slims down libraries
according to an applications’ usage. The information about
intra-module dependencies is saved in the ELF binary of
the library and at load time, according to what functions
are imported, parts of the libraries which are not required
are replaced by illegal instructions. Nibbler [2] applies
a similar approach at the binary level by extracting the
Function Call Graph (FCG) of the binary and all imported
libraries to create an application-level FCG and remove
any unreachable code. LibFilter [65] is a system that
identifies unused functions in an application’s dynamically-
linked libraries. Confine [30] statically identifies the set of
system calls used in a container deployment and restricts
access to only those needed. As already discussed, in our
previous work we proposed Shredder [49], which moves
one step further and restricts the input argument values
of the remaining functions, after any of the above code
specialization approaches has been applied.

Software winnowing [46] specializes both application
and library code. The authors have implemented a code spe-
cialization tool on top of LLVM, called OCCAM (Object
Culling and Concretization for Assurance Maximization).
OCCAM generates specialized versions of applications
according to the build time configuration and deployment
context. BinTrimmer [60] uses abstract interpretation to

generate a near-precise control flow graph from a binary
to identify unused basic blocks, and rewrites them with
useless instructions. Razor [56] debloats deployed binaries
by collecting sample test cases from users, and augmenting
them with control-flow heuristics to infer code that is
necessary to support user-expected functionalities.

Configuration-driven debloating [36] identifies parts of
an application’s code which are not used under specific
runtime configurations. Code debloating has also been
explored in other domains, such as PHP applications [5]
and the kernel [38, 40, 41, 42, 47, 70, 79].

8. Conclusion

We presented Saffire, a compiler-level defense that
performs context-sensitive function customization against
code reuse attacks. Saffire transforms each call site of a
critical function to invoke a custom function that applies
i) static argument binding, to eliminate arguments with
static values and concretize them within the function
body, and ii) dynamic argument binding, to confine the
values of arguments that cannot be statically derived.
We have demonstrated the effectiveness and practicality
of Saffire in preventing real-world exploits. Besides its
more comprehensive protection compared to previous
API specialization approaches [49], which includes non-
static arguments, another important key benefit is its
effectiveness against whole-function reuse attacks, which
currently pose a challenge to CFI defenses. As a best-effort,
defense-in-depth approach, we believe that Saffire is a
practical solution that complements existing CFI and library
specialization approaches with a unique set of additional
protection capabilities.

Acknowledgments

This work was supported by the National Science Foundation
(NSF) through awards CNS-1749895 and CNS-1617902, the
Office of Naval Research (ONR) through award N00014-17-
1-2891, and the Defense Advanced Research Projects Agency
(DARPA) through award D18AP00045. Any opinions, findings,
and conclusions or recommendations expressed herein are those
of the authors and do not necessarily reflect the views of the
NSF, ONR, or DARPA.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and Communications Security (CCS), 2005, pp. 340–353.

[2] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and
G. Portokalidis, “Nibbler: Debloating binary shared libraries,” in
Proceedings of the 35th Annual Computer Software and Applications
Conference (ACSAC), 2019.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro,
“Preventing memory error exploits with WIT,” in Proceedings of the
IEEE Symposium on Security & Privacy (S&P), 2008, pp. 263–277.

[4] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-day
malware detection based on supervised learning algorithms of API
call signatures,” in Proceedings of the 9th Australasian Data Mining
Conference (AusDM), 2011, pp. 171–182.

[5] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more:
quantifying the security benefits of debloating web applications,”
in Proceedings of the 28th USENIX Security Symposium, 2019.

[6] A. Baratloo, N. Singh, and T. Tsai, “Transparent run-time defense
against stack smashing attacks,” in Proceedings of the USENIX
Annual Technical Conference (ATC), 2000.

[7] R. Battistoni, E. Gabrielli, and L. V. Mancini, “A host intrusion
prevention system for Windows operating systems,” in Proceedings
of the 9th European Symposium on Research in Computer Security
(ESORICS), 2004, pp. 352–368.

[8] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “Remus: A security-
enhanced operating system,” ACM Trans. Inf. Syst. Secur., vol. 5,
no. 1, pp. 36–61, Feb. 2002.

[9] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly
detection,” in Proceedings of the IEEE Symposium on Security
& Privacy (S&P), 2006.

[10] P. Biswas, A. Di Federico, S. A. Carr, P. Rajasekaran, S. Volckaert,
Y. Na, M. Franz, and M. Payer, “Venerable variadic vulnerabil-
ities vanquished,” in Proceedings of the 26th USENIX Security
Symposium, 2017, pp. 183–198.

[11] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: A new class of code-reuse attack,” in Proceedings
of the 6th ACM Symposium on Information, Computer and Com-
munications Security (AsiaCCS), 2011, pp. 30–40.

[12] E. Bosman and H. Bos, “Framing signals - a return to portable
shellcode,” in Proceedings of the IEEE Symposium on Security &
Privacy (S&P), 2014, pp. 243–258.

[13] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow integrity,”
in Proceedings of the 24th USENIX Security Symposium, 2015.

[14] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI), 2006.

[15] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,”
in Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS), 2010, pp. 559–572.

[16] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-
control-data attacks are realistic threats,” in Proceedings of the 14th
USENIX Security Symposium, 2005.

[17] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng, “ROPecker: A
generic and practical approach for defending against ROP attacks,”
in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2014.

[18] J. Corbet, “Memory protection keys,” https://lwn.net/Articles/643
797/, 2015.

[19] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s
a TRaP: Table randomization and protection against function-reuse
attacks,” in Proceedings of the 22nd ACM Conference on Computer
and Communications Security (CCS), 2015, pp. 243–255.

[20] S. Designer, “Getting around non-executable stack (and fix),” 1997,
http://seclists.org/bugtraq/1997/Aug/63.

[21] ——, “Non-executable stack patch,” http://lkml.iu.edu/hypermail/li
nux/kernel/9706.0/0341.html, 1997.

[22] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula,
“XFI: Software guards for system address spaces,” in Proceedings
of the 7th Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2006, pp. 75–88.

[23] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses
of fine-grained control flow integrity,” in Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS),
2015, pp. 901–913.

[24] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly detection using call stack information,” in Proceedings
of the IEEE Symposium on Security & Privacy (S&P), 2003, pp.
62–75.

[25] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller,
“Formalizing sensitivity in static analysis for intrusion detection,”
pp. 194–208, 2004.

[26] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A
sense of self for Unix processes,” in Proceedings of the IEEE
Symposium on Security & Privacy (S&P), 1996.

[27] I. Fratrić, “ROPGuard: Runtime prevention of return-oriented
programming attacks,” 2012, http://www.ieee.hr/ download/re
pository/Ivan Fratric.pdf.

[28] T. Garfinkel, “Traps and pitfalls: Practical problems in system call
interposition based security tools,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2003.

[29] T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: A delegating
architecture for secure system call interposition,” in Proceedings of
the Network and Distributed System Security Symposium (NDSS),
2003.

[30] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis,
“Confine: Automated system call policy generation for container
attack surface reduction,” in Proceedings of the International
Conference on Research in Attacks, Intrusions, and Defenses (RAID),
2020.

[31] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out
of control: Overcoming control-flow integrity,” in Proceedings of
the 35th IEEE Symposium on Security & Privacy (S&P), 2014.

[32] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure
environment for untrusted helper applications (confining the wily
hacker),” in Proceedings of the 6th USENIX Security Symposium,
1996.

[33] A. G. Hashim Sharif, Muhammad Abubakar and F. Zaffar, “Trimmer:
Application specialization for code debloating,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE), 2018.

[34] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program
debloating via reinforcement learning,” in Proceedings of the 24th
ACM Conference on Computer and Communications Security (CCS),
2018.

[35] K. Jain and R. Sekar, “User-level infrastructure for system call
interposition: A platform for intrusion detection and confinement,”
in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2000.

[36] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-
driven software debloating,” in Proceedings of the 12th European
Workshop on System Security (EuroSec), 2019.

[37] S. Krahmer, “x86-64 buffer overflow exploits and the borrowed
code chunks exploitation technique,” 2005, http://www.suse.de/∼k
rahmer/no-nx.pdf.

[38] T. Kroes, A. Altinay, J. Nash, Y. Na, S. Volckaert, H. Bos, M. Franz,
and C. Giuffrida, “BinRec: Attack surface reduction through
dynamic binary recovery,” in Proceedings of the 2018 Workshop on
Forming an Ecosystem Around Software Transformation (FEAST),
2018.

[39] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the detection
of anomalous system call arguments,” in Proceedings of the 8th
European Symposium on Research in Computer Security (ESORICS),
2003, pp. 326–343.

[40] A. Kurmus, S. Dechand, and R. Kapitza, “Quantifiable run-time
kernel attack surface reduction,” in Proceedings of the 11th Inter-
national Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2014, pp. 212–234.

[41] A. Kurmus, A. Sorniotti, and R. Kapitza, “Attack surface reduction
for commodity OS kernels: Trimmed garden plants may attract less
bugs,” in Proceedings of the 4th European Workshop on System
Security (EuroSec), 2011.

[42] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg,
A. Ruprecht, W. Schröder-Preikschat, D. Lohmann, and R. Kapitza,
“Attack surface metrics and automated compile-time OS kernel
tailoring,” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2013.

[43] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer integrity,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implemen-
tation (OSDI), 2014, pp. 147–163.

https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
http://seclists.org/bugtraq/1997/Aug/63
http://lkml.iu.edu/hypermail/linux/kernel/9706.0/0341.html
http://lkml.iu.edu/hypermail/linux/kernel/9706.0/0341.html
http://www.ieee.hr/_download/repository/Ivan_Fratric.pdf
http://www.ieee.hr/_download/repository/Ivan_Fratric.pdf
http://www.suse.de/~krahmer/no-nx.pdf
http://www.suse.de/~krahmer/no-nx.pdf

[44] P. Li, H. Park, D. Gao, and J. Fu, “Bridging the gap between
data-flow and control-flow analysis for anomaly detection,” in Pro-
ceedings of the Annual Computer Security Applications Conference
(ACSAC), 2008, pp. 392–401.

[45] T. Liu, G. Shi, L. Chen, F. Zhang, Y. Yang, and J. Zhang, “TMDFI:
Tagged memory assisted for fine-grained data-flow integrity towards
embedded systems against software exploitation,” in Proceedings
of the 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications (TrustCom), 2018, pp.
545–550.

[46] G. Malecha, A. Gehani, and N. Shankar, “Automated software
winnowing,” in Proceedings of the 30th Annual ACM Symposium
on Applied Computing (SAC), 2015, pp. 1504–1511.

[47] H. M. Mansour Alharthi, Hong Hu and T. Kim, “On the effectiveness
of kernel debloating via compile-time configuration,” in Proceedings
of the Second Workshop on Forming an Ecosystem Around Software
Transformation (FEAST), 2018.

[48] Miao Wang, Cheng Zhang, and Jingjing Yu, “Native API based
Windows anomaly intrusion detection method using SVM,” in
Proceedings of the IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC), 2006.

[49] S. Mishra and M. Polychronakis, “Shredder: Breaking exploits
through API specialization,” in Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC), 2018.

[50] C. Mulliner and M. Neugschwandtner, “Breaking payloads with
runtime code stripping and image freezing.” Black Hat USA,
2015.

[51] Nergal, “The advanced return-into-lib(c) exploits: PaX case study,”
Phrack, vol. 11, no. 58, Dec. 2001.

[52] T. Newsham, “Non-exec stack,” 2000, http://seclists.org/bugtraq/2
000/May/90.

[53] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent
ROP exploit mitigation using indirect branch tracing,” in Proceed-
ings of the 22nd USENIX Security Symposium, August 2013.

[54] PaX Team, “Address space layout randomization,” 2003, http://pax.
grsecurity.net/docs/aslr.txt.

[55] M. Payer and T. R. Gross, “Fine-grained user-space security through
virtualization,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE),
2011, pp. 157–168.

[56] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee,
“RAZOR: A framework for post-deployment software debloating,”
in Proceedings of the 28th USENIX Security Symposium, 2019.

[57] A. Quach, A. Prakash, and L. K. Yan, “Debloating software through
piece-wise compilation and loading,” in Proceedings of the 27th
USENIX Security Symposium, 2018.

[58] M. Rajagopalan, M. Hiltunen, T. Jim, and R. Schlichting, “Authenti-
cated system calls,” in Proceedings of the International Conference
on Dependable Systems and Networks (DSN), 2005, pp. 358–367.

[59] T. Ramezanifarkhani and M. Razzazi, “Principles of data flow
integrity: Specification and enforcement.” J. Inf. Sci. Eng., vol. 31,
no. 2, pp. 529–546, 2015.

[60] N. Redini, R. Wang, A. Machiry, Y. Shoshitaishvili, G. Vigna, and
C. Kruegel, “BinTrimmer: Towards static binary debloating through
abstract interpretation,” in Proceedings of the 16th International
Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2019, pp. 482–501.

[61] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, C. L.
Stephen Crane, P. Larsen, L. Davi, M. Franz, A.-R. Sadeghi, and
H. Okhravi, “Address-Oblivious Code Reuse: On the Effectiveness
of Leakage Resilient Diversity,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2017.

[62] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz, “Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications,” in
Proceedings of the 36th IEEE Symposium on Security & Privacy
(S&P), 2015, pp. 745–762.

[63] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast
automaton-based method for detecting anomalous program behav-
iors,” in Proceedings of the IEEE Symposium on Security & Privacy,
2001, pp. 144–155.

[64] H. Shacham, “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM conference on Computer and Communications Security
(CCS), 2007, pp. 552–561.

[65] B. Shteinfeld, “Libfilter: Debloating dynamically-linked libraries
through binary recompilation,” Undergraduate Honors Thesis,
Brown University, 2019.

[66] K. Z. Snow, L. Davi, A. Dmitrienko, C. Liebchen, F. Monrose, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization,” in Proceedings
of the 34th IEEE Symposium on Security & Privacy (S&P), 2013.

[67] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity.” in Proceedings
of the Network and Distributed System Security Symposium (NDSS),
2016.

[68] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee,
and Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in
Proceedings of the IEEE Symposium on Security & Privacy (S&P),
2016.

[69] L. Song and X. Xing, “Fine-grained library customization,” in
Proceedings of the ECOOP 1st International Workshop on SoftwAre
debLoating And Delayering (SALAD), 2018.

[70] R. Tartler, A. Kurmus, B. Heinloth, V. Rothberg, A. Ruprecht,
D. Dorneanu, R. Kapitza, W. Schröder-Preikschat, and D. Lohmann,
“Automatic OS kernel TCB reduction by leveraging compile-time
configurability,” in Proceedings of the 8th USENIX Conference on
Hot Topics in System Dependability (HotDep), 2012.

[71] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, efficient in-process
isolation with protection keys (MPK),” in Proceedings of the 28th
USENIX Security Symposium, 2019.

[72] V. van der Veen, D. Andriesse, E. Göktaundefined, B. Gras,
L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida, “Practical
context-sensitive CFI,” in Proceedings of the 22nd ACM Conference
on Computer and Communications Security (CCS), 2015.

[73] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen,
H. Bos, and C. Giuffrdia, “The dynamics of innocent flesh on
the bone: Code reuse ten years later,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS),
2017, pp. 1675–1689.

[74] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in
Proceedings of the IEEE Symposium on Security & Privacy, 2001.

[75] W. Wang, X. Xu, and K. W. Hamlen, “Object flow integrity,” in Pro-
ceedings of the ACM Conference on Computer and Communications
Security (CCS), 2017, pp. 1909–1924.

[76] A. Wespi, M. Dacier, and H. Debar, “Intrusion detection using
variable-length audit trail patterns,” in Proceedings of the 3rd
Conference in Recent Advances in Intrusion Detection (RAID),
2000, pp. 110–129.

[77] D. W. Yufei Jiang and P. Liu, “Jred: Program customization and
bloatware mitigation based on static analysis,” in Proceedings of
the 40th Annual Computer Software and Applications Conference
(ACSAC), 2016.

[78] T. L. Yurong Chen and G. Venkataramani, “Damgate: Dynamic
adaptive multi-feature gating in program binaries,” in Proceedings
of the Second Workshop on Forming an Ecosystem Around Software
Transformation (FEAST), 2017.

[79] X. Z. Zhongshu Gu, Brendan Saltaformaggio and D. Xu, “Face-
change: Application-driven dynamic kernel view switching in a
virtual machine,” in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2014.

http://seclists.org/bugtraq/2000/May/90
http://seclists.org/bugtraq/2000/May/90
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

TABLE 8: Code and memory increase, time for Saffire’s LLVM pass, and number of ROP payloads blocked (out of 17)
when all libc functions are protected.

Application
of

Functions
Added

Size of Shadow
Memory per Thread

(8-byte units)

of IR
Statements

Added

Time Taken
to Run

Pass (sec)

of ROP
Payloads
Blocked

Nginx 288 (15%) 454 7117 (1.1%) 42.4 17
Ctags 39 (3%) 49 1147 (0.4%) 9.3 17
Gzip 188 (153%) 345 2142 (19.6%) 11 17
Lighttpd 285 (45%) 392 2611 (7.3%) 14.1 12
Vsftpd 147 (58%) 149 784 (7.8%) 6.8 17
PuTTY 183 (14%) 234 2102 (1.5%) 10.2 17
OggEnc 42 (39%) 87 1327 (28.8%) 3.4 17
OggDec 16 (40%) 36 628 (56.3%) 3.2 17
Chrome 277 (3%) 383 3132 (0.2%) 71.1 17
Openssh 296 (51%) 401 6709 (4.2%) 30.8 12
Firefox 79 (18%) 65 1372 (0.8%) 18.2 17

0
20

40
60

80
10

0

Size of Hashed Variables (in Bytes)

P
er

ce
nt

ag
e

of
 V

ar
ia

bl
es

0−8 9−25 26−50 51−150 150−300 >300

47.1

3.1
3.1

5.91

37.1

3.7

Figure 9: Distribution of argument sizes for dynamic
binding. About half of the arguments are eight bytes or
smaller, while arguments in the range of 150–300 bytes
are mostly FILE structs, each 216 bytes in size.

Appendix

1. Performance Evaluation with All System Calls
Instrumented

To gain further insight regarding Saffire’s worst-case per-
formance, we repeated the measurements of code and memory
overhead discussed in Section 5.4 when protecting all system
calls. We identified 322 system calls, of which 18 do not take
any input arguments and are thus left out, and performed the
same analysis as presented in Table 4.

Table 8 presents this new set of results. The process of
instrumenting all system calls inevitably increases the values in
all columns of the table (except the number of blocked ROP
payloads, which, as expected, does not change). As we see in the
second column, for Gzip, the number of new functions added to
the binary is 1.5 times more than the original. The reason is the
same as explained in Section 5.4, which is that there are more
than a hundred instances of calls to write(). In the fourth
column, where we mention the increase in the number of IR
statements, we see that for OggDec, the increase is about 56%,
while for Chrome, it is 0.2%. Hence, we conclude that for large
applications like Chrome and Nginx, using Saffire with all system
calls does not impact significantly the size of the binaries or the
number of instructions added.

TABLE 9: Linux ROP payloads used in our evaluation.

1) Return Oriented Programming and ROPgadget tool
http://shell-storm.org/blog/Return-Oriented-Programmi
ng-and-ROPgadget-tool/

2) ARM Exploitation - Defeating DEP - executing mprotect()
https://blog.3or.de/arm-exploitation-defeating-dep-e
xecuting-mprotect.html

3) 64-bit ROP — You rule ’em all!
https://0x00sec.org/t/64-bit-rop-you-rule-em-all/1937

4) 64-bit Linux Return-Oriented Programming
https://crypto.stanford.edu/˜blynn/rop/

5) Return-Oriented-Programming(ROP FTW)
http://www.exploit-db.com/docs/english/28479-return-o
riented-programming-(rop-ftw).pdf

6) PMS 0.42 - Local Stack-Based Overflow (ROP)
https://www.exploit-db.com/exploits/44426/

7) Crashmail 1.6 - Stack-Based Buffer Overflow (ROP)
https://www.exploit-db.com/exploits/44331/

8) PHP 5.3.6 - Local Buffer Overflow (ROP)
https://www.exploit-db.com/exploits/17486/

9) HT Editor 2.0.20 - Local Buffer Overflow (ROP)
https://www.exploit-db.com/exploits/22683/

10) Bypassing non-executable memory, ASLR and stack canaries on x86-64
Linux
https://www.antoniobarresi.com/security/exploitdev/201
4/05/03/64bitexploitation/

11) Bypassing non-executable-stack during Exploitation (return-to-libc)
https://www.exploit-db.com/papers/13204/

12) Exploitation - Returning into libc
https://www.exploit-db.com/papers/13197/

13) Bypass DEP/NX and ASLR with Return Oriented Programming technique
https://medium.com/4ndr3w/linux-x86-bypass-dep-nx-an
d-aslr-with-return-oriented-programming-ef4768363c9a/

14) ROP-CTF101
https://ctf101.org/binary-exploitation/return-orient
ed-programming/

15) Introduction to return oriented programming (ROP)
https://codearcana.com/posts/2013/05/28/introduction
-to-return-oriented-programming-rop.html/

16) Simple ROP Exploit Example
https://gist.github.com/mayanez/c6bb9f2a26fa75261a9a
26a0a637531b/

17) Analysis of Defenses against Return Oriented Programming
https://www.eit.lth.se/sprapport.php?uid=829/

2. Argument Size Distribution

Dynamic argument binding involves computing the HMAC
of arguments, which can potentially result in processing large
amounts of data for long strings or large objects. To gain more
insight about the amount of data that needs to be processed, we
performed an experiment to measure the sizes of the arguments
protected by dynamic binding during a sample run of the tested
applications. From Figure 9, we see that about 47% of the hashed
arguments have a size of eight bytes or smaller. The other major
size bucket (37%) corresponds to sizes of 150–300 bytes, which
after some investigation we can attribute to FILE structures, the
size of which is 216 bytes. Overall, dynamic argument binding
treats only small objects, and thus computing their HMAC does
not incur any significant runtime overhead.

http://shell-storm.org/blog/Return-Oriented-Programming-and-ROPgadget-tool/
http://shell-storm.org/blog/Return-Oriented-Programming-and-ROPgadget-tool/
https://blog.3or.de/arm-exploitation-defeating-dep-executing-mprotect.html
https://blog.3or.de/arm-exploitation-defeating-dep-executing-mprotect.html
https://0x00sec.org/t/64-bit-rop-you-rule-em-all/1937
https://crypto.stanford.edu/~blynn/rop/
http://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf
http://www.exploit-db.com/docs/english/28479-return-oriented-programming-(rop-ftw).pdf
https://www.exploit-db.com/exploits/44426/
https://www.exploit-db.com/exploits/44331/
https://www.exploit-db.com/exploits/17486/
https://www.exploit-db.com/exploits/22683/
https://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
https://www.antoniobarresi.com/security/exploitdev/2014/05/03/64bitexploitation/
https://www.exploit-db.com/papers/13204/
https://www.exploit-db.com/papers/13197/
https://medium.com/4ndr3w/linux-x86-bypass-dep-nx-and-aslr-with-return-oriented-programming-ef4768363c9a/
https://medium.com/4ndr3w/linux-x86-bypass-dep-nx-and-aslr-with-return-oriented-programming-ef4768363c9a/
https://ctf101.org/binary-exploitation/return-oriented-programming/
https://ctf101.org/binary-exploitation/return-oriented-programming/
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html/
https://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html/
https://gist.github.com/mayanez/c6bb9f2a26fa75261a9a26a0a637531b/
https://gist.github.com/mayanez/c6bb9f2a26fa75261a9a26a0a637531b/
https://www.eit.lth.se/sprapport.php?uid=829/

	Introduction
	Background and Motivation
	Code Reuse Attacks and Function Reuse
	Challenges of API-level Specialization
	Threat Model

	Function Specialization
	Static Argument Binding
	Dynamic Argument Binding
	Function Pointers
	Shadow Memory Protection
	Multi-threaded Programs

	Implementation
	Static Argument Binding
	Dynamic Argument Binding
	Shadow Memory
	Shadow Arguments

	Function Specialization

	Evaluation
	Data Set
	Runtime Overhead
	Inter-procedural Analysis
	Code and Memory Overhead
	Application-wide Function Specialization
	Context-sensitive Function Specialization
	Security Evaluation
	Case Study: Control Jujutsu control-jujutsu against Nginx
	Case Study: COOP coop against Firefox
	Case Study: COOP trap against Google Chrome

	Limitations and Future Work
	Related Work
	Advanced Code Reuse Attacks
	Data Flow Integrity
	API-level Monitoring
	Attack Surface Reduction

	Conclusion
	References
	Appendix
	Performance Evaluation with All System Calls Instrumented
	Argument Size Distribution

