

PIRANHA: FAST AND MEMORY-EFFICIENT
PATTERN MATCHING FOR INTRUSION
DETECTION

S. Antonatos1, M. Polychronakis1, P. Akritidis1, K.G. Anagnostakis2 and E.P.
Markatos1
1Institute of Computer Science Foundation for Research and Technology Hellas, P.O Box
1385 Heraklio, GR-711-10 Greece {antonat, mikepo, akritid, markatos}@ics.forth.gr;
2Distributed Systems Laboratory, CIS Department, Univ. of Pennsylvania, 200 S. 33rd Street,
Philadelphia, PA 19104 anagnost@dsl.cis.upenn.edu

Abstract: Network Intrusion Detection Systems (NIDS) provide an important security
function to help defend against network attacks. As network speeds and
detection workloads increase, it is important for NIDSes to be highly efficient.
Most NIDSes need to check for thousands of known attack patterns in every
packet, making pattern matching the most expensive part of signature-based
NIDSes in terms of processing and memory resources. This paper describes
Piranha, a new algorithm for pattern matching tailored specifically for
intrusion detection. Piranha is based on the observation that if the rarest
substring of a pattern does not appear, then the whole pattern will definitely
not match. Our experimental results, based on traces that represent typical
NIDS workloads, indicate that Piranha can enhance the performance of a
NIDS by 11% to 28% in terms of processing time and by 18% to 73% in terms
of memory usage compared to existing NIDS pattern matching algorithms.

Key words: network security; intrusion detection; pattern matching; network monitoring;
network performance.

1. INTRODUCTION

Network Intrusion Detection Systems (NIDSes) provide a powerful
mechanism to defend against well-known attacks on a computer network or
detect network abuse. NIDSes are mainly divided into two major categories:
signature-based and anomaly detection. Anomaly-detection NIDS try to spot
abnormal behavior on network based on statistics like rate of connections,

2 Antonatos, Polychronakis, Akritidis, Anagnostakis and Markatos

traffic overload or unusual protocol headers. On the contrary, the detection
mechanism of a signature-based NIDS is based on a set of signatures, each
describing a known attack. As an example, a signature taken from latest
Snort, is

alert tcp any any -> HTTP_SERVER 80 (content:"/root.exe"; nocase;)

This signature instructs that if “/root.exe” is found inside the payload of a
TCP packet that is originating from any host and any source port and is
destined to an HTTP server on port 80, then an attack on the web server is
taking place. While this signature requires full packet inspection, there exist
simpler signatures that require only header lookups. Pattern matching inflicts
a significant cost to the performance of a NIDS. Previous research results
suggest that 30% of total processing time is spent on pattern matching13,
while in some cases, like Web-intensive traffic, this percentage raises up to
80%6. Apart from processing time, memory demands of a NIDS may reach
at high levels due to rule-set growth. Although algorithms with low memory
demands have been developed, their performance in comparison with
algorithms that consume more memory is still poor. Given the fact that link
speed increases every year, pattern matching evolves to a highly demanding
process that needs special consideration. Minimizing the demands of pattern
matching leaves headroom for further heuristics to be applied for intrusion
detection, like anomaly detection or sophisticated preprocessors.

In this paper, we present Piranha, a pattern-matching algorithm designed
for and applied to a NIDS. Our experiments with Piranha implemented in
Snort v2.2 indicate that Piranha is faster than existing algorithms by up to
28% in terms of processing time, and requires up to 73% less memory. This
improvement relies on the small number of collisions and the compact
memory footprint of the algorithm.

The rest of the paper is organized as follows: in Section 2 a description of
existing state-of-the-art algorithms is provided, Section 3 depicts the Piranha
algorithm, while Section 4 presents the performance of Piranha compared to
other algorithms in various traffic scenarios and hardware platforms. Finally,
our concluding remarks are discussed in Section 5.

2. BACKGROUND

In this section we describe how a content matching NIDS operates and
summarize the key characteristics of pattern matching algorithms that have
been recently used in intrusion detection.

Piranha: Fast and Memory-efficient Pattern Matching for IDS 3

2.1 Basic NIDS model

A NIDS is usually designed as a passive monitoring system that reads
packets from a network interface through standard system facilities, such as
libpcap10. After a set of normalization passes (e.g., IP fragment reassembly,
TCP stream reconstruction, etc.) each packet is checked against the NIDS
rule-set. Some -rather old- NIDS organize their rule-set as a two-dimensional
data-structure chain, where each element, often called a chain header, tests
the input packet against a packet header rule. When a packet header rule is
matched, the chain header points to a set of signature tests, including
payload signatures that trigger the execution of the pattern matching
algorithm. Pattern matching is the single most expensive operation of a
NIDS in terms of processing cost. Latest versions of Snort (above version
2.0) organize the rules in groups. Rules that check for the same destination
port belong to the same group14. When a packet arrives, its destination port is
used to find the appropriate group. Afterwards, multi-pattern matching is
performed on patterns of the group in order to extract a set of rules that
possibly match. Each rule of this set is then examined separately.

In order to understand the interaction between pattern matching
algorithm, rule-set and experimental workload, we briefly present some of
the pattern matching algorithms that are commonly used in intrusion
detection systems.

2.2 Pattern matching algorithms

A number of algorithms have been proposed for pattern matching in a
NIDS. The performance of each algorithm may vary according to the case in
which it is applied. The multi-pattern approach of Boyer-Moore is fast for a
few rules, but does not perform well when used for a large set. On the
contrary, Wu-Manber behaves perform well when used with large rule-sets.
On the contrary, Wu-Manber behaves well on large sets, but its performance
starts to degrade when short patterns appear in rules. E2xB is based on the
idea that in most cases we have a mismatch and tries to filter out patterns
that do not match. However, E2xB introduces additional preprocessing cost
per packet, which is amortized only after a certain number of rules. In the
following subsections a more detailed description for each algorithm is
provided.

2.2.1 The Boyer-Moore algorithm

The most well-known algorithm for matching a single pattern against an
input was proposed by Boyer and Moore4. The Boyer-Moore algorithm

4 Antonatos, Polychronakis, Akritidis, Anagnostakis and Markatos

compares the search pattern with the input, starting from the rightmost
character of the search pattern. This allows the use of two heuristics that may
reduce the number of comparisons needed for pattern matching (compared to
the naive algorithm). Both heuristics are triggered on a mismatch. The first
heuristic, called the bad character heuristic, works as follows: if the
mismatching character appears in the search pattern, the search pattern is
shifted so that the mismatching character is aligned with the rightmost
position at which the mismatching character appears in the search pattern. If
the mismatching character does not appear in the search pattern, the search
pattern is shifted so that the first character of the pattern is one position past
the mismatching character in the input. The second heuristic, called the good
suffixes heuristic, is also triggered on a mismatch. If the mismatch occurs in
the middle of the search pattern, then there is a non-empty suffix that
matches. The heuristic then shifts the search pattern up to the next
occurrence of the suffix in the pattern. Horspool8 improved the Boyer-Moore
algorithm with a simpler and more efficient implementation that uses only
the bad-character heuristic. Fisk and Varghese6 recently developed Set-Wise
Boyer-Moore (SWBM), an algorithm based on Boyer-Moore concepts and
operating on a set of patterns. SWBM was integrated in Snort and tested
using a single traffic trace from an enterprise Internet connection.

2.2.2 The E2xB algorithm

E2xB is a pattern matching algorithm designed for providing quick
negatives when the search pattern does not exist in the packet payload,
assuming a relatively small input size (in the order of packet size)2,9. As
mismatches are by far more common than matches, pattern matching can be
enhanced by first testing the input (i.e., the payload of each packet) for
missing fixed-size sub-strings of the original signature pattern, called
elements. The collisions induced by E2xB, i.e., cases with all fixed-size sub-
strings of the signature pattern showing up in arbitrary positions within the
input, can then be separated from the actual matches using standard pattern
matching algorithms, such as Boyer-Moore4. The small input assumption
ensures that the rate of collisions is reasonably small -experiments have
shown collision rates of 10% in the worst case-. In the common case,
negative responses can be obtained without resorting to general-purpose
pattern matching algorithms. The E2xB algorithm was evaluated with traffic
traces from diverse environments, including traces containing attacks, traces
with normal web traffic, and WAN traffic traces from a local ISP.

Piranha: Fast and Memory-efficient Pattern Matching for IDS 5

2.2.3 The Wu-Manber algorithm

The most recent implementation of Snort uses a simplified variant of the
Wu-Manber multi-pattern matching algorithm16, as discussed by Snort
developers14. The “MWM” algorithm is based on a bad character heuristic
similar to Boyer-Moore, but uses a one or two-byte bad shift table
constructed by pre-processing all the patterns instead of only one. MWM
performs a hash on the two-character prefix of the current input to index into
a group of patterns, which are then checked starting from the last character,
as in Boyer-Moore. The performance of MWM was originally measured
using text files and various sets of patterns. The first attempt to measure
MWM as the basic algorithm for pattern matching in a NIDS was performed
in recent Snort implementation14. The results of previous studies14 show that
Snort is much faster than previous versions that used Set-Wise Boyer-Moore
and Aho-Corasick1.

3. IMPLEMENTATION

The Piranha algorithm is based on the idea that if we find the rarest 4-
byte substring of a pattern inside the packet payload, then we assume that
this pattern matches. Each pattern is now represented by its least popular 4-
byte sequence, where popular reflects the number of times that a specific
substring exists in all patterns. For all the instances of the rare substring,
Snort is instructed to check the corresponding rule. Piranha itself can only
handle patterns with length greater or equal to 4. For completeness, patterns
with length less than 4 are handled separately.

3.1 Preprocessing

Piranha treats every byte-aligned pattern as a set of 32-bit sub-patterns.
For example, the pattern “/admin.exe” (R1) is considered as the set of its 32-
bit byte-aligned sub-patterns, i.e.,“/adm”, “admi”, “dmin”, “min.”, “in.e”,
“n.ex” and “.exe”. The 32-bit partitioning was chosen as the use of integers
results to faster operations. Pattern matching can then be formulated in terms
of an AND operation. Every pattern is represented by a gate. The gate has as
many inputs as the number of its 32-bit sub-patterns. Each input represents
whether the 32-bit sub-pattern has appeared in the payload or not. The gate
for pattern R1 can be seen on the top-right part of Figure 1 with all its sub-
patterns constituting the inputs of the gate. Initially, all inputs are set to zero,
and are being switched on based on the sequences seen on the packet.
However, the output must not be regarded as an exact match.

6 Antonatos, Polychronakis, Akritidis, Anagnostakis and Markatos

Figure 1. An example of index table and gates for two patterns. When all the inputs of a gate
are switched on, then the pattern is possibly matched

For example, if the packet payload is “/admAAAdmin.exe”, then, despite the
fact that all 4-byte sequences for R1 have appeared, the pattern itself does
not match. Each time the output of the gate is switched on, we consider it as
collision and Snort is instructed for further inspection. In order to find fast
which inputs to switch on, an index table is maintained. The index table
keeps for all 4-byte sequences a list of all patterns that contain them. For
example, if we assume that we only have the patterns “/admin.exe” (R1) and
“/admin.sh” (R2), a view of the table is displayed in Figure 1. Sequences
“/adm”, “admi”, “dmin”, and “min.” appear in both patterns, while “.exe”,
“in.e”, and “n.ex” exist only in R1, and “in.s” and “n.sh” only in R2. Each
time a node of index table is reached then the appropriate input is switched
on. As an example, if the payload is “min.exe”, we first access the “min.”
entry of index table and we switch on the “min.” inputs for R1 and R2,
afterwards the “in.e” entry and switch on the “in.e” input for R1, then we
access the “n.exe” entry and switch on the input for R1 and finally the “.exe”
entry is traversed. The performance of Piranha for a subset of our packet
traces, in terms of running time and collisions per packet, is displayed in
Table 1 under the “full gates” column.

Piranha: Fast and Memory-efficient Pattern Matching for IDS 7

Figure 2. Optimized view of index table

Although gates present a low rate of collisions, their performance is poor
as a lot of steps and transitions are needed in order to take a decision whether
a pattern matches or not. In a typical case, the index table is firstly accessed,
then the appropriate input is switched on and then the whole gate is checked
if all inputs are switched on. In our effort to reduce the number of steps, and
consequently, memory accesses, an optimization phase takes place. The
optimization phase involves the procedure of selecting one input for each
gate, a representative sequence. The rarest sequence is chosen as
representative. It is defined as the sequence found in the least number of
rules and can be found through the index table by counting the number of
rules that is contained in. All other inputs are removed from the gate as well
as the corresponding nodes from the index table. For example, trying to
optimize our previous example we keep sequence “n.ex” as representative
for pattern R1 and “n.sh” for R2. The optimized view of the index table is
illustrated in Figure 2. After the optimization phase, every gate has only one
input, and thus, it can totally be removed (output is equal to input), as we can
use the index table for the searching phase -if a node of the index table is
reached then a possible match is triggered-.

The effect of optimization is shown in Table 1, in terms of running time
and collisions. The “full gates” column represents the unoptimized case of
Piranha, and the “representative sequence” refers to the optimized case.
Although collisions per packet increase as now only one input triggers
possible match, the performance increases due to decrease of steps and
compactness of memory footprint. Performance is increased by up to 36%
even if collisions are two to three times more.

Table 1. Effect of optimizing gate inputs. Collisions increase but running time decreases as
less steps and memory are required
 Full gates Representative sequence
 Running time Collisions Running time Collisions
forth.web 37.71 0.61 24.06 1.65
forth.tr 36.14 0.29 27.60 0.67
forth.tr2 34.58 0.29 27.04 0.63
ideval2 12.07 0.33 9.58 1.06
ideval3 13.16 0.25 10.68 0.93

8 Antonatos, Polychronakis, Akritidis, Anagnostakis and Markatos

With further optimization during the searching phase as it is described in
Section 3.2, collisions and running time drop significantly.

3.2 Searching

The searching phase of Piranha is straightforward. For each 4-byte
sequence of the packet payload, the index table is consulted in order to find
the patterns that contain this sequence. All these patterns are then sent to
Snort for further inspection. Following our previous example, if the payload
is “/login.sh”, we have to check sequences “/log”, “logi”, “ogin”, “gin.”,
“in.s” and “n.sh”. According to the index table, “n.sh” is found in pattern R2,
so we assume that R2 is matched. The rest of the sequences are not
contained in any pattern so no checks are necessary. Such an approach
would trigger further inspection multiple times for each packet, as shown in
Table 2 (“No check” case). We observe that, in the average case, in an
unoptimized search we trigger one rule per packet, which is prohibitive in
terms of performance. In our effort to reduce collisions, we perform a trivial
check before the decision that a pattern is matched. The last two characters
of the pattern are checked against the corresponding two characters in the
payload, and if the check succeeds then further inspection is triggered. The
effect of this optimization is summarized in Table 2. In some cases, up to
75% of triggers are eliminated while the minimum reduction reaches 50%.

4. EXPERIMENTS

We evaluated the performance of Piranha against E2xB and MWM
algorithms in Snort 2.2 using a set of packet traces. All Snort preprocessors
were disabled.

Table 2. Collisions per packet without and with checking last 2 bytes of pattern against
payload
 No check Check last 2 bytes
forth.web 1.65 0.62
forth.tr 0.67 0.24
ideval2 1.06 0.32

Piranha: Fast and Memory-efficient Pattern Matching for IDS 9

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 2 4 8 16 32 64

N
or

m
al

iz
ed

 ru
nn

in
g

tim
e

Hashtable size (KB)

forth.web
forth.tr

forth.tr2
forth.tr3
forth.tr4

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

1.2

 2 4 8 16 32 64

Hashtable size (KB)

ideval2
ideval3

defcon.02
defcon.03

ucnet00

Figure 3. Effect of hash-table size on running time

4.1 Environment

All the experiments were conducted on a machine equipped with a
Pentium 4 processor running at 2.80GHz, 8KB of L1 cache, 512KB of L2
cache, and 1GB of main memory. The host operating system was Linux
(kernel version 2.4.0, Redhat 9.0). We used five sets of packet traces from
diverse environments. The first set consists of a full packet trace containing
Web traffic (forth.web), generated by concurrently running a number of
recursive wget requests on popular portal sites from a host within the
FORTH network. The second set contains two full packet traces (forth.tr)
and forth.tr2) collected in a local area network at Institute of Computer
Science inside FORTH. The third set includes a full-packet trace from the
DEFCON “capture the flag” data-set (defcon.02). This trace contains
numerous intrusion attempts. The fourth set consists of two full-packet traces
(ideval2 and ideval3) which were collected during the DARPA evaluation
tests at MIT Lincoln Laboratory. Finally, a header-only trace with uniformly
random payload (ucnet00) collected on the OC3 link connecting the
University of Crete campus network (UCNET) to the Greek academic
network (GRNET)5 was used.

4.2 Effect of hash-table size

A complete index table of 32-bit-long patterns would normally contain
232 entries, an outrageous number in terms of memory usage. In order to
keep the memory footprint as small as possible, the index table was
implemented as a hash-table. Since the memory footprint and locality of
accesses is critical to the performance of the algorithm, we determined the
optimal size of the hash-table by obtaining the running time for different
sizes and for all available traces.

10 Antonatos, Polychronakis, Akritidis, Anagnostakis and Markatos

Traces
forth.web forth.tr forth.tr2 ideval2 ideval3 defcon.02 defcon.03 ucnet00

N
or

m
al

iz
ed

 ti
m

e

0

0.25

0.5

0.75

1

1.25

1.5

Piranha E2xB MWM

Figure 4. Running time for E2xB, Piranha and MWM for patterns with length greater or equal
to 4

Results are summarized in Figure 1. Running times for each set are
presented normalized to the lowest value. The time was measured using the
time facility of the operating system. Small hash-tables suffer from conflicts
and consequently longer chains have to be traversed in order to find the
correct index. A large hash-table, on the contrary, has fewer conflicts but for
every access a performance penalty is paid due to poor cache behavior. We
observe that optimal size of the hash table for most of the traces is around
16KB and this is the size we used for all our experiments presented in the
paper.

4.3 Comparison against other algorithms

We compared Piranha against MWM14 and E2xB2,9 on all available
traces. In our experiments, we measured running time in user space (kernel
time was negligible). Results are presented in Figure 4. Times are presented
normalized against the running time of Piranha algorithm.

The performance of Piranha is consistently better compared to other
algorithms. Improvement ranges between 10 and 23.50%, with the results
remaining the same for the rest of the traces that are not displayed in Figure
4. We also compared our algorithm with AC-Banded11, an optimized
implementation of Aho-Corasick1, but running time of AC-Banded was two
to four times the time of our algorithm. Results in Figure 4 are for patterns
with length greater or equal to four, as four is the length that can be natively
handled by Piranha. For completeness reasons, the case of small pattern was
also implemented. Small patterns impose a performance bottleneck for
Piranha and MWM as well as E2xB. MWM can natively handle patterns with
length greater or equal to two while patterns with length one are examined
separately. The overhead that small patterns impose in terms of running time

Piranha: Fast and Memory-efficient Pattern Matching for IDS 11

can be seen on Table 3. In average case, running time was decreased by 25%
for Piranha and 20% for MWM. The effect on E2xB is smaller as it is not
dependent to pattern length but proportional to the number of patterns. In the
last two columns of the table we can observe the performance benefit of
Piranha against MWM and E2xB for all pattern lengths. Despite the
performance bottleneck, our algorithm still performs better for all available
traces, except the case of defcon.02 trace where improvement is marginal.
However, our main contribution is focused on patterns with a fair enough
large size as only 3% of patterns have length less than four.
Piranha does not only perform better in terms of processing time but also in
terms of memory usage. While MWM requires 45MB of memory to process
the full rule-set, AC-Banded 96MB and Aho-Corasick 140MB, Piranha
consumes only 37MB. Efforts have been made recently in order to develop
algorithms with low memory consumption. Tuck et al.15; have developed
two modified versions of Aho-Corasick, AC-Bitmap and AC-Path, that
reduce memory usage. AC-Bitmap needs 20MB memory while AC-Path
only 15MB. However, such algorithms present very high processing time.
Comparing Piranha with AC-Bitmap and AC-Path, we observed that they
need, in average, three to four times more processing time. Snort also comes
with SFKSearch, an algorithm that requires only 14MB of memory, but its
performance compared to others is poor - three to four times more
processing time against Piranha -. The tradeoff between memory usage and
processing time can be seen on Figure 5. Algorithms with low memory
usage need three to four times more processing time, while algorithms with
high memory usage present high processing capacity. Although the
assumption that low memory means high processing time cannot be
generalized, there are strong indications that this tradeoff might hold for
other algorithms that are not discussed here.

Table 3. Effect of small-patterns on running time
 Piranha MWM E2xB
 pattern length pattern length pattern length Piranha

vs. MWM
Piranha

vs. E2xB
 >=4 all >=4 all >=4 all % %
forth.web 21.05 30.17 25.32 33.59 28.86 34.12 10.18 11.57
forth.tr 23.78 30.78 30.80 35.65 29.80 31.18 13.66 1.28
forth.tr2 26.55 30.37 30.23 36.12 29.91 30.46 15.91 0.29
ideval2 8.49 11.36 9.68 12.70 10.84 13.25 10.55 14.26
ideval3 9.88 12.89 11.26 14.58 12.69 15.25 11.59 15.47
defcon.02 7.06 9.91 8.99 9.97 9.42 9.96 0.60 0.50
defcon.03 7.20 8.74 8.59 9.20 8.18 8.99 5.00 2.78
ucnet00 3.11 3.59 3.48 4.21 3.59 3.81 14.72 5.77

12 Antonatos, Polychronakis, Akritidis, Anagnostakis and Markatos

10 30 50 70 90 110 150

P
ro

ce
ss

in
g

tim
e

(s
ec

)

0

10

20

30

40

50

60

70

80

90

Memory usage (MB)

SFKSearch

AC-Banded

AC-Path

Piranha
Mwm

Aho-Corasic

Figure 5. Memory usage against processing time

4.4 Evaluation on different architectures

We evaluated the performance of Piranha on different hardware
architectures. Our testing environment, besides the machine described in
Section 4.1, consists of a Pentium Xeon 2.4 GHz with 8KB L1 cache,
512KB L2 cache and 512MB main memory, an AMD Athlon MP 1.8GHz
with 128KB L1 cache, 256KB L2 cache and 512MB main memory and a
Pentium 3 running at 600 MHz with 8KB L1 cache, 256KB L2 cache and
512MB main memory. Results are presented in Figure 6. Running time is
normalized against the time of Piranha running on P4 at 2.8GHz.

Independent of the underlying hardware platform, Piranha performs
better for all traces. As processor clock speed decreases, performance of both
algorithms decreases as expected. However, the performance gap seems to
decrease with the clock speed for specific traces while for others it remains
constant. On Pentium Xeon 2.4GHz, improvement waves between 7.8% and
18.8% while on Pentium 3 600MHz between 10.86% and 14.83% (leaving
out the ucnet00 trace where improvement is marginal). Similar results apply
to the AMD Athlon architecture, where improvement is ranged between
7.32% and 18.21% (again ucnet00 trace is omitted).

Piranha: Fast and Memory-efficient Pattern Matching for IDS 13

Traces
FORTH.web FORTH.TR IDEVAL2 IDEVAL3 DEFCON.02 DEFCON.03 UCNET00

N
or

m
al

iz
ed

 ti
m

e

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

Piranha / P4 2.8

MWM / P4 2.8

Piranha / Xeon 2.4

MWM / Xeon 2.4

Piranha / AMD 1800

MWM / AMD 1800

Piranha / P3 600

MWM / P3 600

Figure 6. Performance of Piranha and MWM on different architectures

4.5 Performance under attack

Intrusion detection systems are themselves subject to being attacked.
Some types of attack try to evade NIDS by exploiting weaknesses in
protocol handling, like IP defragmentation or TCP reassembly7,12. Other
attacks aim at overloading the detection engines by exploiting weaknesses in
the internal algorithms used, in our case pattern matching. The attacker sends
packets with carefully crafted payload in order to force the pattern matching
engine to spend more processing time than it would require for an innocent
packet. Most of the traffic is then dropped by the NIDS, including packets
containing attack, giving the attacker the chance to evade detection. Our
previous work on such attacks has shown that the processing time of Snort
can be raised by up to 25 times3. Although the worst case scenario for each
algorithm and the Snort itself is extremely difficult to be generated, we
provide some hints on how a NIDS can be heavily overloaded. For
performance reasons, Snort firstly performs the multi-pattern matching and
then for all possible matches the whole rule is checked: header processing
and exact string matching for all patterns that the rule contains14. Examining
the groups of rules that are processed during packet inspection, it can be
observed that rule

alert tcp any any any any (ack:0; flags:SFU12;
content:"AAAAAAAAAAAAAAAA"; depth:16;)

is found in all groups as it applies to all source and destination ports. That
means that for all packets examined, Snort will try to locate the pattern
``AAAAAAAAAAAAAAAA'' and for all possible matches will check the rest of
the rule. In our example, after the pattern matching phase the
acknowledgment number and the TCP flags will be verified. We constructed
an attack trace by taking the headers of the forth.web and placing only "A" in
the payload. In that way, in every offset of the payload Snort finds that

14 Antonatos, Polychronakis, Akritidis, Anagnostakis and Markatos

pattern and checks for the rest of the rule. However, the header of the
packets is normal (no special TCP flags are turned on and acknowledgment
number in non-zero) and thus the rule is never matched.
Forcing Snort to generate matches and checks in every offset is very
expensive as it can be seen on Table 4. We observe that processing time is
raised by 3 to 15 times and that all algorithms are subject to payload attacks,
as the way Snort performs detection is exploited and not the nature of the
algorithms. Such overload factors can provide the attacker the ability to hide
his attack among legitimate traffic. Other payloads were also crafted, like
payload including only “a”. As the packet payload is capitalized, possible
matches are also generated and the overloading still takes place. In the case
of MWM, running time is increased further as there are some patterns that
start with “aa” and trigger more inspections on the internal structures of
MWM. The Aho-Corasick-like algorithms try -as an optimization- to verify
their match by calling memcmp() for pattern against the payload before
forcing Snort to check the whole rule. The cost of memory-comparing is
increasingly high as in each offset a comparison is performed. However,
there are some cases where a specific payload can cause Piranha to generate
collisions in most of the payload offsets but Aho-Corasick-like algorithms
are not affected. This payload can be made by replacing the last character of
“AAAAAAAAAAAAAAAA” pattern with another character, like “B”. Piranha
decides that pattern matches only by seeing the appearance of an “AAAA”
but the whole pattern is not really matched. Aho-Corasick algorithm detect
that the whole pattern cannot be matched so their time remains practically
the same. As Table 4 shows, only Piranha and MWM suffer from this
payload attack. Focusing on the worst overall performance (the “worst
overall” column) among all attacks described above, Piranha needs 3 times
less running time than other algorithms.

Table 4. Completion time and overhead factor (attack completion time / original completion
time) for different attack payloads. “Time” denotes completion time and “factor” denotes
overhead factor
 Packet payload
 Origi-

nal
AAAAA… aaaaa… AAA…B… Worst

overall
 Time Time Factor Time Factor Time Factor
Piranha 21.94 120.01 5.46 118.50 5.40 91.47 4.16 120.01
MWM 25.91 233.73 9.02 376.72 14.53 204.88 7.90 376.72
AC 35.71 417.72 11.69 361.45 10.12 28.98 0.81 417.72
AC-path 81.59 357.84 4.38 212.62 2.60 78.81 0.96 357.84
AC-Bitmap 72.87 409.74 5.62 241.88 3.31 110.65 1.51 409.74

Piranha: Fast and Memory-efficient Pattern Matching for IDS 15

5. CONCLUDING REMARKS

We have presented the design of Piranha, a novel pattern matching
algorithm for NIDS and evaluated its performance under various network
traffic characteristics using a diverse set of packet traces. Our comparison
against existing algorithms shows that an improvement of up to 28% can be
achieved. The improvement is due to its quick decisions on which patterns
may match and to its compact memory footprint which infers good cache
behavior. Our results on different architectures indicate that Piranha
performs consistently better, with the performance gain increasing along
with processor speed. Furthermore, we have concluded to some general
remarks for pattern matching on NIDS: small patterns inflict a significant
performance overhead that needs to be examined carefully, and cache-
conscious programming of a NIDS pattern-matching algorithm is a key
element to its performance.

ACKNOWLEDGEMENTS

This work was supported in part by the IST project SCAMPI (IST-2001-
32404) funded by the European Union and in part by the i-Guard GSRT
Project (02-PRAXE-212) funded by the Greek General Secretariat for
Research and Technology through PRAXE A. Work of K.G. Anagnostakis is
also supported in part by ONR under Grant N00014-01-1-0795. E. P.
Markatos, S. Antonatos, M. Polychronakis and P. Akritidis are also at
University of Crete. Work of K. G. Anagnostakis was done while at ICS-
FORTH. We would also like to thank Vasilis Siris for providing the UCnet
traces.

REFERENCES

1. Aho and M. Corasick, Fast pattern matching: an aid to bibliographic search.

Commun. ACM, 18(6):333-340, June 1975.
2. K. G. Anagnostakis, E. P. Markatos, S. Antonatos, and M. Polychronakis, E2xB: A

domain-specific string matching algorithm for intrusion detection. In Proceedings of
the 18th IFIP International Information Security Conference (SEC2003), May 2003.

3. S. Antonatos, K. G. Anagnostakis, and E. P. Markatos, Generating realistic
workloads for network intrusion detection systems. SIGSOFT Softw. Eng. Notes,
29(1):207-215, 2004.

4. R. Boyer and J. Moore, A fast string searching algorithm. Commun. ACM,
20(10):762-772, October 1977.

16 Antonatos, Polychronakis, Akritidis, Anagnostakis and Markatos

5. C. Courcoubetis and V. A. Siris, Measurement and analysis of real network traffic.
In Proceedings of the 7th Hellenic Conference on Informatics (HCI'99), August
1999.

6. M. Fisk and G. Varghese, An analysis of fast string matching applied to
content-based forwarding and intrusion detection, Technical Report CS2001-0670
(updated version), University of California - San Diego, 2002.

7. M. Handley, V. Paxson, and C. Kreibich, Network intrusion detection: Evasion,
traffic normalization, and End-to-End protocol semantics, In Proceedings of
USENIX Security Symposium, pages 115-134, 2001.

8. R. Horspool, Practical fast searching in strings. Software - Practice and Experience,
10(6):501-506, 1980.

9. E. P. Markatos, S. Antonatos, M. Polychronakis, and K. G. Anagnostakis, ExB:
Exclusion-based signature matching for intrusion detection, In Proceedings of
CCN'02, November 2002.

10. S. McCanne, C. Leres, and V. Jacobson, libpcap. Lawrence Berkeley Laboratory,
Berkeley, CA, available via anonymous ftp to ftp.ee.lbl.gov.

11. M. Norton, Optimizing Pattern Matching for Intrusion Detection, July 2004.
http://docs.idsresearch.org/ OptimizingPatternMatchingForIDS.pdf.

12. T. H. Ptacek and T. N. Newsham, Insertion, evasion, and denial of service: Eluding
network intrusion detection, Technical report, Secure Networks, Inc., Jan. 1998.

13. M. Roesch, Snort: Lightweight intrusion detection for networks. In Proceedings of
the 1999 USENIX LISA Systems Administration Conference, November 1999.
http://www.snort.org/.

14. Sourcefire, Snort 2.0 - Detection Revisited. October 2002. http://www.snort.org/
docs/Snort_20_v4.pdf.

15. N. Tuck, T. Sherwood, B. Calder, and G. Varghese, Deterministic memory-efficient
string matching algorithms for intrusion detection, In Proceedings of the IEEE
Infocom Conference, March 2004.

16. S. Wu and U. Manber, A fast algorithm for multipattern searching, Technical Report
TR-94-17, University of Arizona, 1994.

