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Abstract
We propose a novel general-purpose network traffic Monitoring Application Program-
ming Interface (MAPI) for network monitoring applications. Our work builds on a gener-
alized network flow model that we argue is flexible enough to capture emerging applica-
tion needs, and expressive enough to allow the system to exploit specialized monitoring
hardware, where available. We describe an implementation of MAPI using the DAG 4.2
Gigabit Ethernet monitoring card and a commodity Gigabit Ethernet adapter, we present a
set of experiments measuring overheads, and we demonstrate potential applications. Our
experimental results suggest that MAPI has more expressive power than competing ap-
proaches, while at the same time is able to achieve significant performance improvements.
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1. Introduction
Effective network traffic monitoring is becoming increasingly vital for network man-
agement as well as for supporting a growing number of automated control mechanisms
needed to make the IP-based Internet more robust, efficient, and secure.

The need for effective network traffic monitoring, along with increasing link speeds,
has exposed limitations in existing network monitoring architectures that are deeply
rooted in the basic abstractions used. The most widely used abstraction for network traffic
monitoring has been that of flow-level traffic summaries, first demonstrated in software
prototypes such as NeTraMet[4] and later incorporated as standard functionality in routers
(c.f., Cisco’s NetFlow[5]). This approach has been reasonably successful in supporting
monitoring functions ranging from accounting to some rather simple forms of denial of
service attack detection [21]. However, the information contained in flow-level summaries
is usually not detailed enough for emerging monitoring functions. For instance, determin-
ing per-application network usage is not possible for some of the major new applications
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that dynamically allocate ports, such as peer-to-peer file sharing, multimedia streaming,
and conferencing applications. Additionally, traditional flow-level traffic summaries are
usually not adequate for security monitoring as provided by intrusion detection systems.
These security applications usually need much more information than provided by flow-
level traffic summaries. For example, in order to detect and contain computer viruses and
worms at times of emergency, intrusion detection systems need to be able to inspect and
process network packet payloads, which are not available in flow-level traffic summaries.

In absence of any better abstraction, many network operators resort to full packet
capture[8] or case-specific solutions usually supported by specialized hardware[7]. Such
approaches have high hardware cost, significant processing needs and produce vast
amounts of data, complicating the task of data analysis.

We argue that such limitations (i.e. too little information provided by flow-level traffic
summaries vs. too much data provided by full packet capture) demonstrate the need for a
portable general-purpose environment for running network monitoring applications on a
variety of hardware platforms. If properly designed, such an environment could provide
applications with just the right amount of information they need: neither more (such as the
full packet capture approaches do), nor less (such as the flow-based statistics approaches
do). In this paper we present an expressive programming interface, which enables users to
clearly communicate their monitoring needs to the underlying traffic monitoring platform.
The Monitoring Application Programming Interface (MAPI) builds on a generalized flow
abstraction that allows users to tailor measurements to their own needs. The main novelty
of MAPI is that it elevates flows to first class status, allowing programmers to perform
a set of standard operations on flows similar to other system abstractions such as files
and sockets. Where necessary and feasible, MAPI also allows the user to trigger cus-
tom processing routines not only on summarized data but also on the packets themselves,
similar to programmable monitoring systems [1, 13]. The expressiveness of MAPI en-
ables the underlying monitoring system to make informed decisions in choosing the most
efficient implementation, while providing a coherent interface on top of different lower-
level elements, including intelligent switches, high-performance network processors, and
special-purpose network interface cards.

This paper presents the design of MAPI and evaluates an implementation on top of two
network traffic monitoring systems: an off-the-shelf Gigabit Ethernet network interface,
and a more sophisticated traffic capture card. Section 2 presents the design of MAPI,
while Section 3 presents our implementation. In Section 4 we evaluate the performance
of MAPI in comparison with existing approaches. Section 5 places our contribution in the
context of related efforts, and Section 6 summarizes and concludes the paper.

2. The Design of MAPI: a network traffic monitoring API
The goal of an application programming interface is to provide a suitable abstraction
which is both simple enough for programmers to use, and powerful enough for expressing
complex application specifications. A good API should also relieve the programmer from
the complexities of the underlying hardware while making sure that hardware features
can be properly exploited.

MAPI builds on a simple and powerful abstraction, the network flow, but in a flexible
and generalized way. In MAPI, a network flow is generally defined as a sequence of
packets that satisfy a given set of conditions. These conditions can be arbitrary, ranging
from simple header-based filters, to sophisticated protocol analysis and content inspection
functions. For example, a very simple flow can be specified to include all packets, or all



packets directed to a particular web server. A more complex flow may be composed of all
TCP packets between a pair of subnets that contain the string “User-agent: Mozilla/5.0”.

Our approach to network flows is therefore fundamentally different from existing mod-
els that constrain the definition of a flow to the set of packets with the same source and
destination IP address and port numbers within a given time-window. In contrast with ex-
isting models, MAPI gives the “network flow” a first-class status: flows are named entities
that can be manipulated in similar ways to other programming abstractions such as sock-
ets, pipes, and files. In particular, users may create or destroy (close) flows, read, sample
or count packets of a flow, apply functions to flows, and retrieve other traffic statistics
from a flow.

By using first-class flows, users can express a wide variety of new monitoring opera-
tions. For example, MAPI flows allow users to develop simple intrusion detection schemes
that require content inspection [2]. In contrast, traditional approaches to traffic/network
flows, such as NetFlow, IPFIX, and related systems and proposals do not have the means
of providing the advanced functions required for this task.

In the remainder of this Section we present an overview of the main operations pro-
vided by MAPI. A complete specification of MAPI and a more detailed description of
each function is provided in [20].

2.1 Creating and Terminating Network Flows

Central to the operation of the MAPI is the action of creating a network flow:
fd = mapi_create_flow(char *dev, cond *c, mode m)

This call creates a network flow, and returns a flow descriptor fd that points to it.
This network flow consists of all network packets which go through network device dev
and which satisfy condition c. For example mapi create flow("/dev/dag0", "dst
port 80", RAW) creates a network flow of all packets seen by the network interface
/dev/dag0 destined to port 80. The third argument enables the monitoring system to
perform some pre-processing on the stream of packets. For example, when m is set to
COOKED, then the individual packets are pre-processed according to their protocol (i.e.
TCP or UDP) and concatenated into a data stream. This preprocessing will re-assemble
fragmented packets, discard retransmitted packets, re-order out-of-order packets, etc.

Besides creating a network flow, monitoring applications may also close the flow when
they are no longer interested in monitoring:
fd = mapi_close_flow(flow_desc fd)

After closing a flow, all the structures that have been allocated for the flow are released.

2.2 Reading packets from a flow

Once a flow is established, the user will probably want to read packets from the flow.
Packets can be read one-at-a-time using the following blocking call:
packet * mapi_get_next_packet(fd)

which reads the next packet that belongs to flow fd. If the user does not want to read
one packet at-a-time and possibly block, (s)he may register a callback function that will
be called when a packet to the specific flow is available:
mapi_loop(flow_desc fd, int cnt, mapi_handler callback)

The above call makes sure that the handler callback will be invoked for each of the
next cnt packets that will arrive in the flow fd. ∗

∗Although the mapi loop call is inspired from the pcap loop call of the libpcap library [14], in contrary to
pcap loop, mapi loop is non-blocking.



2.3 Applying functions to Network Flows

Besides neatly arranging packets, network flows allow users to treat packets that belong
to different flows in different ways. For example, a user may be interested in logging all
packets of a flow (e.g. to record an intrusion attempt), or in just counting the packets and
their lengths (e.g. to count the bandwidth usage of an application), or in sampling the
packets (e.g. to find the IP addresses that generate most of the traffic). The abstraction
of the network flow allows the user to clearly communicate to the underlying monitoring
system these different monitoring needs. To enable users to communicate these different
requirements, MAPI enables users to associate functions with flows:
mapi_apply_function(flow_desc fd, function f, ...)

The above association applies function f to every packet of flow fd. Based on the
header and payload of the packet, the function will perform some computation, and may
optionally discard the packet.

MAPI provides several predefined functions that cover some standard monitoring
needs. For example, function PACKET COUNT counts all packets in a flow, function
SAMPLE PACKETS can be used to sample packets, etc. There also exist functions that count
various traffic metrics, like bandwidth or fragmented packets. MAPI also provides param-
eterized hashing functions that will take user defined arguments. Based on the value of
the hashing function, the packet may be kept or discarded. Although these functions will
enable users to process packets, and compute the network traffic metrics they are inter-
ested in without receiving the packets in their own address space, they must somehow
communicate their results to the interested users. For example, a user that will define that
the function packet count will be applied to a flow, will be interested in reading what is
the number of packets that have been counted so far. This can be achieved by allocating a
small amount of memory or a data structure to each network flow. The functions that will
be applied to the packets of the flow will write their results into this data structure. The
user who is interested in reading the results will read the data structure using:
mapi_read_results(flow_desc fd, function f, void * result)

2.4 Dynamically Generated Flows

Although network flows provide users with a powerful abstraction to group related pack-
ets together, there are cases where users cannot provide an exact specification of the flows
they are interested in. In addition, users may be interested in viewing traffic data from sev-
eral different points of view. For example, they may want to know the distribution of traffic
among applications, the distribution of traffic among source or destination IP addresses,
etc. Overall, users may be generally interested in gathering traffic statistics, without being
particularly interested in observing packet payloads - they just need header information.
To cater to these user needs, MAPI defines the hierarchical network flows:
fd = mapi_create_flow("dag0", "port 80" , HIERARCHICAL)

The above call creates the hierarchicalflow fd composed of all packets destined to
port 80. In contrast to raw and cooked flows, hierarchicalflows do not deliver packets
to end users. Instead they are composed of several sub-flows. A sub-flow is defined to
contain all packets (within the parent flow) that have a common 5-tuple of source and
destination IP address, source and destination port, and protocol number. When a new
packet of a flow arrives, it is sent to its appropriate sub-flow. If no such flow exists, a new
flow is created. Each hierarchical flow has a predefined limit of sub-flows and when
a sub-flow is idle for more than a predefined interval, it is considered expired. Users may
also define an upper limit for the duration of a flow. If a flow continues to receive packets



for an interval longer than that, it is considered expired. When a new flow is created, but
the number of active sub-flows has reached the limit, one of them expires.

2.5 MAPI example: monitoring FTP traffic

In this Section we present an example of using MAPI to monitor all FTP traffic in a sys-
tem. The main difficulty with monitoring FTP traffic, as compared to applications like
email or web traffic, is that FTP transfers may be performed over dynamically allocated
ports, which are not known in advance. FTP uses a well-known port (i.e. 21) only as a
control channel. When a file transfer is initiated, the FTP server informs the client about
the dynamic port number to be used for the transfer. Therefore, in order to accurately
account for all FTP traffic, a monitoring application needs to monitor port 21 to find new
clients as well as the dynamic ports these new clients will use in order to transfer their
data. Traditional monitoring systems, such as NetFlow, find it difficult to monitor traffic
of applications that use dynamically generated ports. For example, although NetFlow and
similar approaches, can report the amount of observed traffic per port, they do not know
which applications these (dynamically generated) ports correspond to, and thus it is dif-
ficult to attribute network traffic to specific applications. On the contrary, MAPI is able
to analyze packet payloads to find the dynamically generated ports and to associate those
ports with the application that generated them.

The following code can be used to monitor all FTP traffic using MAPI:

packet *p;
flow_descriptor fd, xfers[1024];
struct byte_count_results br;
int src_port, dst_port, count, total_ftp_traffic=0;
char new_flow[64];

/* Create a flow to monitor the control port of FTP: port 21 */
1: fd = mapi_create_flow(/dev/scampi, "tcp port 21", RAW);

/* Find packets that indicate the beginning of a new transfer */
/* such packets contain the string "227 Entering Passive Mode" */

2: mapi_apply_function(fd, SUBSTRING_SEARCH, "227 Entering Passive Mode");

/* Track the next 100 transfers */
3: for(count=0; count<100; count++){
4: p = mapi_get_next_packet(fd);

/* extract_ports gets a packet which indicates the beginning */
/* of a new transfer and extracts the dynamic data port */

5: extract_ports(p, &src_port, &dst_port);
/* Create a flow to track the forthcoming transfer according */
/* to the information contained in the control packet */

6: sprintf(new_flow, "tcp src port %d and dest port %d", port[0], port[1]);
/* Create a new flow for this data transfer */

7: xfers[count] = mapi_create_flow(/dev/scampi, new_flow, RAW);
/* Count the bytes transfered in this flow */

8: mapi_apply_function(xfers[count], BYTE_COUNT);
}
/* summary */

9: for(count=0; count<100; count++){
10: mapi_read_results(xfers[count],BYTE_COUNT,&br);
11: total_ftp_traffic += br.bytes;

}

In order to monitor all FTP traffic, we initially define a network flow for capturing all
FTP control packets that go through port 21 (line 1). We are interested only for packets



indicating a file transfer initiation, thus substring search is applied to distinguish them
among the rest (line 2). An example payload of such packet is the following:
227 Entering Passive Mode (147,52,17,51,146,226)

This packet is sent by the server and contains the IP address (147.52.17.51) and the
port number (37602) of the forthcoming transfer. Therefore, all necessary information for
the transfer session is known so a new flow can be defined for its accounting.

Peer-to-peer, multimedia conferencing and messaging applications usually operate in
the same fashion, negotiating transfer ports through a control channel. It is straightforward
to adapt the above code to monitor the traffic of any of these applications.

Although the above example demonstrates that MAPI can provide traffic informa-
tion that traditional flow-level traffic summaries, such as NetFlow, cannot provide, one
could have used a packet dumping facility, such as tcpdump or other libpcap-based
tools, in order to find similar information. However, implementing the above applica-
tion using libpcap would have resulted in longer code and higher overheads. For ex-
ample, libpcap does not provide any string searching facility, and thus the programmer
would have to provide a significant chunk of code to substitute line 2 above. In addition,
libpcap does not provide any facility to apply functions to packets, and thus the pro-
grammer would have to provide a the code to read packets and count their bytes. Instead
of forcing the programmer to provide all this mundane code, MAPI already provides this
frequently used functionality.

3. Implementation
We have implemented a subset of MAPI on top of two different network monitoring
platforms: (i) an Intel Pro 1000 MT (Gigabit Ethernet) desktop adapter and (ii) a DAG
4.2 GE monitoring card for Gigabit Ethernet. The Intel Pro 1000 MT is a commodity
adapter, which, if put in promiscuous mode can capture all packets that go through it and
can forward them to the kernel of the host computer. The DAG 4.2 GE monitoring card
is capable of passive full packet capture at the speed of one Gigabit per second. Contrary
to the Intel Pro 1000 MT commodity adapter, the DAG card, is capable of retrieving and
mapping to user space network packets through a zero-copy interface, which avoids costly
interrupt processing. It can also stamp each packet with a high precision time stamp. A
large static circular buffer memory-mapped to user-space is used to hold arriving packets,
avoiding wasted time for costly packet copies. User applications can directly access this
buffer without the invocation of the operating system kernel.

Figure 1 shows the main modules of the MAPI system. On the top of the Figure we
see a set of monitoring applications that, via a MAPI stub, communicate with the MAPI
daemon. The daemon consists of two threads, one thread for packet processing and one
for the communication with the monitoring applications. All active applications and their
defined flows are internally stored in the daemon in a two-dimensional list. List nodes
contain all necessary data structures for application or flow definition and accounting.
Each captured packet is checked by the main processing thread against the defined flow
filters. Then, for every flow it belongs to, the appropriate actions are made: counters are
incremented, sampling or substring search functions are applied and the packet might be
sent to the application or dumped to disk by the daemon. In the current implementation,
filtering is accomplished using the bpf filter() function of the libpcap library which
applies a compiled BPF filter to a packet in user level. Each compiled filter is stored into
the corresponding flow structure.

All communication of the daemon with the monitoring applications is handled by the



Figure 1: Mapi Daemon Architecture.

NIC DAG
libpcap MAPI libpcap MAPI

Cycles per Packet 11897 13082 453 235

Table 1 Packet fetching performance for MAPI and pcap.

“communication thread”. This thread constantly listens for requests made by the monitor-
ing application through MAPI functions and sets up the appropriate shared data structures.
When monitoring applications need to read data, the communication thread reads these
data from the shared data structures. All communication between monitoring applications
and the MAPI daemon is through Unix domain datagram sockets.

4. Experimental Evaluation
In this Section we experimentally evaluate the performance of our MAPI implementation
and compare it to alternative approaches such as the commonly-used libpcap library.
Our experimental environment consists of three PCs connected to a Gigabit Ethernet
switch (an SMC 8506T). The first PC (equipped with a 1.1 GHz Pentium III proces-
sor) generates and transmits traffic to the second PC (equipped with a 2.5 GHz Pen-
tium IV). Traffic consisting of 1460-byte UDP packets is generated at constant rate using
iperf[22]. The traffic is mirrored by the switch and sent to the third PC, which performs
the network monitoring. The monitor PC is a dual 1.8 GHz AMD Athlon MP 2200+,
with 512 MB of main memory, a DAG 4.2 network traffic monitoring card and a Gigabit
Ethernet MT Intel Pro network interface. The host operating system is Debian Linux 3.0,
kernel version 2.4.20.

4.1 Basic Packet Processing Cost

In our first experiment we set out to find the basic operating cost per received packet.
This is the cost to receive the packet to the place where it will be further processed.
Such processing may probably include sampling, hashing, update of counters, application
of functions, etc. MAPI performs all these functions within the MAPI daemon, while
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Figure 2: Maximum number of flows when gathering packet and byte statistics for
each flow.

libpcap delegates these functions to user applications. Thus, the basic operating cost per
received packet for MAPI is the cost to receive each packet in the MAPI daemon’s address
space, while for libpcap it is the cost to receive the packet to the user application’s
address space.

We generated a 10 Mbit/s traffic stream consisting of 1460-bytes long packets and
measured the number of cycles the processor spends in order to receive each packet. The
number of cycles was measured using the PAPI Performance Application Programming
Interface [12]. Table 1 presents our results for MAPI and libpcap on top of the commod-
ity network interface (NIC) and on top of the DAG card. We see that libpcap consumes
11897 cycles per packet, while MAPI consumes slightly more at 13082 cycles per packet.
This is as expected, since the implementation of MAPI on top of the NIC is built on top
of libpcap. The two left columns of table 1 reflect the cost of libpcap and MAPI on
top of the DAG card. We see that the DAG card allows for a more efficient implemen-
tation than the NIC, avoiding packet copying between kernel and user space, as well as
operating system calls, because the DAG card delivers packets directly in user space via a
memory mapped buffer. Therefore, libpcap spends 453 cycles per packet, while MAPI
spends 235 cycles per packet, more than an order of magnitude improvement compared
to the implementations on top of the NIC. Overall, we see that MAPI is 10% more ex-
pensive than libpcap on top of the commodity interface, while it is 1.9 times faster than
libpcap on top of the DAG card.

4.2 Performance vs. number of flows

In our next experiment we set out to explore what is the performance of MAPI as a
function of the number of active network flows. To do so, we wrote a simple monitoring
benchmark that creates a varying number of flows. Flow i consists of all packets destined
to port i. We generated traffic that was not destined to any of these ports and measured the
maximum number of flows that the monitoring application may sustain before it saturates
the processor and starts dropping packets. Figure 2 shows the maximum number of flows
that can be sustained for a given input traffic. The solid line shows the performance of
MAPI on top of the DAG card. We see that when the network traffic is low, MAPI can
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Figure 3: Performance of multiple packet sampling applications.

sustain up to 600 different network flows. As expected the maximum number of loss-
free flows decreases with the amount of monitored traffic. Thus, when the network traffic
reaches 700 Mbit/s, the maximum number of loss-free flows is close to 100. Figure 2
also plots the performance of MAPI on top of the commodity Ethernet adaptor (MAPI-
over-NIC), which is somewhat lower than the performance of MAPI-over-DAG. This is
because the MAPI-over-NIC induces higher processor overhead as compared to MAPI-
over-DAG. Indeed, for each network packet received, MAPI-over-NIC needs to suffer
the overhead of at least on interrupt, while MAPI-over-DAG is able to deliver network
packets in user space without any processor intervention.

Figure 2 also compares MAPI with a libpcap-based implementation of the same
monitoring application. That is, we re-wrote the same application using only calls of the
libpcap library and measured its performance. We see that the performance of MAPI is
better than that of libpcap, especially for low traffic when we create a large number of
flows. This performance improvement of MAPI compared to libpcap is due to the differ-
ent ways MAPI and libpcap handle asynchrony. In MAPI, each network flow registers
its interest in network packets and blocks waiting for suitable packets to arrive. Thus, the
MAPI-based application will block waiting for packets that match a network flow to ar-
rive. Since no packets will match any of the flows, the application will remain blocked
without wasting any processor cycles. On the contrary, the relevant calls of libpcap
for asynchronously receiving of packets (i.e. pcap open live and pcap dispatch) are
based on polling which introduces an additional source of overhead. If for example,
we want to create 500 network flows in libpcap, we will need to create 500 different
pcap open live entities which will periodically poll for packets, effectively wasting the
processor’s cycles.

4.3 Supporting several Sampling Monitoring Applications

In this experiment we set out to explore the performance of MAPI implementation when
required to support several different monitoring applications. We compare the perfor-
mance of MAPI over the DAG card (MAPI-over-DAG), with MAPI over the commodity
1 Gbit/s interface (MAPI-over-NIC), and libpcap over the same interface (PCAP-over-
NIC). ∗

∗Note that we do not present performance results for the performance of libpcap over the DAG card, since the
current implementation of libpcap over the DAG card does not support more than one monitoring application.
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In this experiment we created a number of monitoring applications, where each appli-
cation was sampling one out of every 20,000 packets of the monitored traffic. We gen-
erated traffic at constant rate, at 100 Mbit/s and at 500 Mbit/s and plotted the results in
Figure 3. The metric of interest here is CPU idle time as a function of the number of
monitoring applications. Figure 3 shows that as the number of monitoring applications
increases, the performance of libpcap deteriorates rapidly. When the monitored traffic is
at 100 Mbit/s, libpcap saturates the processor at about 25 applications, while when the
monitored traffic is at 500 Mbit/s, libpcap saturates the processor at around 10 applica-
tions. Indeed, Figure 4 shows the percentage of packets that were lost by libpcap as a
function of the number of monitoring applications. We see that the libpcap-based mon-
itoring system starts dropping packets for as low as five monitoring applications. When
the traffic is high 500 Mbit/s, the percentage of lost packets increases sharply at around
6 applications, reaching 50% in the area around 10-15 applications. When the traffic is
low (i.e. 100 Mbit/s), this sharp increase is encountered when the number of applications
exceeds 20-25.

In contrast, Figure 3 suggests that the performance of MAPI is practically independent
of the number of applications. This is because MAPI requires fewer packet copy oper-
ations compared to libpcap. Applications written on top of libpcap can not instruct
the system to perform sampling. Thus, all packets have to be copied to all applications’
address spaces, only to be discarded (e.g., 19,999 out of 20,000 packets in the particular
experiment). In contrast, applications written on top of MAPI are able to express that they
are not interested in receiving most of the packets: they are only interested in receiving
the sampled packets. Therefore, a MAPI-based monitoring system performs substantially
better compared to a libpcap-based system.

It is also interesting to compare the performance of MAPI when running on top of
DAG and when running on top of the commodity network interface (NIC). Figure 3 shows
that the performance of MAPI applications on top of DAG (MAPI-over-DAG) is better
than the performance of the same applications on top of the commodity NIC (MAPI-over-
NIC). This is because the commodity NIC suffers at lease one interrupt for each incoming
packet, while DAG cards write arriving packets in buffers mapped directly in user space.

4.4 Content matching

In our next experiment we set out to explore how the performance of MAPI changes
with an increasing number of non-trivial monitoring applications. To do so, we created a
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Figure 5: Performance of multiple string searching applications.

number of monitoring applications. Each application is interested in receiving all pack-
ets whose payload contains a given string. Each application searches for a different 8-
characters long string, which is never found on any payload. Monitoring applications on
top of MAPI register their monitoring needs by applying function SUBSTRING SEARCH to
all packets of a network flow. On the contrary, since the libpcap library does not provide
such an ability, monitoring applications written on top of libpcap receive all packets in
their address space and search for the substring using the Boyer-Moore algorithm [3].

Figure 5 shows the performance of different network monitoring systems for an input
traffic of 100 Mbit/s and 500 Mbit/s respectively. We see that in all cases, performance
decreases with the number of string-searching monitoring applications. However, the per-
formance of libpcap decreases much more rapidly than the performance of MAPI. This
is probably due to the fact that libpcap copies all network packets to the address spaces
of all applications and then searches the packets to see if they contain the substring. On
the contrary, MAPI first searches all substrings in all network packets, and then copies to
the address spaces of the applications only the packets that contain the given substring,
which in our example are none.

5. Related Work and Discussion
Although MAPI presents a novel approach to passive network monitoring, it shares some
functionality with previously defined network monitoring systems. The Berkeley Packet
Filter (BPF)[15] has been used extensively for network traffic capture and analysis. BPF
provides the basic mechanism for capturing packets from a network interface and has
been used in several systems including tracing tools such as tcpdump[10], and intrusion
detection systems such as snort [19]. Linux Socket Filters[9], provide similar function-
ality to Berkeley Packet Filters, although they are implemented in the Linux operating
system only. Berkeley Packet Filters and Linux Socket Filters are frequently used with
the packet capture library, more well known as libpcap [14]. libpcap provides users
with a flexible tool to filter and capture packets based on header fields. CoralReef pro-
vides set of tools and support functions for capturing and analyzing network traces [11].
libcoral is a central component of the CoralReef suite and provides an API for moni-
toring applications that is independent of the underlying monitoring hardware. Nprobe is
a monitoring tool for network protocol analysis [16]. Although it is based on commod-



ity hardware, it speeds up network monitoring tasks by using filters implemented in the
firmware of a programmable network interface.

Our work is closely related to such tools. However, to the best of our knowledge MAPI
appears to have significantly more expressive power than existing tools. For example, it
can filter packets based on values in the packet payload. It can also apply arbitrary func-
tions on packets, and keep statistics based on the results of these functions. The expres-
siveness of MAPI makes programming network monitoring applications easier and also
increases efficiency, as demonstrated in Section 4. By being expressive, MAPI enables
the underlying monitoring system to choose the most appropriate implementation that
matches application needs.

Mmdump[23] is a specialized tool which extends tcpdump by parsing messages from
RTSP, H.323 multimedia session control protocols to set up and tear down packet filters
as needed to gather traces of multimedia sessions. It parses the control messages to extract
the dynamically assigned port numbers. Then the packet filter is changed to capture the
packets of the stream. Mmdump is a custom solution for tracking applications that use
dynamic ports, while MAPI is a general-purpose traffic monitoring API which can be
used for a much broader spectrum of applications (including those targeted by Mmdump).

Except for packet-capture oriented systems, there has been significant activity in the
design of systems providing flow summary statistics [5]. For example, Cisco IOS NetFlow
technology is an integral part of Cisco IOS software that collects and measures traffic data
on a per-flow basis. In this context, a flow is usually defined by all packets that share a
common protocol, source and destination IP address and port numbers. In contrast to
capture systems based on libpcap and libcoral, NetFlow only extracts and maintains
high-level statistics. NeTraMet, much like NetFlow, can collect traffic data on a per-flow
basis [4], focusing only on flows that match a specific rule. FlowScan[17] analyzes and
reports on NetFlow format data and produces graph images that provide a continuous,
near real-time view of the network border traffic. MAPI can be used to buid a visualization
application with the same capabilities but for a broader range of network characteristics.

There is also significant activity within the IETF for defining network traffic monitor-
ing standards, such as RMON [24], PSAMP [6] and IPFIX [18].

Although MAPI shares some goals with the above flow-based monitoring systems, we
believe that it has significantly more functionality. For example, by being able to exam-
ine packet payloads, MAPI is able to provide sophisticated traffic statistics. As Section
2.5 shows, MAPI is able to provide traffic statistics for applications that use dynamically
allocated ports (such as FTP and peer-to-peer systems), while traditional monitoring ap-
proaches, such as NetFlow and NeTraMet, can not provide such traffic statistics.

6. Summary and concluding remarks
We have presented the design of MAPI, a flexible and expressive application program-
ming interface for network traffic monitoring. The main goal of MAPI is to provide a
highly expressive interface for applications to specify their monitoring needs. This is
achieved by building an API around a generalized network flow abstraction that users
can fine-tune for their particular application, and by providing an intuitive set of oper-
ations inspired by the UNIX socket-based network programming model. As a concrete
example, we have discussed how MAPI can be used to properly account for applications
that use dynamically-generated ports.

We have implemented MAPI on top of a commodity Gigabit Ethernet network inter-
face (Intel Pro 1000 MT), as well as on top of a DAG4.2 special-purpose adaptor de-



signed for high-speed packet capture. We have evaluated the implementation of MAPI
and compared its performance with the libpcap library used for network monitoring in
state-of-the-art systems. Our analysis suggests that MAPI improves application perfor-
mance compared to libpcap as the number and complexity of applications sharing the
monitoring infrastructure increases.

The impact of MAPI on efficiency and ease of programming is expected to increase
as networks get faster, monitoring applications become more complex, and hardware-
supported monitoring becomes more prevalent. The two hardware platforms used in this
study are representative of low-end deployment scenarios and the benefits demonstrated
are strictly on the conservative side. Although the specifics of implementing MAPI on
top of more advanced hardware are subject for future work, the interaction between the
expressiveness of MAPI and more sophisticated lower-level components (like Network
Processors) is likely to improve performance further, considering that certain functions
can be pushed to the hardware.

We expect that MAPI will provide an effective interface for applications to express
their needs and allows the underlying monitoring system to optimize the implementation
in the best possible way.
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