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ABSTRACT
Traditional approaches to privacy are usually based on top of

anonymizing or pseudonymizing systems. For example, users who

would like to protect their identity and/or hide their activities while

browsing the web frequently use anonymizing systems (e.g., Tor) or

services (e.g., VPNs and proxies). Although anonymizing systems

are usually effective, recent revelations suggest that anonymization

can be compromised and can be used to provide a false sense of

security. In this paper we assume a world where anonymization

is (practically) not possible. Imagine, for example, a community

where the use of anonymizing systems is frowned upon or even

forbidden. Is it possible for users to protect their privacy when they

can not hide their identity?

In this paper, we focus our question on users interested in follow-

ing information channels in microblogging services and we show

that it is possible for users to protect their privacy even if they can

not hide their identity. To do so, we propose two obfuscation-based

algorithms and quantify their effectiveness. We show that obfusca-

tion can be used in such a way so that attackers can not use this

service to increase their a priori knowledge on whether a user is

interested in a channel or not.
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1 INTRODUCTION
Over the past few years we have seen an increase in the deployment

and use of microblogging services and news aggregators. Indeed,
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these aggregators have become very popular, because they provide

timely information in short (280-characters-long) nuggets that can

be quickly scanned, tailored, absorbed, and shared. As a result of

this popularity, an increasing number of users choose to receive

their news through such microblogging services such as Twitter,

Tumblr, Weibo, Tout, and many more.

Although useful, this timely and personalized information deliv-

ery by microblogging services may raise significant privacy con-

cerns. For example, if a user follows a channel of a political party,

these microblogging services may be able to infer the user’s political

beliefs. If the user follows a channel dealing with a particular health

problem, the microblogging services may be able to infer that the

user is interested in this health problem, or, to make matters worse,

that the user is suffering from it. As a result, an adversary who has

access to the information provided to microblogging services may

easily be able to figure out what the users are interested in, based

on the types of channels they follow.

To protect their privacy, users may choose to hide their real
identity by creating and using a fake account. Although such a fake

accountmay give a sense of privacy through pseudonynity, previous

research suggests that fake accounts may be traced back to the real

identities of their users [9, 24]. To make matters worse, third-party

ad networks and tracking services [14, 18, 19] can also be used to

reveal the real identity of the user. To protect their privacy even

further, in addition to using a fake account, sophisticated users may

choose to connect to the Internet through an anonymizing proxy
or an anonymizing network such as Tor [4]. Indeed, anonymizing

networks have been shown to be very effective at hiding the IP

address of their users. Unfortunately, recent attacks have shown

that despite the user of an anonymizing networks, users may still

be identified through their browser “fingerprint” [6] or through

other characteristics of their device, such as their clock drift rate

[13] or their battery drain rate [15]. Even if one manages to hide

all identifying characteristics of a device, microblogging services

may simply reveal the identity of their users by simply requiring

them to log in, much like Facebook does today.

In this paper, instead of joining the arms race between anonymiz-

ing networks and their adversaries, we take a slightly different point

of view by addressing the following question: “Let us assume a world
where anonymity is (practically) not possible. Can we still protect
the privacy of users of a microblogging service?” We believe that the

answer to the above question is yes: we believe that even if the

user is not able to hide her real identity, she is able to hide her real

interests. One way to do this is by using obfuscation: that is, she

https://doi.org/10.1145/3301417.3312498
https://doi.org/10.1145/3301417.3312498
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will subscribe to more channels than those she is really interested

in, making it difficult for an adversary to find out what her real

interests are. By subscribing to more channels that she is really

interested in, the user adds noise, protecting, essentially, her real

interests. At this point we must admit that adding noise, or obfus-
cating, is not a new idea: it has already been used in loyalty cards, in

hiding web searches [2], and even in microblogging services [21].

Despite having been studied and deployed in the past, adding

noise is easier said than done. Indeed, recent work has shown that

previous obfuscation approaches have been very ineffective [8]. We

believe that two are the main issues behind for this ineffectiveness:

(i) I1: selecting noise: It is not clear how to select noise. Naive

approaches to noise selection (such as adding random channels

or issuing random queries) eventually lead to countermeasures

which are able to remove such added random noise, and (ii) I2:
correlation attacks: The longer a user interacts with a system,

the more information she reveals. As a result, the system might be

able to launch what in web searches is called a linkage attack [8],

or what we describe later as a correlation attack.

To deal with the first of the issues above (i.e. selecting noise) we
developed an analytic model which enables us to explore howmuch

noise is needed to hide the fact that the user (sayU ) is interested

in following a given channel (say S). Our analytic model uses an

information-theoretic approach: we assume that the adversary has

some a priori knowledge about how possible it is for user U to

follow channel S (say PU (S)). In order to hide thatU is interested in

S , our model argues that we should add ⌈1/PU (S)⌉ noise channels.
In addition to describing how much noise we need to add, section

3.1 describes an algorithm that computes what kind of noise needs

to be added. Indeed, adding randomly chosen channels may seem

reasonable, but it is not enough. Random noise can be easily filtered

out.

Dealing with the second of the issues identified above (i.e. I2:
correlation attacks) is much tricker. In a correlation attack, the

adversary observes what channels the user is following over time

(even if the real channels are obfuscated in a bundle of noise), and

tries to find which of them are correlated. The intuition of the

attacker is that the channels user U is really interested in will

probably be correlated, while the channels that were added as

noise were probably not correlated. Thus, if the adversary finds

correlated channels, then the user is probably interested in their

common theme. For example, if the user follows a channel on

alcoholics anonymous (along with a bundle of noise channels) and

then a channel on rehab clinics (along with another bunch of noise

channels), and then a channel on substance abuse (along again

with other noise channels), the adversary may safely conclude

that U is interested in alcoholism-related issues. This is because

these alcoholism-related channels seem highly correlated among

themselves, while the noise channels, would probably not be so

strongly correlated (if at all). To deal with such correlation attacks

we develop an analytic approach based on conditional probabilities.

The approach models the information available for a correlation

attack and later leads to an algorithm that chooses appropriate noise

so as to make the correlation attack very difficult, it not completely

impossible.

To summarize, our workmakes the followingmain contributions:

(1) We explore the following question: In aworldwhere anonymity

is practically not possible, can we protect the privacy of users

of microblogging services? i.e. can we efficiently hide their

interests?

(2) We propose SMOKE: an obfuscation-based approach to pre-

serve the privacy of the users’ interests in microblogging

services. Our approach aims to hide a sensitive channel the

user is interested in inside other channels that act as noise.

(3) We propose an analytic approach and a subsequent algorithm
that computes the optimal amount and the type of noise that
should be added: too little noise leaves the user exposed, while
too much noise is deemed unnecessary.

(4) We show that users who follow a sequence of channels may

be subject to correlation attacks. We describe the attack and
propose an analytical model that evaluates these correlations
based on conditional probabilities. Based on the model, we

propose an algorithm which adds appropriate noise that is

not subject to these correlation attacks.

2 THREAT MODEL
We assume the existence of a service that enables users to receive

personalized news about their topics of interest. Such services

include news aggregators and RSS readers like Digg, Apple News,

Google News or microblogging services like Twitter, Tout, Tumblr,

Weibo. In these services the users are able to subscribe themselves

to individual channels or domains that distribute content about

various topics. In microblogging services these channels can be

accounts of physical persons, of entities such as corporations, of

news sites, of public figures like actors, of activists, of politicians’

offices, and so on.

By subscribing to these channels the users are able to get in their

timeline timely information directly delivered from the informa-

tion sources meeting their interests. On the other hand, the service

operator is capable of recording the users’ interests by observing

which channels each user follows. All information about the users’

interests, along with any data aggregated after them is property of

the service operator and can be later sold to advertisers [3, 22] for

targeted advertising in ad auctions [20] or considered as company’s

assets in case of a service’s future purchase [12]. As a consequence

all this information can be used for a variety of purposes, all of

which are beyond the control of individual users. To remedy this

potential infringement of the users’ privacy, we would like to de-

velop mechanisms to enable the users to hide their actual interests

while they consume personalized information.

In this work we assume an “honest but curious” microblogging

service able to find the user’s interests by monitoring the channels

she follows and by mining data produced by the user in order to

aggregate and/or correlate any information she provides with her

actions inside the web service. On the other hand, we assume that

it will not try to actively interfere with the process users are em-

ploying to protect their privacy or try to gain more information

than what a user is willing, or required, to give. We think such

a microblogging service is reasonable in practice, since popular

services have a reputation they do not want to jeopardize by be-

coming hostile against their own clients. As a result we assume that

the service will not create any fake channels or fake accounts in
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order to gain any more information than its real users are willing

to disclose.

Finally, it is important to note at this point, that in this work

we assume that users act as consumers of information and refrain

from actively exposing their real interests by posting information,

replying, retweeting, or sharing their interests in any other way.

Recall, that we assume a world where anonymity is (practically)

impossible. Actively sharing one’s interests in such a world leaves

very limited, if any at all, options to protect privacy.
1

3 OUR APPROACH: OBFUSCATION
3.1 Noise selection
When a user wants to follow a channel S , SMOKE instructs the

user’s profile in the microblogging service to follow N other “noise”

channels (say S1, S2, ..., SN ) as well.

To make sure that we select the right amount and right type of

noise we introduce two points of view:

A priori knowledge: the adversary has some confidence that

U is interested in S , even beforeU follows S . This confidence
may be the result of general background information avail-

able (e.g. what percentage of people are alcoholics), or even

background information available specifically tailored toU
(e.g. what percentage of white males between 40 and 50 are

alcoholics). Let us denote this confidence (that user U is

interested in following channel S) with P
p
U (S).

A posteriori knowledge: after U follows channel S (along

possibly with some noise channels S1 to SN ), this new in-

formation may produce a new confidence level that U is

interested in S : let us denote this new confidence level with

PaU (S). For example, if U follows only S and no noise chan-

nels, then this confidence will obviously become 1. Indeed,

if U follows S and only S and does not add any noise, the

adversary will be 100% sure that userU is interested in chan-

nel S . As another example, if U follows S along with only

one noise channel (say S1), the adversary will know thatU
is interested either in S or in S1, and thus the a posteriori
confidence will be 0.5: PaU (S) = 0.5. That is, the adversary
is 50% confident that userU is interested in channel S , and
50% confident that userU is interested in channel S1.

Framed in this context of a priori and a posteriori knowledge
our approach is at odds with the approach of the adversary: the

adversary would like to increase as much as possible the a posteriori
confidence thatU is interested in S (i.e. the adversary would like

to achieve PaU (S) ≫ P
p
U (S)) while we would like to reduce this a

posteriori confidence, if possible, to the level where the a posteriori
confidence is no higher than the a priori one: (i.e. we would like to

achieve PaU (S) = P
p
U (S)).

3.1.1 How much noise should be added? To make sure that the a
posteriori confidence is no higher than the a priori one, we advocate
that we should add ⌈1/P

p
U (S)⌉ − 1 noise channels. In this way,

the adversary will see that the user U is interested in following

⌈1/P
p
U (S)⌉ channels (S included in them), and his confidence that

1
One might argue that we can use an obfuscation-based approach to protect users

who post information. Indeed, in such an approach a user would both to channels she

follows and to channels she is not interested in. We are afraid that such an aggressive

approach would lead to information pollution and should probably not be encouraged.

among all those channels U is interested in S will be PaU (s) =

1/⌈1/P
p
U (S)⌉ ≈ P

p
U (S). Thus the a posteriori confidence (PaU (s)) will

be almost equal to the a priori one (PpU (S)) and the adversary will

have gained little, if any at all, information. For example, if the

adversary is about 10% confident thatU is interested in channel S ,
possibly based on a priori knowledge that he has (i.e. PaU (S) = 0.1),
our approach will add 9 noise channels and user U will follow a

total of 10 channels (= 9 noise channels plus channel S). Seeing that
U is following 10 channels, the adversary will still be about 10%

confident that user S is a “real” channel (and not a noise channel).

Thus, the a posteriori confidence of the adversary will still be 10%

and will not have increased compared to his a priori confidence.

3.1.2 What kind of noise should be added? As explained above, in

order for the adversary to gain little, if any at all, information, we

must make sure that the confidence that he has thatU is interested

in S should be the same as the confidence that he has that U is

interested in S1, in S2, in S3, etc. Obviously, if the adversary knows

thatU is not interested at all in, say S1, adding S1 as noise will not be
effective: the adversary will immediately realize that S1 is just noise
andU is not interested in S1. Therefore, the adversary will be able

to remove at least one noise channel and increase his confidence

level about whether user U is interested in channel S . Therefore,
user U should be interested in following all noise channels with

the same level of interest she is interested in following channel S .
That is, the a priori probability thatU is interested in S should be

the same as the a priori probability thatU is interested in S1, which
should be the same as the a priori probability that U is interested

in S2, etc. Or equivalently:

PpU (S ) = PpU (S1) = P
p
U (S2) = ... = PpU (SN ) (1)

Finding noise channels that satisfy the equation above we force

the adversary to a position where he is unable to determine with

accuracy whether the user is actually interested in channel S or

one of the channels S1, S2, ..., SN .

As equation (1) above shows, in order to effectively hide the

fact that userU is interested in channel S , we need to find N other

channels (S1, S2, . . . , SN ) in which the user is equally interested.

Unfortunately, it is not very likely to find exactly N other channels

with all probabilities P
p
U (S), P

p
U (S1), P

p
U (S2), . . . , P

p
U (SN ) exactly

equal to each other. It is more probable to find N noise channels

with probabilities close to each other, but not equal to each other.

In this case, one might be tempted to select the channels with the

probabilities as close as possible to P
p
U (S) and use them as noise.

To address this issue, one might be tempted to borrow ideas from

k-anonymity [23] and k-subscription [21] and always add a con-
stant number of noise channels. Although possible, such a solution

would not be efficient. Indeed, in some cases k would be too small

increasing the adversary’s confidence that the user is interested in

channel S , and in other cases k might be too large which will add

too much unnecessary noise. Therefore a one-size-fits-all solution

(i.e. a constant k) is not appropriate.
Therefore, we introduce a new approach to noise called buck-

eting. This approach places all channels in buckets. When user U
is interested in following one channel from the bucket, she is re-

quested to follow all channels of this bucket. In this aspect, from the
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adversary’s point of view, all channels of the same bucket are indis-

tinguishable: if the user is interested in following any one of them,

she is requested to follow all of them. Therefore, the adversary

can not distinguish any of the channels in the bucket: since users

always follow all of them, no matter which individual channel they

are interested in, the adversary can point pinpoint which individual

channel a user is actually interested in.

Placing the channels in buckets is not easy, however. One reason

for this is that the size of each bucket should not be constant; it

should depend on the probability of the channels it contains and

more specifically, on the lowest channel probability contained in

the bucket. For example, if userU interested in channel S with prob-

ability P
p
U (S) = 10%, the bucket should contain around 10 channels.

If it contains much less than 10 channels, then the adversary will

be able to increase its a posteriori confidence (that U is interested

in S) well above 10%. On the other hand, if it contains many more

than 10 channels, user U will be forced to follow many more noise

channels than necessary.

To define the buckets our algorithm proceeds as follows:

• It orders all channelsC according to their a priori probability
P
p
U (C) in decreasing order.

• It constructs the set of channels that have probabilities in

the range [1/2, 1). If there are more than two such channels

it creates buckets of size two. Each bucket contains at least

two channels each of them with probability at least 1/2.

• It then constructs the set of channels that have probabilities

in the range [1/3, 1/2). If there are more than three such

channels in this range, it creates buckets of size three. If,

however, no three such channels are found, the algorithm

will try to find four channels in the range [1/4, 1/2). 2 If

unsuccessful, it will try to find five channels in the range

[1/5, 1/2), and, if unsuccessful, it will try to find six channels
in the range [1/6, 1/2), etc. until it succeeds.

In Algorithm 1 we present the bucket algorithm in pseudocode.

At first we define a range of values: [
1

k ,
1

i ) and we set as cursor

the left edge (i.e. 1/k). Then, in each step we check if there are

k channels that their probabilities are in this range (i.e. [
1

k ,
1

i ) -
if not, we increase k and check if there are k channels that their

probabilities are in this range (i.e. [
1

k ,
1

i ) - if not, we increase k again

and so on, until we find k channels that their probabilities are in the

range [
1

k ,
1

i . In this way, the bucket algorithm will create a bucket

in the field of values [1/k, 1/i) that contain at least k channels.

Let us give another example as well: let’s assume that we have

channels with probabilities P(A) = 0.6, P(B) = 0.55, P(C) = 0.44,
P(D) = 0.37, P(E) = 0.30, and P(F ) = 0.29. Our bucket creation
algorithm will create one bucket in the range [1/2, 1) which will

2
The reason for this choice is the following. Let us assume that there are no three

channels in the range [1/3, 1/2]. Let us further assume that there is only one channel

in the range [1/3, 1/2]. Let us assume that we create a bucket that contains only this

channel. If, at some point in the future, the user would be interested to follow this

channel, our system would ask the user to follow all channels of the bucket. Since,

however the bucket contains only one channel, the adversary will be 100% sure that

the user is interested in this channel . Similarly, if there are only two channels in the

range [1/3, 1/2], if we create a bucket out of these two channels, and ask the user

to follow the bucket when the user is interested in either of the channels, then the

attacker will know with probability 50% that the user is interested in the channel. Since

the a priori probability was less than 1/2 and the a posteriori probability is 50%, then

the attacker increased his knowledge with regards to whether the user is interested in

this channel.

ALGORITHM 1: Bucket creation algorithm

#def ine M 1000 {maximum obfuscation factor}

B = ∅

for (i = 1 to M ) do
for (k = i + 1 to M ) do

B = {set of channels with a priori probability in [
1

k ,
1

i )} ∪B
if ( |B | >= k ) then

while ( |B | >= k ) do
L = {set of first k channels from B}
newbucket = L
B = B \ L

end while
i = k
break

{break the inner k loop and continue with the i loop}

end if
end for

end for

contain 2 channels (i.e. A and B). It will then try to find 3 channels

in the range [1/3, 1/2) but it will not succeed (because only two

channels are in this range: channel C and channel D); then, it will

try to find four channels in the range [1/4, 1/2), it will succeed and

it will create a bucket with them (i.e. C , D, E, and F ).
After creating the buckets, SMOKE proceeds as follows:

If userU is interested in following channel S which

belongs in bucket B, thenU is requested to follow all

channels of bucket B.

Theorem 3.1. When user U is interested in following channel
S , Algorithm 1 places S in such a bucket so that the a posteriori

probability of U being interested in S is not higher than the a priori
probability ofU being interested in S .

Proof. Let us assume that user U is interested in following

channel S . Let us also assume that the adversary knows the a priori
probability P

p
U (S). Let us also assume that there exists an integer l

so that 1/(l + 1) < P
p
U (S) ≤ 1/l . Then Algorithm 1 places channel

S in a bucket with k − 1 channels whose a priori probabilities are
all between 1/k and 1/l . That is,

1/k < P
p
U (Si ) ≤ 1/l (2)

As we said, the a priori probability that U is interested in S

is P
p
U (S). The a posteriori probability that U is interested in S is

PaU (S) =
PpU (S )∑k

i=1 P
p
U (Si )

. We need to show that this is less or equal to

the a priori probability or equivalently

PpU (S )∑k
i=1 P

p
U (Si )

≤ P
p
U (S) or

k∑
i=1

P
p
U (Si ) ≥ 1 (3)

But from equation 2 we know that ∀ i, P
p
U (Si ) > 1/k . Plugging

this into inequality 3 we get

∑k
i=1 P

p
U (Si ) ≥

∑k
i=1 1/k = 1 and thus

PaU (S) =
PpU (S )∑k

i=1 P
p
U (Si )

≤ P
p
U (S)

□
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3.1.3 Bounds in the error estimation. The described approach (i.e.

Algorithm 1) is based on the fact that for each user U and each

channel S we know the a priori probability that U is interested

in S : P
p
U (S). One might reasonably argue that this probability is

not known, or is not accurately estimated. In this section we ac-

knowledge this fact and we take it one step further to focus on the

following question: if we have only an estimate of PpU (S), how is it
expected to influence our results?

Let us illustrate this with an example. Suppose that we have a

userU who would like to follow the channel S of a political party.

Suppose that the general feeling out there is that this party has

about 10% of the voters, and so a general approximation of P
p
U (S)

would be about 0.10. Our approach, which does not have inside

information would reasonably assume that P
p
U (S) = 0.10. Assume,

however, that the microblogging service has more information and

knows that people who fit the profile ofU are two times less likely

to vote for this party and thus the correct estimate of P
p
U (S) would

be 0.05, and not 0.10.

Since our approach assumes that the probability is 0.1, it would

probably choose 9 more channels as noise and thus it would present

the microblogging service with a request to follow 10 channels (one

of the being S). Since the microblogging service was presented with

a request for 10 channels, it would assume that the a posteriori
probability would be PaU (S) = 0.1, or twice as much as the a priori
probability.

On general it can be shown that the following theorem is true:

Theorem 3.2. If our estimate for the a priori probability PpU (S) is
off by a factor of f (> 1) compared to the adversary’s estimate, then
the adversary’s estimate for the a posteriori probability PaU (S) will
increase at most by a factor of f .

Proof. We will assume two cases: Case 1: we underestimate

the a priori probability, and Case 2: we overestimate the a priori
probability.

In Case 1 where we underestimate the a priori probability, let
us say that our estimate is P

p
U (S) and that the adversary’s estimate

is f × P
p
U (S). Based on our approach we will select

3 ⌈1/(P
p
U (S))⌉

channels to follow and thus based on the number of channels to

follow the adversary’s a posteriori probability would be PpU (S)which

is much lower than the adversary’s a priori probability f × P
p
U (S).

In this case, the adversary will just ignore the fact that user U is

following S among other noise channels and stick to his a priori
probability.

In Case 2 where we overestimate the a priori probability, let us
say that our estimate is P

p
U (S) and that the adversary’s estimate is

P
p
U (S)/f . Based on our approach we will select ⌈1/(P

p
U (S))⌉ chan-

nels to follow and thus based on the number of channels to follow

the adversary’s a posteriori probability would be P
p
U (S) which is

higher than the adversary’s a priori probability PpU (S)/f by a factor

of f . Thus, the adversary has increased his confidence by a factor

of f .

3
Without loss of generality we assume that there exist ⌈1/(PpU (S ))⌉ channels with a
priori probability (PpU (S )) each. If no such channels can be found, the proof is similar

in concept.

To summarize, in Case 1 the adversary’s estimate for the a pos-
teriori probability PaU (S) has not increased and in Case 2 it has

increased by a factor of f . □

The above theorem gives us a very elegant results that bounds

the error in the estimation of of the a priori probability:
If the a priori is overestimated by a factor of f this

will increase the adversary’s belief by no more than a

factor of f . If the a priori is underestimated by a factor

of f , this will not increase the adversary’s belief.

In addition, theorem provides a nice way for us to make conserva-

tive choices. That is, if we are concerned that we have overestimated

a probability by a factor of f , we may just decrease it by the same

factor and the adversary will have gained no knowledge at all.

3.2 Correlation Attacks
As explained in section 1 the longer a user interacts with a system,

the more information she reveals. This information can be poten-

tially used by an adversary to filter out some noise channels and

find the real interests of the users. This is what we call a correlation
attack. Let us use an example to illustrate the attack. Let us assume

that user U is following channel S (along with a bunch of noise

channels). Let us also assume that U is interested in following T as

well. Let us also assume that T publishes content semantically cor-

related with the content of S . 4 Such cases, constitute a privacy risk

since the microblogging service is able to identify this correlation

and as a consequence the fact thatU interested in sensitive channel

S and not in any of the noise channels. To summarize, when a user

follows a channel new channel T , there are two cases:

• T is semantically unrelated to the previously followed chan-

nel S , or
• T is semantically related to S ,

In the former case the fact that user follows T reveals no more

information about whether the user is interested in S . In the lat-

ter case, however, the fact that the user is following T (which is

semantically related to S) gives some more confidence that the user

is really interested in S and not in the rest of the noise channels

followed.

Let’s try, at this point, to mathematically define the notion of

what is called semantically related channels. Assuming P(S) is the
probability that the user is interested in channel S , then P(S |T ) is
the probability that she is actually interested in a already followed

sensitive channel S given that she now follows channel T . Thus,
channels S and T are semantically related if P(S |T ) , P(S). So,
similar to the single channel noise selection, in this case we select

noise following the equation:

P (S |T ) = P (S1 |T1) = P (S2 |T2) = ... = P (SN − 1 |TN − 1) (4)

where, S1, S2,... SN − 1 are the already followed noise channels

for sensitive channel S . From the formula above, we can see that

each couple of channels: S1 and T1, S2 and T2,..., SN − 1 and TN −

1 are also correlated channels. Hence, we select the appropriate

noise channels for T based on the already followed noise channels

4
For example, S can be an information channel on cancer and T can be a support

channel for cancer survivors.
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of S creating this way noise correlations. As a result, we hide the
correlated couple of channels that the user is interested in, inside

other correlated channel pairs. In the same manner, in case of

more than two correlated channels we use the same algorithm to

introduce noise channels formed as couples.

4 RELATEDWORK
Papadopoulos et al. in [21] propose to hide a user’s subscription

from the microblogging service by selecting k − 1 other noise

channels in which the channel that the user is actual interested

in will be hidden, and afterwards by encouraging the user to sub-

scribe to all these k channels. They also propose two algorithms,

the uniform and the proportional algorithm, for random selection

of the noise channels from a set with sensitive channels that is

commons among the users of the microblogging service. Although

our approach is similar to k-subscription, k-subscription deals only

with unrelated channels and can not take into account correlations

between different channels.

There are similar approaches in different context, aiming to hide

user queries in search engines. Howe and Nissenbaum in [11] pro-

posed TrackMeNot, a system designed to hide a user’s real interest

from a search engine. More specifically, for each real query sub-

mitted to the search engine, by a user, the TrackMeNot browser

plugin [10] also submits several other queries to confuse the search

engine and introduce doubt for the user’s real queries. TrackMeNot

has been proven to be seminal work in the field and has led to the

development of several other methods. For example, GooPIR [5],

as an extend of TrackMeNot, proposes an approach that is robust

against timing attacks. For each real query, the user wants to submit,

GooPIR constructs k − 1 other queries and submits all k of them at

the same time to the search engine. As a consequence, the search

engine cannot construct a timing model on the user’s real queries.

Murugesan and Clifton in [16] propose Plausibly Deniable Search
(PDS) aiming to provide plausible deniability to users, with respect

to their search queries. Similar to GooPIR mentioned above, each

real query is accompanied by k − 1 other noise queries. In addition,

each real query is also brought into a canonical from preventing

this way identifiability based on typos and/or grammar/syntax of

the queries [1, 17]. In the same spirit, Ye et al. [25] propose noise

injection for search privacy protection. They give a lower bound

for the amount of noise queries required for perfect privacy protec-

tion and provide the optimal protection given the number of noise

queries. Although the above systems are very effective at hiding one
real query in a crowd of k queries, a determined adversary may be

able to find a user’s interests by studying successive sequences of

queries. Indeed, if a user consistently generates authentic queries on

a particular topic, but the k − 1 “noise” queries added are on several

different topics, then the adversary may easily find the user’s real

interests using clustering approaches. To protect against clustering

attacks, PRAW [7] generates dummy queries on topics related to

the topics the user is interested in.

5 CONCLUSION
In this paper we explored whether it is possible for users to hide

their interests inmicroblogging services in a settingwhere anonymity

is not possible. We showed that it is possible for users to protect

their privacy even if they can not hide their identity. To do so, we

proposed two obfuscation-based algorithms and quantified their ef-

fectiveness. We believe that this result is very encouraging and that

it will probably encourage more privacy research in this setting.
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