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Abstract

Although Network Intrusion Detection Systems (nIDS)
are widely used, there is limited understanding of how these
systems perform in different settings and how they should be
evaluated. This paper examines how nIDS performance is
affected by traffic characteristics, rulesets, string matching
algorithms and processor architecture. The analysis pre-
sented in this paper shows that nIDS performance is very
sensitive to these factors. Evaluating a nIDS therefore re-
quires careful consideration of a fairly extensive set of sce-
narios. Our results also highlight potential dangers with
the use of workloads based on combining widely-available
packet header traces with synthetic packet content as well
as with the use of synthetic rulesets.

Keywords: security, intrusion detection, workload charac-
terization and generation

1 Introduction

Network Intrusion Detection is receiving considerable
attention as a mechanism for shielding against “attempts
to compromise the confidentiality, integrity, availability, or
to bypass the security mechanisms of a computer network”
[3]. The typical function of a Network Intrusion Detection
System (nIDS) is based on a set of signatures, each describ-
ing one known intrusion threat. A nIDS examines network
traffic and determines whether any signatures indicating in-
trusion attempts are matched.

The simplest and most common form of nIDS inspection
is to match string patterns against the payload of packets
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captured on a network link. The use of existing efficient
string matching algorithms for this purpose, such as [4, 1],
bears a significant cost: recent measurements of the snort
nIDS [13] on a production network show that as much as
31% of total processing is due to string-matching [7]. The
same study also reports that in the case of Web-intensive
traffic, this cost is increased to as much as 80% of the to-
tal processing time. At the same time, a nIDS needs to
be highly efficient to keep up with increasing link speeds.
Finally, as the number of potential threats (and associated
signatures and rules) is expected to grow, the cost of string
matching is likely to increase even further.

These trends motivate the study of string matching al-
gorithms in light of the particular requirements and char-
acteristics of Intrusion Detection. Several algorithms have
been used recently, some of which were designed specifi-
cally for the particular application domain. The evaluation
of nIDS algorithms and systems is usually based on circum-
stantial evidence: there is no established or standard work-
load model for nIDS performance measurement, and it is
difficult to obtain, use and share full packet traces because
of (understandable) privacy issues.

In this paper we present a study of nIDS string match-
ing algorithms and their performance evaluation. The cen-
tral question we attempt to answer is whether it is possi-
ble to define a practical, reasonably accurate and meaning-
ful methodology for evaluating nIDS performance. Such
a methodology would be helpful both as a benchmark for
comparing different systems as well as an aid for design-
ing better systems and algorithms. To this end, we ex-
amine how nIDS performance interacts with changing ex-
periment parameters – traffic characteristics, nIDS rulesets,
string matching algorithms and processor architecture – and
determine if these parameters can be captured in a simpler
model, and at what cost. Our results so far have lead us to
four major observations. First of all, nIDS performance is
sensitive to both packet and ruleset content. Adding random
content to the widely-available traffic header traces is thus,



at least on first sight, questionable as a method for nIDS
evaluation. However, our analysis shows that the sensitivity
exhibits certain patterns in over- or under-estimating perfor-
mance, depending on the string matching algorithm and the
characteristics of the traffic. Regarding ruleset content, us-
ing random rule patterns for determining nIDS performance
and scalability also requires extreme care: our results sug-
gest that a more accurate way of creating synthetic rulesets
is to use permutations of existing patterns. As with packet
content, the sensitivity follows some predictable pattern de-
pending on algorithm and traffic. Secondly, there are large
differences in measured performance depending on traffic
characteristics: the highest measured mean cost per-packet
is up to four times as much as the lowest cost in the traces
we examined, mostly due to differences in the distribution
of packets to the different subsets of the nIDS ruleset. Fur-
thermore, the choice of processor architecture has a dra-
matic effect, both on overall system performance as well
as the relative performance of different string matching al-
gorithms. There are cases where one string matching al-
gorithm is faster than another algorithm on one processor
but slower on another processor. Our results show that al-
gorithm performance improves (unusually) well with pro-
cessor technology, partly due to increasing cache size. Fi-
nally, no single algorithm performs best in all cases; a hy-
brid string matching engine triggering different algorithms
depending on ruleset and packet size appears to be the best
approach, but the parameters may also vary depending on
the processor architecture.

The rest of the paper is organized as follows: in Section 2
we briefly review how a string matching nIDS operates and
what algorithms are being used. In Section 3 we present the
results of our investigation; Section 4 presents a summary
of our results and issues for further experimentation.

2 Background

We describe a (simplified) model of how a nIDS oper-
ates and summarize the key characteristics of string match-
ing algorithms that have been recently used in the nIDS
context. A nIDS is designed as a passive monitoring sys-
tem that reads packets from a network interface through
libpcap[11]. After a set of normalization passes (such
as IP fragment reassembly, TCP stream reconstruction, etc.)
each packet is checked against the nIDS ruleset. The rule-
set is typically organized as a two-dimensional chain data-
structure, where each element - often called a chain header
- tests the input packet against a packet header rule. When a
packet header rule is matched, the chain header points to a
set of signature tests, including payload signatures that trig-
ger the execution of the string matching algorithm. The re-
mainder of this Section presents string matching algorithms

used in a nIDS.

2.1 Boyer-Moore

The most well-known algorithm for matching a sin-
gle pattern against an input was proposed by Boyer and
Moore[4]. The Boyer-Moore algorithm compares the
search string with the input starting from the rightmost char-
acter of the search string. This allows the use of two heuris-
tics that may reduce the number of comparisons needed for
string matching (compared to the naive algorithm). Both
heuristics are triggered on a mismatch. The first heuris-
tic, called the bad character heuristic, works as follows: if
the mismatching character appears in the search string, the
search string is shifted so that the mismatching character is
aligned with the rightmost position at which the mismatch-
ing character appears in the search string. If the mismatch-
ing character does not appear in the search string, the search
string is shifted so that the first character of the pattern is
one position past the mismatching character in the input.
The second heuristic, called the good suffixes heuristic, is
also triggered on a mismatch. If the mismatch occurs in the
middle of the search string, then there is a non-empty suf-
fix that matches. The heuristic then shifts the search string
up to the next occurrence of the suffix in the string. Hor-
spool [9] improved the Boyer-Moore algorithm with a sim-
pler and more efficient implementation that uses only the
bad-character heuristic.

2.2 Set-wise Boyer-Moore

Fisk and Varghese [7] designed an algorithm for nIDS
string matching. The algorithm, called Set-wise Boyer-
Moore-Horspool, is an adaptation of Boyer-Moore to si-
multaneously match a set of rules. This algorithm is shown
to be faster than both Aho-Corasick and Boyer-Moore for
medium-size pattern sets. Their experiments suggest trig-
gering a different algorithm depending on the number of
rules: Boyer-Moore-Horspool if there is only one rule; Set-
wise Boyer-Moore-Horspool if there are between 2 and 100
rules, and Aho-Corasick for more than 100 rules. A similar
algorithm was implemented independently by Coit et al.[5],
derived from the exact set matching algorithm of [8].

2.3 Exclusion-based Signature Matching

We have recently proposed E 2xB, a string matching al-
gorithm that is designed for providing quick negatives when
the search string does not exist in the packet payload, as-
suming a relatively small input size (in the order of packet
size). [10, 2]. As mismatches are by far more common
than matches, string matching can be enhanced by first test-
ing the input (e.g., the payload of each packet) for missing
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fixed-size sub-strings of the original signature string, called
elements. The false positives induced by E 2xB , e.g., cases
with all fixed-size sub-strings of the signature string show-
ing up in arbitrary positions within the input, can then be
separated from actual matches using standard string match-
ing algorithms, such as the Boyer-Moore algorithm [4]. The
small input assumption ensures that the rate of false pos-
itives is reasonably small – our experiments demonstrate
false positive rates of 10% in the worst case. In the common
case, negative responses can be obtained without resorting
to general-purpose string matching algorithms.

2.4 Wu-Manber

The most recent implementation of snort uses a simpli-
fied variant of the Wu-Manber multi-pattern matching algo-
rithm [15], as discussed in [14]. The ”MWM” algorithm is
based on the bad character heuristic similar to Boyer-Moore
but uses a one or two-byte bad shift table constructed by
pre-processing all patterns instead of only one. MWM per-
forms a hash on the two-character prefix of the current input
to index into a group of patterns, which are then checked
starting from the last character, as in Boyer-Moore. The
results of [14] show that snort is much faster than previ-
ous versions that used the Set-Wise Boyer-Moore and Aho-
Corasick, although it is not clear how much of the perfor-
mance improvement is because of the new string matching
algorithm.

3 Analysis

For most experiments we used a PC with a Pentium 4
processor running at 1.7 GHz, with a L1 cache of 8 KB and
L2 cache of 256 KB, and 512 MB of main memory. The
measured memory latency is 1 ns for the L1 cache, 10.9 ns
for the L2 cache and 170.4 ns for the main memory , mea-
sured using lmbench[12]. The host operating system is
Linux (kernel version 2.4.14, RedHat 7.3). We use snort
version 2.0-beta2 compiled with gcc version 3.2 (optimiza-
tion flags O2 – results with O3 were found to be similar).

We use four sets of packet traces from diverse environ-
ments. The first set contains full-packet traces from the
DEFCON “capture the flag” data-set. These traces contain
numerous intrusion attempts. The second set is consisted
of a full packet trace containing Web traffic, generated by
concurrently running a number of recursive wget requests
on popular portal sites from a host within the FORTH net-
work. Thirdly, we use three header-only traces from the
NLANR archive. These packet traces were taken on back-
bone links. Because these are header-only traces, for our
experiments we added uniformly random payloads. A set
of header-only traces with uniformly random payloads col-
lected on the OC3 link connecting the University of Crete

campus network (UCNET) to the Greek academic network
(GRNET)[6] is used. Finally, a set of two full packet traces
collected at Institute of Computer Science inside FORTH
is used. For simplicity, traces are read from a local file by
using the appropriate snort option, which is passed to the
underlying pcap(3) library. Replaying traces from a re-
mote host provided similar results.

3.1 Effect of traffic characteristics

We instrumented snort to record the chain header trig-
gered for each packet for each trace. The results are sum-
marized in Figure 1. We observe that the use of different
chain groups varies significantly. Roughly 42% of packets
in the FORTH.web trace trigger 956 rules, only 1-5% for the
other traces. For the NLANR backbone traces, 77-93% of
the packets trigger at most 87 rules. Although such differ-
ences should be expected given that the traces represent traf-
fic in different settings (backbone, campus, a hacker contest
and a web-only environment) there are visible differences
even between traces of the same kind. We can hereby argue
that no single workload is sufficient for evaluating “overall”
nIDS performance.

The performance of E 2xB and MWM string matching
algorithms is measured on each of these traces. For header-
only traces we add uniformly random payloads, assuming
this provides representative results – in Section 3.2 we will
discuss in more detail whether and to what degree this as-
sumption is reasonable. The measured running time of
snort on each trace is presented in Figure 2. The most
striking observation is that the mean processing time per-
packet is between 5.04 and 19.71 µs for MWM and 5.17
to 21.71 µs for E2xB , that is, the highest cost is about
4 times the lowest cost, and only slightly lower if we ig-
nore the DEFCON traces (as not representative of “real”
network traffic). We also observe that in all traces except
for DEFCON.0-9 and FORTH.tr1 E2xB performs better
than MWM; in most cases the improvement seems to be be-
tween 18-36%. The per-byte cost for DEFCON.0-9 seems
to be unusually high. However, 83.1% of the packets in this
trace have a payload size of one byte - obviously not rep-
resentative of common scenarios. The relatively small im-
provement of E2xB over MWM for the NLANR.AIX trace
seems to coincide with the small average packet size (340
bytes) in this case compared to other traces with a similar
distribution of packets to different chain header rules.

The highest cost is observed in the FORTH.web trace, as
expected, given that 43% of the packets trigger 956 rules,
much higher than any other trace. What is less obvious is
that NLANR.MRA and DEFCON.0-4 are not much cheaper
than FORTH.web , although the average number of rules
triggered per packet is much smaller: 99% of packets in
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Figure 1. Distribution of the number of rules checked per packet and byte (rules rarely triggered are
not presented)

DEFCON.0-4 and 77% of packets in NLANR.MRA trigger
33 and less than 89 rules respectively. The explanation lies
in the average packet size measured for the dominant chain
headers. The average packet size for the rules triggered by
DEFCON.0-4 is 1480 bytes and between 736 and 929 for
NLANR.MRA.

In summary, these results indicate that nIDS string
matching performance varies significantly for different
traces; simply using one source/type of workload there-
fore leads to questionable and potentially misleading re-
sults. Note that almost half of the traces used in this set of
experiments contain uniformly random payloads. We will
discuss next how this affects results.

3.2 Packet payloads: real vs. synthetic

We attempt to quantify the value of using real payloads
in nIDS evaluation. We use the DEFCON and FORTH
traces as they are the only traces containing real payload. In
each trace we replaced the original payload of each packet
by random characters. In Figure 3 the mean running time
over 10 runs (the results are accurate within 0.01 sec) for
MWM and E2xB is presented.

The basic result is that synthetic, uniformly random pay-
loads give quite different results than real payloads for the
same trace. For roughly half of the traces the difference
seems to be consistent: 14-18% for E 2xB and 24-30% for
MWM. Although this result can be regarded as negative,
it appears that running times for E 2xB are generally over-
estimated while for MWM the running times are underesti-

mated. If this trend is persistent then it is possible to use uni-
formly random payloads for evaluating nIDS performance,
bearing in mind the expected measurement error to be in the
direction and at the order of the results presented here.

3.3 Rulesets: real vs. synthetic

IDS rulesets are frequently updated with new signatures
as new threats are identified. It is therefore necessary to pre-
dict performance for larger rulesets. The use of synthetic
rulesets is an approach but it is not clear what kind of syn-
thesis method is suitable for producing representative rule-
sets. We consider two methods: creating random strings
and using permutations of the existing ruleset to generate
new rules. In both cases, the length of the generated rules
follows the distribution of string lengths in the seed ruleset.

To determine the accuracy of this approach we use the
two methods for creating a new ruleset based on the de-
fault snort ruleset with all other parameters (number of
headers, number of signatures per header, length of each
signature) unchanged. This allows us to estimate how good
the prediction would be if we wanted to predict the perfor-
mance of the current ruleset. We obtain the running times
for the original ruleset as well as the synthetic ruleset with
each of the two methods, and present the results in Figure
4.

We observe that both methods generally result in
wrong performance estimates. The errors appear to be
much smaller for E2xB than for MWM. Except for the
FORTH.web trace all other traces actually have very small
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errors, although the 19.6% error in FORTH.web suggests
that the method is not generally error-free. The use of per-
mutations is generally (but not always) much better than the
use of random characters. Unlike the errors produced by
uniformly random payloads, there is no clear trend towards
under- or over-estimating performance. Considering per-
mutations only, the maximum error is 6.71% for E 2xB and
24% for MWM. Any results using rules synthesized with
this method should therefore expect the prediction error to
be close to these values (assuming the ruleset structure will
not change significantly).

3.4 Analysis using synthetic rulesets

We use the ruleset synthesis method to analyze the per-
formance of E2xB and MWM as a function of ruleset-size
as well as packet-size. We create synthetic rulesets con-
taining a single chain header with 1 to 10,000 rules with an
average size of 14 bytes. A simple traffic generator creates
packets with uniformly random payloads and a given packet
size. We measure the performance of E 2xB and MWM for
packet sizes of 50, 500 and 1500 bytes. The results are pre-
sented in Figure 5 where the running time of E 2xB and
MWM for a fixed packet size of 1500 bytes and between
1 and 10,000 rules is shown. We see that MWM performs
better than E2xB when the number of rules is less than 6
or more than 2,500. For values between 6 and 2,500 E 2xB

is better, almost twice as fast when the number of rules is
between 9 and 100. As the number of rules increases, the
cost of string matching increases as well – for more than
2,000 the growth is super-linear. This is not surprising given
that the growing footprint of string matching also generates
more L2 cache misses. Such results indicate that nIDS load
balancing needs to carefully consider sensor locality issues
in choosing load balancing policies. For example, if the
number of rules increases dramatically a policy that allo-
cates half of the flows to each of two sensors may be less
efficient than a policy that sends all flows to both sensors
and uses half the ruleset on each sensor.

In Figure 6 we present the ratio of the running time of
E2xB over MWM for different packet sizes. We see that
the “turning points” where E2xB exceeds the performance
of MWM depend on packet size. These results suggest that
a hybrid approach, triggering different algorithms depend-
ing on ruleset and packet size is likely to result in the best
overall performance. This is similar in principle to the hy-
brid algorithm suggested by Fisk and Varghese [7] although
the effect of packet size had not been considered in their hy-
brid Boyer-Moore / Set-Wise Boyer-Moore / Aho-Corasick
heuristic.
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3.5 The effect of processor architecture

We measure the performance of E 2xB and MWM on
three different systems. In addition to the 1.7 GHz P4 used
in all the other experiments we run the same experiment on
a 1.0 GHz P3 (256 MB cache) and a 2.4 GHz P4 (512 MB
cache). The results are shown in Figure 7.

Interestingly, string matching seems to scale well with
increasing processor speed. E2xB is 4.7 to 7.4 times faster
on the 2.4 GHz P4 than on the 1.0 GHz P3 while MWM is
2.2 to 4.3 times faster. The difference in cache size seems
to provide some explanation for this behavior: the 2.4 GHz
P4 has a 512 MB cache while the other two processors have
256 MB. On the other hand, although the improvement from
P3 to 1.7 GHz P4 is much less – 1.62-2.71 times faster for
1.05 to 1.49 times faster for MWM – it is often close to
or even higher than the relative improvement in processor
clock rate. A second observation relates to the relative im-
provement of the two algorithms: E 2xB performs worse on
the P3 than MWM, but much better than MWM on the 2.4
GHz P4, with the gap increasing as we move from slower
to faster machine.

4 Summary

We have examined the performance of content-matching
Network Intrusion Detection Systems, focusing on the be-

havior of different string matching algorithms. The experi-
ments presented in this paper have led to three main obser-
vations.

First, results are sensitive to traffic characteristics and
processor architecture. We have compared the E 2xB and
MWM algorithms on many different traces and have found
significant variation in both the average per-packet cost for
each trace as well as in the relative benefits of each algo-
rithm. We also evaluated the two algorithms on on three dif-
ferent processor architectures: a 1.0 GHz P3, a 1.7 GHz P4
and a 2.4 GHz P4. Our results show that algorithm perfor-
mance improves (unusually) well with processor technol-
ogy. The improvement is in part (only) due to the larger data
cache on the high-end P4. Our results also show that the
processor can significantly affect the comparison of two al-
gorithms, and that the relative improvement in performance
when comparing E2xB to MWM seems to increase with
processor clock rate.

Second, we have found that nIDS performance measure-
ments are sensitive to both packet content and ruleset con-
tent. The level of sensitivity appears to be in most cases
bounded. Although quantifying this sensitivity has been be-
yond the purpose of our work, our results so far suggest that
it is possible to experiment with random payloads and ran-
dom rulesets, at the cost of some measurement error. Taking
such errors into account, one can create and use representa-
tive nIDS traces by simply extracting the timestamp, packet
size and matching chain header identifiers from (real or cap-
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tured) nIDS traffic. Such traces hide all privacy-sensitive in-
formation while also being significantly smaller and there-
fore more portable than full packet traces. This approach
could make it easier for researchers to use (and share) nIDS
traffic traces.

Third, we compared the performance of two string
matching algorithms and found that no algorithm is better in
all cases. Performance depends on ruleset and packet size,
suggesting that a hybrid method invoking a different algo-
rithm depending on these parameters is likely to offer better
performance than the exclusive use of a single algorithm.

Although our study has been constrained by the limited
set of traces we could use, this work has exposed some

of the key issues, trade-offs and parameters that need to
be considered in the experimental analysis of nIDS perfor-
mance. We expect that our results will be valuable towards
more effective nIDS evaluation and design.
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Availability

Source code for the workload generation tools dis-
cussed in this paper as well as a patch for snort
containing the E2xB algorithm can be found at
http://www.ics.forth.gr/carv/ids.html
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