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Abstract. The expressive power of regular expressions has been often
exploited in network intrusion detection systems, virus scanners, and
spam filtering applications. However, the flexible pattern matching func-
tionality of regular expressions in these systems comes with significant
overheads in terms of both memory and CPU cycles, since every byte of
the inspected input needs to be processed and compared against a large
set of regular expressions.
In this paper we present the design, implementation and evaluation of a
regular expression matching engine running on graphics processing units
(GPUs). The significant spare computational power and data parallelism
capabilities of modern GPUs permits the efficient matching of multiple
inputs at the same time against a large set of regular expressions. Our
evaluation shows that regular expression matching on graphics hardware
can result to a 48 times speedup over traditional CPU implementations
and up to 16 Gbit/s in processing throughput. We demonstrate the fea-
sibility of GPU regular expression matching by implementing it in the
popular Snort intrusion detection system, which results to a 60% increase
in the packet processing throughput.

1 Introduction

Network Intrusion Detection Systems (NIDS) are an efficient mechanism for
detecting and preventing well-known attacks. The typical use of a NIDS is to
passively examine network traffic and detect intrusion attempts and other known
threats. Most modern network intrusion detection and prevention systems rely
on deep packet inspection to determine whether a packet contains an attack
vector or not. Traditionally, deep packet inspection has been limited to directly
comparing the packet payload against a set of string literals. One or more string
literals combined into a single rule are used to describe a known attack. By
using raw byte sequences extracted from the attack vector, it is easy to maintain
signature sets that describe a large number of known threats and also make them
easily accessible to the public.

However, the existence of loose signatures [28] can increase the number of
false positives. Signatures that fail to precisely describe a given attack may
increase the number of matches in traffic that do not contain an actual attack.



Moreover, string literals that are shared between two or more rules will probably
conflict at the matching phase and increase the number of false positives. Thus, a
large number of well and carefully designed strings may be required for precisely
describing a known attack.

On the other hand, regular expressions are much more expressive and flexible
than simple byte sequences, and therefore can describe a wider variety of payload
signatures. A single regular expression can cover a large number of individual
string representations, and thus regular expressions have become essential for
representing threat signatures for intrusion detection systems. Several NIDSes,
such as Snort [21] and Bro [20] contain a large number of regular expressions to
accomplish more accurate results. Unfortunately, regular expression matching, is
a highly computationally intensive process. This overhead is due to the fact that,
most of the time, every byte of every packet needs to be processed as part of the
detection algorithm that searches for matches among a large set of expressions
from all signatures that apply to a particular packet.

A possible solution is the use of hardware platforms to perform regular ex-
pression matching [9, 24, 7, 18]. Specialized devices, such as ASICs and FPGAs,
can be used to inspect many packets concurrently. Both are very efficient and per-
form well, however they are complex to modify and program. Moreover, FPGA-
based architectures have poor flexibility, since most of the approaches are usually
tied to a specific implementation.

In contrast, commodity graphics processing units (GPUs) have been proven
to be very efficient for accelerating the string searching operations of NIDS [14,
30, 10]. Modern GPUs are specialized for computationally-intensive and highly
parallel operations—mandatory for graphics rendering—and therefore are de-
signed with more transistors devoted to data processing rather than data caching
and flow control [19]. Moreover, the ever-growing video game industry exerts
strong economic pressure for more powerful and flexible graphics processors.

In this paper we present the design, implementation, and evaluation of a
GPU-based regular expression matching engine tailored to intrusion detection
systems. We have extended the architecture of Gnort [30], which is based on
the Snort IDS [21], such that both pattern matching and regular expressions are
executed on the GPU. Our experimental results show that regular expression
matching on graphics hardware can provide up to 48 times speedup over tradi-
tional CPU implementations and up to 16 Gbit/s of raw processing throughput.
The computational throughput achieved by the graphics processor is worth the
extra communication overhead needed to transfer network packets to the mem-
ory space of the GPU. We show that the overall processing throughput of Snort
can be increased up to eight times compared to the default implementation.

The remainder of the paper is organized as follows. Background information
on regular expressions and graphics processors is presented in Section 2. Sec-
tion 3 describes our proposed architecture for matching regular expressions on a
graphics processor, while Section 4 presents the details of our implementation in
Snort. In Section 5 we evaluate our prototype system. The paper ends with an
outline of related work in Section 7 and some concluding remarks in Section 8.



2 Background

In this section we briefly describe the architecture of modern graphics cards,
and the general-purpose computing functionality they provide for non-graphics
applications. We also discuss some general aspects of regular expression matching
and how it is applied in network intrusion detection systems.

2.1 Graphics Processors

Graphics Processing Units (GPUs) have become powerful and ubiquitous. Be-
sides accelerating graphics-intensive applications, vendors like NVIDIA1 and
ATI,2 have started to promote the use of GPUs as general-purpose computa-
tional units complementary to the CPU.

In this work, we have chosen to work with the NVIDIA GeForce 9 Series
(G9x) architecture, which offers a rich programming environment and flexible
abstraction models through the Compute Unified Device Architecture (CUDA)
SDK [19]. The CUDA programming model extends the C programming language
with directives and libraries that abstract the underlying GPU architecture and
make it more suitable for general purpose computing. CUDA also offers highly
optimized data transfer operations to and from the GPU.

The G9x architecture, similarly to the previous G80 architecture, is based on
a set of multiprocessors, each comprising a set of stream processors operating on
SPMD (Single Process, Multiple Data) programs. A unit of work issued by the
host computer to the GPU is called a kernel and is executed on the GPU as many
different threads organized in thread blocks. A fast shared memory is managed
explicitly by the programmer among thread blocks. The global, constant, and
texture memory spaces can be read from or written to by the host, are persistent
across kernel launched by the same application, and are optimized for different
memory usage [19]. The constant and texture memory accesses are cached, so a
read from them costs much less compared to device memory reads, which are not
being cached. The texture memory space is implemented as a read-only region
of device memory.

2.2 Regular Expressions

Regular expressions offer significant advantages over exact string matching, pro-
viding flexibility and expressiveness in specifying the context of each match. In
particular, the use of logical operators is very useful for specifying the context
for matching a relevant pattern. Regular expressions can be matched efficiently
by compiling the expressions into state machines, in a similar way to some fixed
string pattern matching algorithms [3].

A state machine can be either a deterministic (DFA) or non-deterministic
(NFA) automaton, with each approach having its own advantages and disadvan-
tages. An NFA can compactly represent multiple signatures but may result to

1 http://developer.nvidia.com/object/cuda.html
2 http://ati.amd.com/technology/streamcomputing/index.html
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Fig. 1. Regular expression matching in the Snort IDS.

long matching times, because the matching operation needs to explore multiple
paths in the automaton in order to determine whether the input matches any
signatures.

A DFA, on the other hand, can be efficiently implemented in software—a
sequence of n bytes can be matched with O(n) operations, which is very efficient
in terms of speed. This is achieved because at any state, every possible input
letter leads to at most one new state. An NFA in contrast, may have a set
of alternative states to which it may backtrack when there is a mismatch on
the previously selected path. However, DFAs usually require large amounts of
memory to achieve this performance. In fact, complex regular expressions can
exponentially increase the size of the resulting deterministic automaton [6].

2.3 Regular Expression Matching in Snort

Regular expression matching in Snort is implemented using the PCRE library [1].
The PCRE library uses an NFA structure by default, although it also supports
DFA matching. PCRE provides a rich syntax for creating descriptive expressions,
as well as extra modifiers that can enrich the behavior of the whole expression,
such as case-insensitive or multi-line matching. In addition, Snort introduces
its own modifiers based on internal information such as the position of the last
pattern match, or the decoded URI. These modifiers are very useful in case an
expression should be matched in relation to the end of the previous match.

Each regular expression is compiled into a separate automaton that is used at
the searching phase to match the contents of a packet. Given the large number of
regular expressions contained in Snort’s default rule set, it would be inefficient
to match every captured packet against each compiled automaton separately.
45% of the rules in the latest Snort ruleset perform regular expression matching,
half of which are related to Web server protection.

To reduce the number of packets that need to be matched against a regular
expression, Snort takes advantage of the string matching engine and uses it as
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Fig. 2. Overview of the regular expression matching engine in the GPU.

a first-level filtering mechanism before proceeding to regular expression match-
ing. Rules that contain a regular expression operation are augmented with a
string searching operation that searches for the most characteristic fixed string
counterpart of the regular expression used in the rule.

The string matching engine consists of a set-wise pattern matching algorithm
that searches in advance for the fixed string subparts of all regular expressions
simultaneously. For a given rule, if the fixed string parts of the regular expressions
are not present in a packet, then the regular expression will never match. Thus,
fixed string pattern matching acts as a pre-filtering mechanism to reduce the
invocation of the regular expression matching engine, as shown in Figure 1.

There are also 24 rules in the latest Snort rule set that do not perform
this pre-filtering, but we believe these are cases of poorly written rules. The
matching procedure for regular expression matching is invoked only when the
subparts have been identified in the packet. For example, in the following rule:

alert tcp any any -> any 21 (content:"PASS"; pcre:"/^PASS\s*\n/smi";)

the pcre: pattern will be evaluated only if the content: pattern has previously
matched in the packet.

3 Regular Expression Matching on Graphics Processors

We extend the architecture of Snort to make use of the GPU for offloading reg-
ular expression matching from the CPU, and decreasing its overall workload.
Figure 2 depicts the top-level diagram of our regular expression pattern match-
ing engine. Whenever a packet needs to be scanned against a regular expression,
it is transferred to the GPU where the actual matching takes place. The SPMD
operation of the GPU is ideal for creating multiple instantiations of regular ex-
pression state machines that will run on different stream processors and operate
on different data.

Due to the overhead associated with a data transfer operation to the GPU,
batching many small transfers into a larger one performs much better than
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making each transfer separately, as shown in Section 5.3. Thus, we have chosen to
copy the packets to the GPU in batches. We use a separate buffer for temporarily
storing the packets that need to be matched against a regular expression. Every
time the buffer fills up, it is transferred to the GPU for execution.

The content of the packet, as well as an identifier of the regular expression
that needs to be matched against, are stored in the buffer as shown in Figure 3.
Since each packet may need to be matched against a different expression, each
packet is “marked” so that it can be processed by the appropriate regular ex-
pression at the search phase. Therefore, each row of the buffer contains a special
field that is used to store a pointer to the state machine of the regular expression
the specified packet should be scanned against.

Every time the buffer is filled up, it is processed by all the stream processors of
the GPU at once. The matching process is a kernel function capable of scanning
the payload of each network packet for a specific expression in parallel. The
kernel function is executed simultaneously by many threads in parallel. Using
the identifier of the regular expression, each thread will scan the whole packet in
isolation. The state machines of all regular expressions are stored in the memory
space of the graphics processor, thus they can be accessed directly by the stream
processors and search the contents of the packets concurrently.

A major design decision for GPU regular expression matching is the type of
automaton that will be used for the searching process. As we have discussed in
Section 2, DFAs are far more efficient than the corresponding NFAs in terms
of speed, thus we base our design of a DFA architecture capable of matching
regular expressions on the GPU.

Given the rule set of Snort, all the contained regular expressions are compiled
and converted into DFAs that are copied to the memory space of the GPU. The
compilation process is performed by the CPU off-line at start-up. Each regular
expression is compiled into a separate state machine table that is transferred to
the memory space of the GPU. During the searching phase, all state machine
tables reside in GPU memory only.

Our regular expression implementation currently does not support a few
PCRE keywords related to some look-around expressions and back references.
Back references use information about previously captured sub-patterns which is
not straightforward to keep track of during searching. Look-around expressions



scan the input data without consuming characters. In the current Snort default
rule set, less than 2% of the rules that use regular expressions make use of these
features. Therefore our regular expression compiler is able to generate automata
for the vast majority of the regular expressions that are currently contained in
the Snort rule set. To preserve both accuracy and precision in attack detection,
we use a hybrid approach in which all regular expressions that fail to compile
into DFAs are matched on the CPU using a corresponding NFA, in the same
way unmodified Snort does.

4 Implementation

In this section, we present the details of our implementation, which is based
on the NVIDIA G9X platform using the CUDA programming model. First, we
describe how the gathered network packets are collected and transferred to the
memory space of the GPU. The GPU is not able to directly access the captured
packets from the network interface, thus the packets must be copied by the CPU.
Next, we describe how regular expressions are compiled and used directly by the
graphics processor for efficiently inspecting the incoming data stream.

4.1 Collecting packets on the CPU

An important performance factor of our architecture is the data transfers to and
from the GPU. For that purpose, we use page-locked memory, which is substan-
tially faster than non-page-locked memory, since it can be accessed directly by
the GPU through Direct Memory Access (DMA). A limitation of this approach
is that page locked memory is of limited size as it cannot be swapped. In prac-
tice though this is not a problem since modern PCs can be equipped with ample
amounts of physical memory.

Having allocated a buffer for collecting the packets in page-locked memory,
every time a packet is classified to be matched against a specific regular ex-
pression, it is copied to that buffer and is “marked” for searching against the
corresponding finite automaton. We use a double-buffer scheme to permit over-
lap of computation and communication during data transfers between the GPU
and CPU. Whenever the first buffer is transferred to the GPU through DMA,
newly arriving packets are copied to the second buffer and vice versa.

A slight complication that must be handles comes from the TCP stream
reassembly functionality of modern NIDSs, which reassembles distinct packets
into TCP streams to prevent an attacker from evading detection by splitting
the attack vector across multiple packets. In Snort, the Stream5 preprocessor
aggregates multiple packets from a given direction of a TCP flow and builds a
single packet by concatenating their payloads, allowing rules to match patterns
that span packet boundaries. This is accomplished by keeping a descriptor for
each active TCP session and tracking the state of the session according to the
semantics of the TCP protocol. Stream5 also keeps copies of the packet data
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and periodically “flushes” the stream by reassembling all contents and emitting
a large pseudo-packet containing the reassembled data.

Consequently, the size of a pseudo-packet that is created by the Stream5
preprocessor may be up to 65,535 bytes in length, which is the maximum IP
packet length. However, assigning the maximum IP packet length as the size of
each row of the buffer would result in a huge, sparsely populated array. Copying
the whole array to the device would result in high communication costs, limiting
overall performance.

A different approach for storing reassembled packets that exceed the Max-
imum Transmission Unit (MTU) size, without altering the dimensions of the
array, is to split them down into several smaller ones. The size of each portion
of the split packet will be less or equal to the MTU size and thus can be copied
in consecutive rows in the array.

Each portion of the split packet is processed by different threads. To avoid
missing matches that span multiple packets, whenever a thread searches a split
portion of a packet, it continues the search up to the following row (which con-
tains the consecutive bytes of the packet), until a final or a fail state is reached,
as illustrated in Figure 4. While matching a pattern that spans packet bound-
aries, the state machine will perform regular transitions. However, if the state
machine reaches a final or a fail state, then it is obvious that there is no need to
process the packet any further, since any consecutive patterns will be matched
by the thread that was assigned to search the current portion.

4.2 Compiling PCRE Regular Expressions to DFA state tables

Many existing tools that use regular expressions have support for converting reg-
ular expressions into DFAs [5, 1]. The most common approach is to first compile
them into NFAs, and then convert them into DFAs. We follow the same ap-



proach, and first convert each regular expression into an NFA using the Thomp-
son algorithm [29]. The generated NFA is then converted to an equivalent DFA
incrementally, using the Subset Construction algorithm. The basic idea of sub-
set construction is to define a DFA in which each state is a set of states of the
corresponding NFA. Each state in the DFA represents a set of active states in
which the corresponding NFA can be in after some transition. The resulting
DFA achieves O(1) computational cost for each incoming character during the
matching phase.

A major concern when converting regular expressions into DFAs is the state-

space explosion that may occur during compilation [6]. To distinguish among the
states, a different DFA state may be required for all possible NFA states. It is
obvious that this may cause exponential growth to the total memory required.
This is primarily caused by wildcards, e.g. (.*), and repetition expressions, e.g.
(a(x,y)). A theoretical worst case study shows that a single regular expression
of length n can be expressed as a DFA of up to O(Σn) states, where Σ is the size
of the alphabet, i.e. 28 symbols for the extended ASCII character set [12]. Due
to state explosion, it is possible that certain regular expressions may consume
large amounts of memory when compiled to DFAs.

To prevent greedy memory consumption caused by some regular expressions,
we use a hybrid approach and convert only the regular expressions that do not
exceed a certain threshold of states; the remaining regular expressions will be
matched on the CPU using NFAs. We track of the total number of states during
the incremental conversion from the NFA to the DFA and stop when a certain
threshold is reached. As shown in Section 5.2, setting an upper bound of 5000
states per expression, more than 97% of the total regular expressions can be
converted to DFAs. The remaining expressions will be processed by the CPU
using an NFA schema, just like the default implementation of Snort.

Each constructed DFA is a two-dimensional state table array that is mapped
linearly on the memory space of the GPU. The dimensions of the array are
equal to the number of states and the size of the alphabet (256 in our case),
respectively. Each cell contains the next state to move to, as well as an indication
of whether the state is a final state or not. Since transition numbers may be
positive integers only, we represent final states as negative numbers. Whenever
the state machine reaches into a state that is represented by a negative number,
it considers it as a final state and reports a match at the current input offset. The
state table array is mapped on the memory space of the GPU, as we describe in
the following section.

4.3 Regular Expression Matching

We have investigated storing the DFA state table both as textures in the texture
memory space, as well as on the linear global memory of the graphics card. A
straightforward way to store the DFA of each regular expression would be to
dynamically allocate global device memory every time. However, texture memory
can be accessed in a random fashion for reading, in contrast to global memory,
in which the access patterns must be coalesced [19]. This feature can be very
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Fig. 5. Regular expression matching on the GeForce 9800 with 128 stream processors.
Each processor is assigned a different packet to process using the appropriate DFA.

useful for algorithms like DFA matching, which exhibit irregular access patterns
across large datasets. Furthermore, texture fetches are cached, increasing the
performance when read operations preserve locality. As we will see in Section 5.3,
the texture memory is 2 to 2.5 times faster than global device memory for input
data reads.

However, CUDA does not support dynamic binding of memory to texture
references. Therefore, it is not feasible to dynamically allocate memory for each
state table individually and later bind it to a texture reference. To overcome this
limitation, we pre-allocate a large amount of linear memory that is statically
bound to a texture reference. All constructed state tables are stored sequentially
in this texture memory segment.

During the searching phase, each thread searches a different network packet in
isolation, as shown in Figure 5. Whenever a thread matches a regular expression
on an incoming packet, it reports it by writing the event to a single-dimension
array allocated in the global device memory. The size of the array is equal to
the number of packets that are processed by the GPU at once, while each cell
of the array contains the position within the packet where the match occurred.



5 Evaluation

5.1 Experimental Environment

For our experiments, we used an NVIDIA GeForce 9800 GX2 card, which consists
of two PCBs (Printed Circuit Board), each of which is an underclocked Geforce
8800 GTS 512(G92) video card in SLI Mode. Each PCB contains 128 stream
processors organized in 16 multiprocessors, operating at 1.5GHz with 512 MB of
memory. Our base system is equipped with two AMD OpteronTM 246 processors
at 2GHz with 1024KB of L2-cache.

For our experiments, we use the following full payload network traces:

U-Web: A trace of real HTTP traffic captured in our University. The trace
totals 194MB, 280,088 packets, and 4,711 flows.

SCH-Web: A trace of real HTTP traffic captured at the access link that con-
nects an educational network of high schools with thousands of hosts to
the Internet. The trace contains 365,538 packets in 14,585 different flows,
resulting to about 164MB of data.

LLI: A trace from the 1998-1999 DARPA intrusion detection evaluation set of
MIT Lincoln Lab [2]. The trace is a simulation of a large military network
and generated specifically for IDS testing. It contains a collection of ordinary-
looking traffic mixed with attacks that were known at the time. The whole
trace is about 382MB and consists of 1,753,464 packets and 86,954 flows.

In all experiments, Snort reads the network traces from the local machine.
We deliberately chose traces of small size so that they can fit in main memory—
after the first access, the whole trace is cached in memory. After that point, no
accesses ever go to disk, and we have verified the absence of I/O latencies using
the iostat(1) tool.

We used the default rule set released with Snort 2.6 for all experiments. The
set consists of 7179 rules that contain a total of 11,775 pcre regular expressions.
All preprocessors were enabled, except the HTTP inspect preprocessor, in order
to force all web traffic to be matched against corresponding rules regardless of
protocol semantics.

5.2 Memory Requirements

In our first experiment, we measured the memory requirements of our system.
Modern graphics cards are equipped with enough and fast memory, ranging
from 512MB DDR up to 1.5GB GDDR3 SDRAM. However, the compilation of
several regular expression to DFAs may lead to state explosion and consume
large amounts of memory.

Figure 6(a) shows the cumulative fraction of the DFA states for the regular
expressions of the Snort rule set. It appears that only a few expressions are
prone to the state-space explosion effect. By setting an upper bound of 5000
states per regular expression, it is feasible to convert more than 97% of the
regular expressions to DFAs, consuming less than 200MB of memory, as shown
in Figure 6(b).
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Fig. 6. States (a) and memory requirements (b) for the 11,775 regular expressions
contained in the default Snort ruleset when compiled to DFAs.
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Fig. 7. Sustained throughput for transferring packets to the graphics card using virtual
(a) and paged-locked (b) memory.

5.3 Microbenchmarks

In this section, we analyze the communication overheads and the computational
throughput achieved when using the GPU for regular expression matching.

Packet transfer performance In this experiment we evaluated the time spent
in copying the network packets from the memory space of the CPU to the mem-
ory space of the GPU. The throughput for transferring packets to the GPU varies
depending on the data size and whether page-locked memory is used or not. For
this experiment we used two different video cards: a GeForce 8600 operating on
PCIe 16x v1.1, and a GeForce 9800 operating on PCIe 16x v2.0.

As expected, copying data from page-locked memory, despite the fact that
can be performed asynchronously via DMA, is substantially faster than non
page-locked memory, as shown in Figure 7. Compared to the theoretical 4 GB/s
peak throughput of the PCIe 16x v1.1 bus, for large buffer sizes we obtain about
2 GB/s with page pinning and 1.5 GB/s without pinning. When using PCIe 16x
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Fig. 8. Computational throughput for regular expression matching.

v2.0, the maximum throughput sustained reached 3.2 GB/s, despite the maxi-
mum theoretical being 8 GB/s. We speculate that the reason of these divergences
from the theoretical maximum data rates is the use of 8b/10b encoding in the
physical layer.

Regular expression matching raw throughput In this experiment, we eval-
uated the raw processing throughput that our regular expression matching im-
plementation can achieve on the GPU. Thus, the cost for delivering the packets
to the memory space of the GPU is not included.

Figure 8 shows the raw computational throughput, measured as the mean
size of data processed per second, for both CPU and GPU implementations.
We also explore the performance that different types of memory can provide,
using both global and texture memory to store the state machine tables. The
horizontal axis represents the number of packets that are processed at once by
the GPU.

When using global device memory, our GPU implementation operates about
18 times faster than the speed of the CPU implementation for large buffer sizes.
The use of texture memory though appears to maximize significantly the utiliza-
tion of the texture cache. Using texture memory and a 4096 byte packet buffer,
the GeForce 9800 achieved an improvement of 48.2 times compared to the CPU
implementation, reaching a raw processing throughput of 16 Gbit/s. However,
increasing the packet buffer size from 4096 to 32768 packets gave only a slight
improvement.

We have also repeated the experiment using the older GeForce 8600GT card
which contains only 32 stream processors operating at 1.2GHz. We can see that
the achieved performance doubles when going from the previous model to the
newest one, which demonstrates that our implementation scales to newer graph-
ics cards.
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Fig. 9. Sustained processing throughput for Snort using different network traces. In (a)
content matching is performed on the CPU for both approaches. In (b), both content

and pcre matching is performed on the GPU.

5.4 Overall Snort Throughput

In our next experiment we evaluated the overall performance of the Snort IDS
using our GPU-assisted regular expression matching implementation. Unfortu-
nately, the single-threaded design of Snort forces us to use only one of the two
PCBs contained in the GeForce 9800 GX2. Due to the design of the CUDA
SDK, multiple host threads are required to execute device code on multiple de-
vices [19]. Thus, Snort’s single thread of execution is able to execute device code
on a single device. It is possible to run multiple instances of Snort dividing the
work amongst them, or modify Snort to make it multi-threaded. We are cur-
rently in the processes of extending Snort accordingly but this work is beyond
the scope of this paper.

We ran Snort using the network traces described in Section 5.1. Figure 9(a)
shows the achieved throughput for each network trace, when regular expressions
are executed in CPU and GPU, respectively. In both cases, all content rules are
executed by the CPU. We can see that even when pcre matching is disabled, the
overall throughput is still limited. This is because content rules are executed
on the CPU, which limits the overall throughput.

We further offload content rules matching on the GPU using the implementa-
tion of GPU string matching from our previous work [30], so that both content

and pcre patterns are matched on the GPU. As we can see in Figure 9(b), the
overall throughput exceeds 800 Mbit/s, which is an 8 times speed increase over
the default Snort implementation. The performance for the LLI trace is still
limited, primarily due to the extra overhead spent for reassembling the large
amount of different flows that are contained in the trace.
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5.5 Worst-case Performance

In this section, we evaluate the performance of Snort for the worst-case sce-
nario in which each captured packet has to be matched against several regular
expressions independently. By sending crafted traffic, an attacker may trigger
worst-case backtracking behavior that forces a packet to be matched against
more than one regular expressions [25].

We synthetically create worst-case conditions, in which each and every packet
has to be matched against a number of regular expressions, by removing all
content and uricontent keywords from all Snort rules. Therefore, Snort’s pre-
filtering pattern matching engine is rendered completely ineffective, forcing all
captured packets to be evaluated against each pcre pattern individually.

Figure 10 shows how the CPU and the GPU implementations scale as the
number of regular expressions increases. We vary the number of pcre web rules
from 5 to 20, while Snort was operating on the U-Web trace. In each run, each
packet of the network trace is matched against all regular expressions. Even if
the attacker succeeds in causing every packet to be matched against 20 different
regular expressions, the overall throughput of Snort remains over 700 Mbit/s
when regular expression matching is performed on the GPU. Furthermore, in all
cases the sustained throughput of the GPU implementation was 9 to 10 times
faster than the throughput on the CPU implementation.

6 Discussion

An alternative approach for regular expression matching, not studied in this
paper, is to combine many regular expressions into a single large one. The com-
bination can be performed by concatenating all individual expressions using the
logical union operator [28]. However, the compilation of the resulting single ex-
pression may exponentially increase the total number of states of the resulting
deterministic automaton [16, 26]. The exponential increase, mainly referred as



state-space explosion in the literature, occurs primarily due to the inability of
the DFA to follow multiple partial matches with a single state of execution [15].

To prevent state-space explosion, the set of regular expressions can be parti-
tioned into multiple groups, which can dramatically reduce the required memory
space [31, 16]. However, multiple DFAs require the traversal of input data mul-
tiple times, which reduces the overall throughput. Recent approaches attempt
to reduce the space requirements of the automaton by reducing the number of
transitions [16] or using extra scratch memory per state [26, 15]. The resulting
automaton is compacted into a structure that consists of a reasonable number
of states that are feasible to store in low-memory systems.

Although most of these approaches have succeed in combining all regular
expressions contained in current network intrusion detection systems into a small
number of automata, it is not straightforward how current intrusion detection
systems (like Snort) can adopt these techniques. This is because most of the
regular expressions used in attack signatures have been designed such that each
one is scanned in isolation for each packet. For example, many expressions in
Snort are of the form /^.{27}/ or /.{1024}/, where . is the wild card for
any character followed by the number of repetitions. Such expressions are used
for matching the presence of fixed size segments in packets that seem suspicious.
Therefore, even one regular expression of the form /.{N}/ will cause the relevant
automaton to generate a huge number of matches in the input stream that need
to be checked against in isolation.

Moreover, the combination of regular expressions into a single one prohibits
the use of specific modifiers for each regular expression. For example, a regular
expression in a Snort rule may use internal information, like the matching posi-
tion of the previous pattern in the same rule. In contrast, our proposed approach
has been implemented directly in the current Snort architecture and boost its
overall performance in a straightforward way. In our future work we plan to
explore how a single-automaton approach could be implemented on the GPU.

Finally, an important issue in network intrusion detection systems is traffic
normalization. However, this is not a problem for our proposed architecture since
traffic normalization is performed by the Snort preprocessors. For example, the
URI preprocessor normalizes all URL instances in web traffic, so that URLs like
“GET /%43md.exe HTTP/1.1” become GET /cmd.exe HTTP/1.1. Furthermore,
traffic normalization can be expressed as a regular expression matching pro-
cess [22], which can also take advantage of GPU regular expression matching.

7 Related Work

The expressive power of regular expressions enables security researchers and
system administrators to improve the effectiveness of attack signatures and at the
same time reduce the number of false positives. Popular NIDSes like Snort [21]
and Bro [20] take advantage of regular expression matching and come preloaded
with hundreds of regexp-based signatures for a wide variety of attacks.



Several researchers have shown interest in reducing the memory use of the
compiled regular expressions. Yu et al. [31] propose an efficient algorithm for
partitioning a large set of regular expressions into multiple groups, reducing
significantly the overall space needed for storing the automata. Becchi et al. [4]
propose a hybrid design that addresses the same issue by combining the benefits
of DFAs and NFAs. In the same context, recent approaches attempt to reduce the
space requirements of an automaton by reducing the number of transitions [16]
or using extra scratch memory per state [26, 15].

A significant amount of work focuses on the parallelization of regular expres-
sion matching using specialized hardware implementations [9, 24, 7, 18]. Sidhu
and Prasanna [24] implemented a regular expression matching architecture for
FPGAs achieving very good space efficiency. Moscola et al. [18] were the first
that used DFAs instead of NFAs and demonstrated a significant improvement
in throughput.

Besides specialized hardware solutions, commodity multi-core processors have
begun gaining popularity, primarily due to their increased computing power and
low cost. For highly parallel algorithms, packing multiple cores is far more ef-
ficient than increasing the processing performance of a single data stream. For
instance, it has been shown that fixed-string pattern matching implementations
on SPMD processors, such as the IBM Cell processor, can achieve a computa-
tional throughput of up to 2.2 Gbit/s [23].

Similarly, the computational power and the massive parallel processing capa-
bilities of modern graphics cards can be used for non graphics applications. Many
attempts have been made to use graphics processors for security applications,
including cryptography [11, 8], data carving [17], and intrusion detection [14,
30, 10, 27, 13]. In our previous work [30], we extended Snort to offload the string
matching operations of the Snort IDS to the GPU, offering a three times speedup
to the processing throughput compared to a CPU-only implementation. In this
work, we build on our previous work to enable both string and regular expression
matching to be performed on the GPU.

8 Conclusion

In this paper, we have presented the design, implementation, and evaluation of
a regular expression matching engine running on graphics processors, tailored to
speed up the performance of network intrusion detection systems. Our prototype
implementation was able to achieve a maximum raw processing throughput of
16 Gbit/s, outperforming traditional CPU implementations by a factor of 48.
Moreover, we demonstrated the benefits of GPU regular expression matching
by implementing it in the popular Snort intrusion detection system, achieving a
60% increase in overall packet processing throughput.

As part of our future work, we plan to run multiple Snort instances in parallel
utilizing multiple GPUs instead of a single one. Modern motherboards contain
many PCI Express slots that can be equipped with multiple graphics cards.
Using a load-balancing algorithm, it may be feasible to distribute different flows



to different Snort instances transparently, and allow each instance to execute
device code on a different graphics processor. We believe that building such
“clusters” of GPUs will enable intrusion detection systems to inspect multi-
Gigabit network traffic using commodity hardware.
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