Confine: Automated System Call Policy Generation for Container Attack Surface Reduction

Seyedhamed Ghavamnia
Stony Brook University

Tapti Palit
Stony Brook University

Azzedine Bennameur
Cloudhawk.io

Michalis Polychronakis
Stony Brook University

Abstract

Reducing the attack surface of the OS kernel is a promising defense-in-depth approach for mitigating the fragile isolation guarantees of container environments. In contrast to hypervisor-based systems, malicious containers can exploit vulnerabilities in the underlying kernel to fully compromise the host and all other containers running on it. Previous container attack surface reduction efforts have relied on dynamic analysis and training using realistic workloads to limit the set of system calls exposed to containers. These approaches, however, do not capture exhaustively all the code that can potentially be needed by future workloads or rare runtime conditions, and are thus not appropriate as a generic solution.

Aiming to provide a practical solution for the protection of arbitrary containers, in this paper we present a generic approach for the automated generation of restrictive system call policies for Docker containers. Our system, named Confine, uses static code analysis to inspect the containerized application and all its dependencies, identify the superset of system calls required for the correct operation of the container, and generate a corresponding Seccomp system call policy that can be readily enforced while loading the container. The results of our experimental evaluation with 150 publicly available Docker images show that Confine can successfully reduce their attack surface by disabling 145 or more system calls (out of 326) for more than half of the containers, which neutralizes 51 previously disclosed kernel vulnerabilities.

1 Introduction

The convenience of running containers and managing them through orchestrators, such as Kubernetes [13], has popularized their use by developers and organizations, as they provide both lower cost and increased flexibility. In contrast to virtual machines, which run their own operating system (OS), multiple tenants can launch containers on top of the same OS kernel of the host. This makes containers more lightweight compared to VMs, and thus allows for running a higher number of instances on the same hardware [30].

The performance gains of containers, however, come to the expense of weaker isolation compared to VMs. Isolation between containers running on the same host is enforced purely in software by the underlying OS kernel. Therefore, adversaries who have access to a container on a third-party host can exploit kernel vulnerabilities to escalate their privileges and fully compromise the host (and all the other containers running on it).

The trusted computing base in container environments essentially comprises the entire kernel, and thus all its entry points become part of the attack surface exposed to potentially malicious containers. Despite the use of strict software isolation mechanisms provided by the OS, such as capabilities [1] and namespaces [18], a malicious tenant can leverage kernel vulnerabilities to bypass them. For example, a vulnerability in the waitid system call [6] allowed malicious users to run a privilege escalation attack [70] and escape the container to gain access to the host.

At the same time, the code base of the Linux kernel has been expanding to support new features, protocols, and hardware. The increase in the number of exposed system calls throughout the years is indicative of the kernel’s code “bloat.” The first version of the Linux kernel (released in 1991) had just 126 system calls, whereas version 4.15.0-76 (released in 2018) supports 326 system calls. As shown in previous works [40, 50, 51, 80], different applications use disparate kernel features, leaving the rest unused—and available to be exploited by attackers. Kurmus et al. [50] showed that each new kernel function is an entry point to accessing a large part of the whole kernel code, which leads to attack surface expansion.

As a countermeasure to the ever expanding code base of modern software, attack surface reduction techniques have recently started gaining traction. The main idea behind these techniques is to identify and remove (or neutralize) code which, although is part of the program, it is either i) completely inaccessible (e.g., non-imported functions from shared libraries), or ii) not needed for a given workload or configuration. A wide range of previous works have applied this concept at different levels, including removing unused functions from shared libraries [56, 58, 66] or even removing
whole unneeded libraries [47]; tailoring kernel code based on application requirements [50, 80]; or limiting system calls for containers [8, 68, 69, 75]. In fact, one of the suggestions in the NIST container security guidelines [59] is to reduce the attack surface by limiting the functionality available to containers.

Despite their diverse nature, a common underlying challenge shared by all these approaches is how to accurately identify and maximize the code that can be safely removed. On one end of the spectrum, works based on static code analysis follow a more conservative approach, and opt for maintaining compatibility in the expense of not removing all the code that is actually unneeded (i.e., “remove what is not needed”). In contrast, some works rely on dynamic analysis and training [8, 50, 68, 69, 75, 80] to exercise the system using realistic workloads, and identify the actual code that was executed while discarding the rest (i.e., “keep what is needed”). For a given workload, this approach maximizes the code that can be removed, but as we show in Section 4, it does not capture exhaustively all the code that can potentially be needed by different workloads—let alone parts of code that are executed rarely, such as error handling routines.

Given that previous efforts in the area of attack surface reduction for container environments have focused on dynamic analysis [8, 68, 69, 75], in this work we aim to provide a more generic and practical solution that can be readily applied for the protection of any container without the need for training. To that end, we present an automated technique for generating restrictive system call policies for arbitrary containers, and limiting the exposed interface of the underlying kernel that can be abused. By relying on static code analysis, our approach inspects all execution paths of the containerized application and all its dependencies, and identifies the superset of system calls required for the correct operation of the container.

Our fully automated system, named Confine, takes a container image as its input and generates a customized system call policy. Containers, once initialized, run a single application for their entire execution time. We use dynamic analysis to capture all binary executables that might be invoked during container initialization. This initial limited dynamic analysis phase does not depend on the availability of workloads, and just pinpoints the set of executables that are invoked in the container, which are then statically analyzed. We have chosen Docker as the main supported type of container images, as it is the most widely used open-source containerization technology.

We experimentally evaluated our prototype with a set of 150 publicly available Docker images, and demonstrate its effectiveness in deriving strict system call policies without breaking functionality. In particular, for about half of the containers, Confine disables 145 or more system calls (out of 326), while at least 100 or more system calls are disabled in the worst case and 219 in the best case. This is in stark contrast to Docker’s default list of 49 (plus four partially) disabled system calls. More importantly, disabling these system calls effectively neutralizes 51 previously disclosed kernel vulnerabilities, in addition to the 25 vulnerabilities mitigated by Docker’s default Seccomp policy.

The main contributions of our work include:

- We propose a generic approach for the automated generation of restrictive, ready-to-use Seccomp system call policies for arbitrary containers, without depending on the availability of source code for the majority of the target programs.
- We performed a thorough analysis of Linux kernel CVEs, mapping them to functions in the kernel code. We identified which system calls can be used to exploit each CVE, and used this mapping as the basis for evaluating the effectiveness of our approach.
- We examined more than 200 of the most popular publicly available Docker images from Docker Hub [7] and present an analysis of their characteristics.
- We experimentally evaluated our system with the above images and demonstrate its effectiveness in generating restrictive system call policies, which neutralize 51 previously disclosed kernel vulnerabilities.

Our Confine prototype is publicly available as an open-source project from https://github.com/shamedgh/confine.

2 Background

The attack surface of the OS kernel used by containers can be reduced by restricting the set of system calls available to each container. In this section, we describe how Linux containers provide isolation to different “containerized” processes, and how SECure COMPuting with filters (Seccomp BPF) [23] can be used to reduce the kernel code exposed to containers.

2.1 Linux Containers

Linux containers are an OS-level virtualization approach, which can be used to execute multiple userlands on top of the same kernel. The Linux kernel uses Capabilities [1], Namespaces [18] and Control Groups (cgroups) [3] to provide isolation among different containers.

Namespaces are a kernel feature that virtualizes global system resources (specifically: mount points, process IDs, network devices and network stacks, IPC objects, hostnames, user and group IDs, and cgroups), providing the “illusion” of exclusive use of these resources to processes within the same namespace. Control Groups allow processes to be organized into hierarchical groups, whose usage of various types of resources (e.g., CPU time, memory, disk space, disk and network I/O) can be limited, accounted, or prioritized accordingly. Containers use cgroups to provide “fair” usage of resources.

Docker [7] is a platform that employs the software-as-a-service and platform-as-a-service models for developing,
deploying, and running containers. Every Docker container launched is based on a Docker image, which is a file built in layers, encapsulating the entire environment (including a whole Linux distribution, libraries, and support utilities) required to execute the containerized application(s). The specification of the Docker image is described in a text file, called Dockerfile. The Dockerfile essentially contains all the commands required to assemble the respective image. Docker uses Linux namespaces and cgroups to provide isolation between containers.

Docker Hub [7] is a central repository of both community-based and official Docker images, which has drastically popularized container use among system administrators. More importantly, by building streamlined services with a minimal code base, Docker has enabled corporations to increasingly switch to the use of microservices. Each microservice can be configured as a Docker image once, and then multiple instances of it can be launched.

2.2 Seccomp BPF

User-space applications communicate with the OS kernel through the provided set of system calls, i.e., a pre-defined API that allows access to specific kernel functionalities programmatically. More importantly, however, applications typically need only a subset of the available system calls to function properly, i.e., most applications do not make use of all the provided system calls.

Nonetheless, although a program may not use all of the provided system calls, the complete set is available to all processes. This modus operandi has two issues: (1) a compromised application may use additional system calls (from what the author of the application originally intended) to carry out malicious operations that require access to system resources (e.g., filesystem, network) that the application never meant to access; and (2) a malicious (or compromised) application may invoke unused system calls to exploit underlying kernel vulnerabilities (typically related to the implementation of a given system call) for privilege escalation [45, 46], thereby gaining access to every process and container on the host.

Seccomp BPF [23] is a mechanism for restricting the set of system calls that are accessible by a given application. Specifically, Seccomp BPF uses the Berkeley Packet Filter language [55] for allowing developers to write arbitrary programs that act as system call filters, i.e., BPF programs that inspect the system call number (as well as argument values, if needed) and allow, log, or deny the execution of the respective system call. Docker containers can be executed with Seccomp BPF profiles, allowing users to provide allow/deny lists of permitted/prohibited system calls. The specified allow/deny list is applied to the entire process namespace, limiting all processes executed inside the respective container. We use this mechanism to reduce the kernel code available to each container.

Figure 1: Example of control flow in Nginx that is missed by dynamic analysis. Ovals represent functions, while rectangles represent basic blocks. Dashed branches and blocks are not executed during training.

3 Threat Model

We consider a local adversary who has full access to a container running on a third-party host. This access may be granted either legitimately (e.g., as a regular user of a cloud service), or as a result of compromising a vulnerable process running on the container. Potential victims include the OS kernel of the host, as well as any other containers running on it. We specifically focus on preventing the attacker from escaping a container—preventing the exploitation of an application running on a container is not the focus of our work. Any exploit mitigations and defenses deployed on the host or individual containers are orthogonal to our approach, as it does not rely on any additional protection mechanisms being in place at user or kernel space.

Confine limits the set of system calls an attacker can invoke. In case of vulnerability exploitation, this means that exploit code (e.g., shellcode or ROP payload) or malicious programs run by the attacker will have more limited capabilities, as they cannot rely on system calls that are not needed by the container. More importantly, by preventing access to less frequently used and less tested system calls—the kernel code of which may contain vulnerabilities that can lead to privilege escalation [53]—an attacker cannot trigger those vulnerabilities to compromise the kernel, as the respective system calls cannot be invoked in the first place.

4 The Need for Static Analysis

Previous works [8, 68, 69, 75] have used dynamic analysis to derive the list of system calls used by a container. However, dynamic analysis is not sound, and thus can miss system calls along execution paths that were not exercised during the training phase. To demonstrate this issue, we manually analyzed Nginx and discovered three examples of system calls that would be missed if only dynamic analysis were used. For our evaluation, we use Nginx with the Cache Management and Auto Index features enabled.

Nginx spawns a separate cache-manager process to handle cache management. This process clears the older cached files when the cache is full using the unlink system call. Dynamically analyzing Nginx would capture the initialization
of the cache-manager process, but would likely fail to capture the deletion of older cached files, and therefore fail to capture the use of the unlink system call. As the unlink system call is not invoked anywhere else during the normal execution of the program, relying on training alone would cause it to be marked as unused. Moreover, extending the training phase for a longer duration would not solve the problem because the deletion of older files is triggered only when the cache is full. Training would need to request enough new files to fill up the cache. Correctly setting up the training process to handle such situations is thus challenging. Figure 1 shows the parts of the control flow that are not discovered during training.

Another example of failure to capture a system call is the use of lstat when displaying directory listings. Apart from this functionality, lstat is not used in any other part of Nginx. As listing a directory is usually triggered by users who manually type a URL, and not by following any existing URL on a website, it is unlikely that a training-based approach would be able to capture this system call.

In yet another case, the Nginx binary can be updated with a newer version without dropping client connections. The system calls getsockopt and getssockopt are used to hand over the existing socket connections to the new process, and are not used anywhere else in the code, making it challenging for dynamic analysis to discover them.

The above examples are indicative of the trade off between fragility and overapproximation faced by dynamic and static analysis. Relying on dynamic analysis alone would require the training to be comprehensive enough to anticipate and capture all above corner cases. In contrast, static analysis results are guaranteed to be sound, but may include system calls that are never invoked by certain workloads. As we aim for a practical and generic solution, we opt for using static analysis to capture the superset of system calls used by an application.

5 Design

Our goal is to reduce the kernel attack surface available to a malicious tenant of a container service by limiting the number of system calls available to each container, which can potentially be of use for malicious purposes (either as part of exploit code, or as a gateway to exploiting kernel vulnerabilities). To achieve this, Confine “hardens” the container image once it has been fully configured by the user, by limiting access to only those system calls that are actually needed for the proper operation of the container.

Identifying the system calls that are necessary for the correct execution of the container requires addressing the following requirements: 1) identify all applications that may run on the container; 2) identify all library functions imported by each application; 3) map library functions to system calls; and 4) extract direct system call invocations from applications and libraries.

Figure 2 presents a high-level overview of our approach, which, given a container image, automatically generates Seccomp rules that limit the system calls that may be invoked. Confine currently supports Docker containers running on a native Linux-based host, but similar analysis could be performed for other container environments and operating systems.

5.1 Identifying Running Applications

Although containers are usually specialized to run a single application or service, they typically invoke many other utility and support programs prior to executing the main program. For example, the default MongoDB Docker image [16] invokes the following supporting programs to set up the environment: bash, chown, find, id, and numactl. To generate system call policies, we must thus identify all programs that can potentially run during the lifetime of a container. Confine relies on limited dynamic analysis to capture the list of processes created on the system. A profiling tool records every application launched within a configurable time period (30 seconds by default) since the creation of the container—long enough to capture both system initialization, as well as the “stable” state of the system. The obtained set of applications is then used to derive the corresponding system call policy. We further discuss the completeness of the derived list in Section 8.

Our approach is different from previous works that rely on dynamic training using various workloads to derive a list of allowable system calls [75]. In our approach, the goal of the dynamic analysis is merely to identify the set of binary executables to be analyzed—the system calls invoked by these programs are then derived statically.

The above dynamic analysis is meant to be a convenient and automated way to carry out the batch analysis of multiple container images. For containers that may include applications that are not launched from the beginning, our system supports manually provided external lists of executables that should be included in the analysis.

5.2 Static Analysis

Dynamic analysis often fails to exercise all possible code paths, especially when comprehensive workloads are not available during training. To ensure complete code coverage, once we have the list of applications that are executed on the container, we perform static analysis to extract the system calls that are needed for the correct execution of each application.

Libc

User programs typically invoke system calls through the libc library, which provides corresponding wrapper functions (e.g., the libc function read invokes the system call SYS_read). Confine analyzes the source code of libc to derive a mapping between exported functions and the system calls they invoke. For the rest of the programs and libraries on a given container, however, Confine only needs to analyze their binaries.

A libc function may have multiple control flow paths to the actual system call. To correctly identify which system calls are
invoked by a given libc function, we thus need to analyze these control flow paths. To that end, Confiné statically analyzes the source code of libc to derive its full call graph, and accurately map each function to its respective system calls.

Function pointers are used widely in libc. However, performing accurate points-to analysis has significant scalability and performance issues [29, 42]. To avoid having to perform points-to analysis, we follow a more conservative approach and retain all system calls that are invoked through any function that has its address taken. In Section 6.1 we discuss the technical challenges we encountered during this process.

Having an accurate mapping between libc functions and system calls, it is then straightforward to analyze each program (main executable and libraries), identify all imported libc functions, and derive the set of all possible system calls the program may invoke. It is important to stress that this phase is performed only once per libc version—the derived mapping is then saved and used across all containers.

5.3 Hardening the Container Image

Once we have generated the list of system calls needed to run the container, we can proceed to harden the container image. Docker containers support the use of Seccomp filters to limit the system calls accessible from the container. The user can launch the container with a custom ruleset which specifies the system calls that can be accessed by the container. This ruleset can be either in the form of a deny list or an allow list of system calls prohibited or permitted. For Confiné, we use a deny list of system calls that the container is not allowed to invoke.

Based on the analysis performed in Sections 5.1 and 5.2, we use an automated script to derive the list of prohibited system calls, and construct the corresponding Seccomp profile. If any new application needs to be executed on the container after this process, the administrator must run the analysis on the application to update the Seccomp profile.

6 Implementation

6.1 Mapping Libc Functions to System Calls

To ensure correctness, a precise function call graph is required to identify and filter unused system calls. Based on our analysis of more than 200 popular Docker images from Docker Hub [7], we found that even though most containers use the popular glibc library as their main user-space libc library, musl-libc [17] was also used in 12 occasions. Although both musl-libc and glibc provide implementations of the C standard library functions, and applications should be able to use both interchangeably, we discovered that the system calls used by standard libc functions some times differ between musl-libc and glibc.

To maximize compatibility, we analyzed both libraries independently to extract their call graphs and their corresponding function-to-system-call mapping. Moreover, due to certain differences between glibc and musl-libc, which we discuss next, we had to use a different toolchain for the analysis of each of these libraries.

6.1.1 Musl-Libc

Musl-libc [17] is a lightweight C standard library which has a smaller codebase compared to glibc. For our analysis, we compiled musl-libc with the LLVM [14] compiler toolchain and implemented an LLVM pass to extract the complete call graph. This pass operates on the intermediate representation (IR) of the code and records each function call. To identify system calls, in addition to recording each function call, we make special note of calls to the syscall function. Using the extracted call graph, we create a map between each exported function in musl-libc and the system calls it invokes. We modified the compiler toolchain to invoke the pass before...
any optimization to prevent the loss of precision due to optimizations and code transformations.

Musl-libc uses a weak_alias macro to define weak symbols for functions. Weak symbols can be overridden by strong symbols having the same name, without name collision errors. Our LLVM pass keeps track of these aliases as well.

6.1.2 Glibc

Glibc is the most popular libc implementation used in most containers. Glibc heavily relies on multiple GCC [11] features which are not implemented in LLVM. Due to this issue, we implemented a second analysis pass to extract the call graph and system call information from glibc, based on the GCC RTL (Register Translation Language) Intermediate Representation. Our call graph extraction implementation is based on the Egypt [38] tool, which operates on GCC’s RTL IR. We discovered that there are three main mechanisms through which glibc invokes system calls.

System Call via Inline Assembly and Assembly Files

This is the most straightforward mechanism for invoking system calls. Functions such as `accept4()`, which is responsible for accepting incoming socket connections, contain inline invocations using the x86-64 syscall instruction. Given the source code, the Egypt tool constructs the function call graph for any given application or library. We augmented Egypt to iterate over every call instruction in the RTL IR and record any native x86-64 syscall instruction. Similarly, assembly files also contain syscall instruction. Therefore, we analyze the assembly files and extract all syscall instructions.

System Call Wrapper Macros

In addition to directly using the syscall instruction, glibc also uses macro expansion to generate wrappers to system calls. Other glibc routines use these wrappers to invoke system calls. Because these wrappers are implemented as architecture-dependent (in our case x86-64) macros, they cannot be retrieved by analyzing the RTL IR. Moreover, the parameters to these macros are provided by a bash script during compile time.

The syscall-template.S file contains the macros T_PSEUDO, T_PSEUDO_NOERRNO, and T_PSEUDO_ERRVAL, that define wrappers to system calls. The list of system calls to be generated, along with other information, such as symbol names and the number of arguments, are provided in the syscalls.list file. The Bash script make-syscalls.sh reads this file at compile time, generates the correct macro definitions, and invokes the expansion of the macros in the syscall-template.S. This script is invoked as part of the build process of glibc. During the compilation of glibc, we trace the execution of this script and record the relevant macro definitions observed during its execution. Using these macros and macro definitions, we derive the mappings between these wrappers and their respective system calls.

Weak Symbols and Versioned Symbols

Similarly to musl-libc, glibc uses the weak_alias macro to define weak symbols for functions. GCC supports symbol versioning, and glibc uses this feature to support multiple versions of glibc. The versioned symbols are defined using the macro versioned_symbol. Both weak_alias and versioned_symbol provide aliases for functions. Other functions within glibc, as well as the applications using glibc, can invoke these aliased functions either through the original function name or its alias. We analyze the C source code to extract these aliases, and add them to the call graph.

6.2 Binary Analysis

To capture a trace of all invoked executables, we leverage Sysdig [26] to monitor the execve calls made during the initial 30 seconds (configurable value) of the container. After we generate the list of programs the container runs, we further perform static analysis to extract the list of system calls necessary for the correct execution of the container.

6.2.1 System Call Invocation Through Libc

After extracting the list of binaries, we recursively find any other libraries (except libc) that are loaded by them, and then use objdump to extract the superset of imported functions across all main executables and libraries. This analysis gives us the list of libc (glibc or musl-libc) functions that are imported by an application and its libraries. Then, using the libc-to-syscall map generated as described in Section 6.1, we derive the list of system calls required by the application. In addition to these, the Docker framework itself needs certain system calls to run. Consequently, after deriving the required system calls for all the programs of a container, we combine them with the list of system calls which Docker requires by default to launch the container.

6.2.2 Direct System Call Invocation

We further encountered a limited number of libraries and applications that invoke system calls directly through either the libc syscall() interface, or the native syscall assembly instruction. Analyzing such invocations requires deriving the values of the arguments being passed to the system call. Fortunately, extracting the first argument, which specifies the system call number, is straightforward, as it is typically set by the (few) instructions preceding the syscall instruction or the syscall() function invocation. We therefore use binary code disassembly to identify the system call number by extracting the values assigned to the RAX/EAX register for the syscall instruction, and the RDI/EDI register for the syscall() function. Confinement currently supports only x86-64, but adding support for other platforms is straightforward by following their calling conventions.
6.2.3 Dynamically Loaded Libraries

An issue that requires special consideration is dynamic loading, a mechanism through which applications can load modules on demand throughout their execution. The `dlopen()`, `dlsym()`, and `dlclose()` API functions are used to load a library, retrieve its symbols, and close it, respectively. Because these operations are performed at run time, any libraries loaded in this way cannot be identified by looking at the application’s ELF binary header. For instance, Apache Httpd uses this feature to load libraries based on the user-defined configuration. Quach and Prakash in [65] have shown that only around 3% of the 3174 programs and 2% of the 4292 libraries analyzed in their dataset used these features, all of which loaded the required libraries during initialization.

To identify such dynamically loaded libraries, we monitor the list of libraries loaded by the application at run time through the `/proc` virtual file system, which provides this information for every process. In Section 6.3 we discuss how we use the same technique of monitoring the `procfs` to detect the list of libraries used by Java applications.

One consideration is that if an application dynamically loads libc, we cannot identify the individual functions imported by the application, and would have to retain all system calls made by libc. However, it is unlikely that libc will be loaded in this fashion, as dynamic loading is used for modules that provide additional functionality to the application. We did not encounter any such case in our experiments.

6.3 Language-specific Considerations

Different languages have different software stacks, and therefore different analysis techniques to extract the system call policies. The programming language of the containerized application has an important effect on the analysis methods used to identify the system calls required by a given application. In this section, we describe the different techniques we used to handle applications written in programming languages other than C/C++, which we encountered during our study of the top 200 Docker images. In Section 7 we present statistics on the usage of these languages across the container images studied.

Go Applications written in the Go language consist of command packages and utility non-main packages. Go applications can be compiled into executables using two build-modes: default, and c-shared. When compiled with the `default` build mode, all main packages are built into executables, and all non-main packages are built into a static `.a` archive that is linked statically with the executables. Go applications use system call wrappers provided by Go’s `syscall` and `runtime` packages to invoke system calls.

When compiled with the `c-shared` build-mode, the main package relies on the standard libc library to invoke system call wrapper functions.

The analysis of our dataset shows that most of the Go applications in the studied containers are built using the default build mode. Therefore, unlike C/C++ applications which rely on glibc, these applications use the Go core packages, `syscall` and `runtime`, to make system calls. Consequently, for containers that include Go applications, we require the source code of all running Go applications to identify their system calls. We use the callgraph tool [19] to build the call graph of Go applications and all their dependencies, which we have extended to record all calls to the system call wrappers specified in the `syscall` and `runtime` packages.

Java/NodeJS Both the Java and NodeJS runtime applications use libc as a shared library to invoke system calls. The Java compiler compiles Java source code into Java bytecode and uses its own virtual machine (JVM) to interpret the bytecode. Java programs are not compiled to machine code and a binary is thus not generated. The interpreter and JVM is provided by the `java` binary, which is launched via an `exec` system call. To find the system calls of a container that hosts a Java type application, in addition to analyzing all other running binaries, we also analyze the `java` binary that contains this JVM, and any other libraries that are dynamically loaded, as described above. Similarly, we handle the system calls invoked by the `node-js` runtime.

Purely Interpreted Languages Scripting languages, such as Python and Perl, are purely interpreted and require the respective interpreter to run. We extract the required system calls for these types of containers using the same approach used for other binaries, by applying our method to the interpreter binary and all its required libraries.

6.4 Seccomp Profile Generation

We automatically generate Seccomp policies by classifying all system calls not present on the final list of required system calls as “not-permitted,” and assigning them to a deny list. The Docker Seccomp ruleset requires the name of the filtered system calls, while our analysis of the containers generates system call numbers. We map all the available system calls in the kernel to their respective number by using the symbol information related to the names of the system calls from the `procfs pseudo-fs`ystem. Based on the `sys/syscall.h` header file, we map the system call name to its number, and use it to convert the prohibited system call numbers to their names. We create the Seccomp profile with a deny list containing these system calls and apply it to the container.

Docker uses a JSON file to define the permitted system calls. Listing 1 shows a sample ruleset which only disables the `pwrite64` system call. The default action for this ruleset is to allow all system calls, except those specified under the `syscalls` tag. Each system call is specified by three arguments: its name, the action, and its arguments.
7 Experimental Evaluation

We evaluated Confine with a set of 150 publicly available Docker container images available from Docker Hub [7]. We conducted experiments to get insight into the characteristics of popular container images, assess the effectiveness of our system call policy extraction approach, and evaluate its security benefits in terms of attack surface reduction.

7.1 Analysis of Publicly Available Containers

7.1.1 Dataset Collection

Docker Hub [7] provides a set of 153 “official” container images that are maintained by the service, along with many other community-maintained images. For our evaluation, we collected a data set comprising i) the 153 official Docker Hub images, and ii) the top 200 most popular community-maintained images. Due to the overlap between the two lists, our initial data set consists of 209 unique Docker images.

Out of these 209 images, 193 are available for free and can be used without any paid licensing requirements—we exclude the rest from our data set. Out of the remaining 193 images, 43 require some form of manual effort to setup, such as launching prerequisite containers (e.g., rocket-chat), or specifying complex configuration settings. We leave these images out of the scope of our work due to the complexity of the manual steps required to run them. Our final data set thus comprises 150 Docker images (122 official and 28 unofficial) that can be automatically processed by our system.

7.1.2 Container Statistics

Docker Hub assigns a popularity metric to each of the official images based on its number of pull requests (downloads). We retrieve this number through the official Docker Hub API for the 153 official images (the returned value is zero for most of the non-official images). Figure 3a shows the popularity distribution in terms of number of downloads for the 153 official Docker Hub images. We can see that 15% of the Docker images account for most of the downloads, while the rest are much less popular. This implies that including more images to the evaluation set would not increase the significance of the dataset in terms of container popularity.

In Section 6.3 we discussed how we tackle applications written in languages other than C/C++. To gain some insight about how commonly these languages are used, we gathered some statistics about the programming languages used by the containers in our dataset. The most common programming languages used in containerized applications include C/C++, Java and Go. As shown in Table 1, many well-known server applications (e.g., Nginx, Apache Httpd, and MySQL) fall into the C/C++ category, which comprises 61% of the containers. There are, however, 22% images hosting Java-based applications, such as Apache Cassandra (NoSQL database), Apache Solr (open-source search engine platform), and Apache Tomcat. Since Go has been used to develop many of the management tools used in the Docker ecosystem, Go-based containers also account for a considerable number of images (14%).

We classify containers as Java-based or Python/Perl-based depending on the presence of the corresponding language runtime in the container. Since most containers contain small utility tools, such as sed, grep, and find, which would cause a container to fall into the C/C++ category, Confine only classifies a container in the C/C++ category if it does not run any other program written in some other programming language. For example, the Cassandra [2] container invokes both sed (a C program) and the java application. Instead of classifying this container in both the C/C++ and Java categories, we only consider it as a Java container for the results of Table 1.

As discussed in Section 6.2, we extract the list of executed binaries in each container and retrieve their loaded libraries. Figures 3b and 3c show the distribution of the number of binaries executed and libraries loaded by the tested containers. About 75% of the containers execute fewer than 16 binaries, and 75% require fewer than 47 libraries.

7.2 System Call Filtering

We used the set of 150 Docker images to evaluate the effectiveness of our approach in filtering unused system calls. First, Confine automatically analyzes each container and extracts the list of system calls required by its binaries based on the analysis described in Section 6.2. Then, it generates a Seccomp filter to prohibit the use of all remaining system calls. Finally, we run the container on a Docker Engine, along with our filter, to validate the correctness of our analysis.

We assess the effectiveness of our approach by measuring the number of filtered system calls per container. Each system call is an entry point to some kernel functionality,
Table 1: Breakdown of Docker images according to the programming language used for the main hosted application.

<table>
<thead>
<tr>
<th>Language</th>
<th># Img.</th>
<th>Example Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/C++</td>
<td>92</td>
<td>Nginx, Apache Httpd, MongoDB, MySQL</td>
</tr>
<tr>
<td>Java</td>
<td>34</td>
<td>Cassandra, Solr, Tomcat, Sonarqube, JRuby</td>
</tr>
<tr>
<td>Go</td>
<td>21</td>
<td>Traefik, Registry, Telegram, Metricbeat</td>
</tr>
<tr>
<td>JavaScript</td>
<td>6</td>
<td>Kibana, Ghost, Hipache</td>
</tr>
<tr>
<td>Python</td>
<td>5</td>
<td>Celery, Plone, Hylang, Hipache, ROS</td>
</tr>
<tr>
<td>Perl</td>
<td>2</td>
<td>Nuxeo, GitLab Community Edition</td>
</tr>
</tbody>
</table>

Table 2: Number of filtered system calls for the top-15 images with the highest number of downloads.

<table>
<thead>
<tr>
<th>Image Name</th>
<th>Filtered Syscalls</th>
<th>Popularity Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>oracle-database-enterprise-edition</td>
<td>138</td>
<td>1</td>
</tr>
<tr>
<td>oracle-serverjre-8</td>
<td>190</td>
<td>2</td>
</tr>
<tr>
<td>mysql-enterprise-server</td>
<td>128</td>
<td>3</td>
</tr>
<tr>
<td>couchbase</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>db2-developer-c-edition</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>oracle-instant-client</td>
<td>190</td>
<td>7</td>
</tr>
<tr>
<td>redis</td>
<td>171</td>
<td>8</td>
</tr>
<tr>
<td>ibm-security-access-manager</td>
<td>110</td>
<td>9</td>
</tr>
<tr>
<td>mongo</td>
<td>143</td>
<td>10</td>
</tr>
<tr>
<td>ubuntu</td>
<td>184</td>
<td>11</td>
</tr>
<tr>
<td>busybox</td>
<td>142</td>
<td>12</td>
</tr>
<tr>
<td>node</td>
<td>150</td>
<td>13</td>
</tr>
<tr>
<td>postgres</td>
<td>133</td>
<td>14</td>
</tr>
<tr>
<td>nginx</td>
<td>166</td>
<td>15</td>
</tr>
<tr>
<td>mysql</td>
<td>135</td>
<td>16</td>
</tr>
</tbody>
</table>

General Validation First, we check if the container is launched properly with the specified Seccomp profile. Unless we filter system calls that are required by the Docker framework itself, this step will succeed.

The Docker image is specified using a configuration file, called Dockerfile. The Entrypoint attribute in the Dockerfile specifies the application the container must invoke upon launch. If this application exits (or crashes), the container exits, and thus we verify that this does not happen.

Even if the application remains running, however, it might still encounter errors. For example, it might encounter exceptions that are gracefully handled by the application, but still cause problems in its correct operation. To capture these cases, we check the logs produced by the container. Docker provides a streamlined process of reading the logs produced by the containerized application. We compare the logs produced by the hardened container with the default container. Because values in the logs, such as timestamps and process IDs, might differ between different executions, we ignore these values.

7.2.1 Validation Methodology

To ensure that the generated system call policies do not break any functionality, we performed additional validation runs.

and thus disabling a system call is equivalent to preventing the exposure of vulnerabilities in all relevant code of that kernel functionality (in addition to prohibiting the use of that system call as part of malicious code)—we have measured the degree of attack surface reduction in terms of known CVEs that become neutralized and present our results in Section 7.3. We leave the actual removal of the kernel code related to each system call as part of our future work, but the number of filtered system calls is indicative of the amount of kernel code that could potentially be removed.

Figure 4 shows the cumulative distribution of the number of filtered system calls for the 150 successfully analyzed containers. For about half of the containers, Confine disables 145 or more system calls (out of the 326 currently available in Linux). Even in the worst case (leftmost part of x axis), 100 or more system calls are removed. This means that at least twice or more system calls can be disabled compared to Docker’s default Seccomp filter, which includes 49 system calls.

Confine filtered 148 system calls on average for the top-15 ranked Docker images that were successfully analyzed. The list includes many popular applications, such as Nginx, PostgreSQL, MySQL, and MongoDB. For Nginx, we observe that 160 system calls are required for its operation (166 are filtered out of 326), whereas Wan et. al [75] identified only 76 through dynamic analysis. The complete list is shown in Table 2.
In-Depth Validation We further validated the soundness of the profiles generated for some of the ready-to-use Docker images, by testing them with available benchmark suites for the corresponding applications. For this validation effort, we focused on the most popular Docker images due to the manual effort required. We collected a set of benchmarking tools applicable to 10 of the top-50 Docker images. These include domain-specific benchmarking tools, Selenium [24] scripts, and the CloudSuite benchmarks [60]. We applied the benchmarks to the following Docker images: MongoDB, PostgreSQL, MySQL, Redis, Wordpress, PHP, Memcached, Nginx, Apache Httpd and MediaWiki.

The web-serving benchmark of CloudSuite [60] is based on the open-source social networking site Elgg [10]. Elgg is a PHP-based application that uses MySQL as the database server. It also provides a media-streaming server running on the Nginx server. Finally, it also provides a benchmark for Memcached. We derived system call policies for containers running these benchmarks and verified that the benchmarks successfully ran.

For MongoDB, we used mongo-perf [15], and applied all the test cases in the simple_insert and simple_query test suites on one thread for 10 seconds. For PostgreSQL, we used pgbench [20], which first creates a new database and then prepares and runs the test cases. For MySQL, we used the sysbench tool [48]. After initializing a new database, we ran the OLTP read and write tests using 16 threads on 10 tables. For Redis, we used redis-benchmark [22], and ran multiple tests changing the type and number of requests, number of clients and size of data being loaded in each test.

Wordpress and Mediawiki run on Apache Httpd. We ran a hardend MySQL container as their database and used Selenium [24] to create content through automated user interaction. We applied scripts created based on online tutorials prepared and released by Azad et al. [28]. Through these scripts, different operations, such as creating users, posts, applying images and modifying them were performed. All operations were performed successfully and no irregular impact was identified through the logs or the script outputs.

7.2.2 Validation Results

Based on the above process, we verified that 146 out of the 150 containers run successfully, while 4 failed for the following reasons. First, Confine failed to extract system calls for three Go-based images, because the Go call graph tool (discussed in Section 6.3) could not be applied on the source code of Influxdb [12] and Chronograf [4] due to numerous dependencies, while the source code of Sematext [25] was not available.

Second, Java provides the option of accessing OS interfaces directly through its Java Native Interface. We would need to analyze the Java code of each program to extract JNI-invoked system calls. Elasticsearch [9] is the only example we saw in our Java dataset which used this feature, and thus we did not invest the time to implement this capability.

7.3 Security Evaluation

Previous works in the area of software debloating [41, 47, 66] mostly focus on the amount of code (and number of ROP gadgets) removed as the main measure of improvement. In contrast, our approach does not remove any code, but merely restricts the system calls that a malicious container can invoke, i.e., it reduces the attack surface of the host’s kernel by reducing the number of system calls it exposes to (potentially malicious) applications.

To demonstrate the effectiveness of our approach in reducing the attack surface, we evaluate how removing unused system calls can reduce the risk of privilege escalation attacks. To that end, our starting point was the vulnerabilities used in a previous study by Lin et al. [54]. These vulnerabilities are exploitable despite the use of container isolation mechanisms, such as namespaces [18], cgroups [3], and capabilities [1]. To gain a better understanding of the impact that filtering individual system calls has in neutralizing potential kernel vulnerabilities, we mapped each CVE to its corresponding system calls.

7.3.1 Mapping Kernel CVEs to System Calls

To perform our analysis, we crawled the CVE website [5] for Linux kernel vulnerabilities using a custom automated tool. The tool parses each commit in the Linux kernel’s Git repository to find the corresponding patch for a given CVE, and retrieves the relevant file and function that was modified by the patch. After mapping CVEs to their respective functions, we built the Linux kernel call graph and analyzed which parts of it can be exclusively accessed by a given system call.

We constructed the Linux kernel’s call graph using KIRIN [78]. This allows us to map which functions in the kernel are invoked from which system call, and therefore reason about which part of the kernel’s code will never be invoked when a set of system calls are filtered.

We discovered that while there are only a few CVEs directly associated with the code of filtered system calls, many CVEs are associated with files and functions that are invoked...
exclusively by the code of filtered system calls. By matching the CVEs to the call graph created by KIRIN, we were able to pinpoint all the vulnerabilities that are related to the set of system calls filtered by a given container. This provides us with a quantifiable property to assess the attack surface reduction achieved by our method, i.e., the number of CVEs that would have been neutralized for a given container, if the respective system call policy generated by Confine was applied.

7.3.2 CVEs Mitigated by Confine

Our results are summarized in Table 3. Linux kernel CVEs are assigned a category depending on how their exploitation can affect the underlying system. While privilege escalation has the most severe outcome, others are important to consider as well. Using a denial-of-service attack, the attacker can disrupt the functionality of all containers and applications running on the same host. The "Bypass a Restriction" category includes attacks which allow the attacker to directly or indirectly bypass isolation mechanisms. Similarly, exploiting a vulnerability in the "Obtain Information" category could cause the leakage of sensitive kernel data which endangers the isolation guarantees provided to other containers.

Based on our analysis, in addition to the 25 CVEs mitigated by Docker’s default Seccomp policy, 51 CVEs across all studied containers are effectively removed (i.e., the respective vulnerabilities cannot be triggered by the attacker) by applying our generated policies. These include CVEs that an attacker could exploit to perform denial-of-service attacks against the kernel (CVE-2012-3375, CVE-2016-7911, and CVE-2017-11176), perform privilege escalation attacks (CVE-2017-5123, CVE-2016-7911, and CVE-2015-7613), or leak sensitive kernel information (CVE-2017-14954 and CVE-2014-9903). Of these 51 CVEs, seven were removed in more than 130 containers.

8 Discussion and Limitations

As shown in Table 3, the system calls filtered by our technique are not very commonly used, but at the same time mitigate a large number of previously disclosed kernel vulnerabilities. We must emphasize that although system calls such as `execve` and `mmap` are used as part of user-space exploits, any system call associated with a kernel CVE can be used to exploit the kernel. For an attacker seeking to escape a container, exploiting commonly used system calls such as `execve` or `mmap` provides no additional benefit over exploiting system calls such as `waitid`, which are used less frequently.

In addition to launching applications from scripts and the command line, most programming languages give the programmer the ability to launch applications using special library calls, such as `execve`. As it is not guaranteed that such invocations will occur within our monitoring window, our approach may fail to analyze any executables launched in this way. Currently, the developer is expected to provide a list of binaries executed using such library calls. Our approach provides an initial list of applications for the user to build upon, which can further reduce the manual effort required.

A better alternative would be to statically analyze the source code of all invoked applications to identify process creation events. This can easily be done for applications written in interpreted languages, as they are typically supported by many static analysis tools (e.g., `php-ast` for PHP, or the built-in AST [21] functionality for Python). We executed php-ast on the Wordpress Docker image and validated the correctness of extracting paths of binaries which could be passed to any `execve` or `exec` function (e.g., `php_exec`, `shell_exec`). This could easily be extended to applications written in different languages. We leave the full implementation of such a capability as part of our future work, since it only requires engineering effort.

<table>
<thead>
<tr>
<th>System Call(s)</th>
<th># CVEs</th>
<th>CVE Examples</th>
<th>CVE Type</th>
<th># Imgs.</th>
<th>Docker Image Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_thread_area</td>
<td>1</td>
<td>CVE-2014-8135</td>
<td>B</td>
<td>146</td>
<td>Nginx, MongoDB, Apach Htdp, MySQL</td>
</tr>
<tr>
<td>mq_notify</td>
<td>1</td>
<td>CVE-2017-11176</td>
<td>D</td>
<td>146</td>
<td>Redis, CouchDB, Apach Htdp, MySQL</td>
</tr>
<tr>
<td>sched_getattr</td>
<td>1</td>
<td>CVE-2014-9903</td>
<td>I</td>
<td>146</td>
<td>Postgresql, Nginx, Memcache</td>
</tr>
<tr>
<td>io_submit</td>
<td>1</td>
<td>CVE-2010-3066</td>
<td>D</td>
<td>142</td>
<td>Rethinkdb, Apach Htdp, Nginx, Redis</td>
</tr>
<tr>
<td>rt_(tg)sigqueueinfo</td>
<td>1</td>
<td>CVE-2011-1182</td>
<td>Other</td>
<td>140</td>
<td>MongoDB, Nginx, Apach Htdp, MySQL</td>
</tr>
<tr>
<td>clock_nanosleep</td>
<td>1</td>
<td>CVE-2018-13053</td>
<td>O</td>
<td>140</td>
<td>MongoDB, Nginx, Apach Htdp, MySQL</td>
</tr>
<tr>
<td>ioprio_get</td>
<td>1</td>
<td>CVE-2016-7911</td>
<td>P,D</td>
<td>131</td>
<td>Redis, Nginx, Apach Htdp, MySQL</td>
</tr>
<tr>
<td>waitid</td>
<td>2</td>
<td>CVE-2017-14954, CVE-2017-5123</td>
<td>B,PI</td>
<td>114</td>
<td>Nginx, Nginx, MongoDB, CouchDB, MySQL</td>
</tr>
<tr>
<td>inotify_init</td>
<td>1</td>
<td>CVE-2010-4250</td>
<td>D</td>
<td>101</td>
<td>Nginx, Apach Htdp, MySQL</td>
</tr>
<tr>
<td>semctl</td>
<td>1</td>
<td>CVE-2010-4083</td>
<td>I</td>
<td>97</td>
<td>Nginx, CouchDB, Redis</td>
</tr>
<tr>
<td>inotify_add_watch</td>
<td>1</td>
<td>CVE-2019-9857</td>
<td>D</td>
<td>77</td>
<td>Nginx, Apach Htdp, MySQL</td>
</tr>
<tr>
<td>shmct1</td>
<td>2</td>
<td>CVE-2009-0859, CVE-2010-4072</td>
<td>LD</td>
<td>71</td>
<td>Iojs, Hylang, Rethinkdb</td>
</tr>
<tr>
<td>splice</td>
<td>1</td>
<td>CVE-2009-1961</td>
<td>D</td>
<td>57</td>
<td>MongoDB, Rethinkdb, Oraclelinux</td>
</tr>
<tr>
<td>epoll_ctl</td>
<td>1</td>
<td>CVE-2012-3375</td>
<td>D</td>
<td>48</td>
<td>Crux, IBM-db2-warehouse-cc, Admirror</td>
</tr>
<tr>
<td>setsockopt</td>
<td>5</td>
<td>CVE-2016-4997, CVE-2016-8655</td>
<td>PM,O,D</td>
<td>22</td>
<td>Euleros, Clearlinux</td>
</tr>
<tr>
<td>([f,l]remove, [f,l]set)xattr</td>
<td>1</td>
<td>CVE-2011-1090</td>
<td>D</td>
<td>22</td>
<td>Clearlinux, Fluentd</td>
</tr>
<tr>
<td>iocctl</td>
<td>26</td>
<td>CVE-2010-2478, CVE-2009-0745</td>
<td>LPB,O,D</td>
<td>1</td>
<td>Nats</td>
</tr>
<tr>
<td>madvise</td>
<td>2</td>
<td>CVE-2012-3511, CVE-2017-18208</td>
<td>D</td>
<td>1</td>
<td>Busybox</td>
</tr>
</tbody>
</table>

I: Obtain Information, P: Gain Privileges, B: Bypass a Restriction, O: Overflow, D: Denial of Service, M: Memory Corruption
Although not recommended, some Docker images use `cron` jobs to run periodic tasks in the container. In these cases we expect the user to provide the list of programs which can be executed through `cron`, although again such cases could be automatically handled by parsing the `crontab` file.

9 Related Work

Static source code analysis for deriving system call policies has been a widely used approach in the fields of sandboxing and host-based intrusion detection [33–35, 43, 49, 61, 67, 74]. Our work mainly falls in the area of software debloating, and we thus discuss related works in this context.

9.1 Container Security and Debloating

Wan et al. [75] use dynamic analysis to profile the running applications on a container and generate corresponding Seccomp filters. DockerSlim [8] is an open source tool which also relies on dynamic analysis to generate Seccomp profiles and to remove unnecessary files from docker images. As discussed in Section 7.2.2, all required system calls cannot be reliably extracted through dynamic analysis alone—especially for cases that handle exceptions and errors, which are typically not part of the common execution paths. Therefore, dynamic analysis cannot guarantee complete coverage of all the system calls required by each application. Our system, on the other hand, provides a more comprehensive static analysis mechanism for extracting the system calls used by a container.

Speaker [52] separates the required system calls into two main phases, booting and runtime. It dynamically extracts the required system calls for each phase and filters them based on the necessity of each state. Cimplifier [68] splits containers running multiple applications into multiple single-purpose containers using dynamic analysis. Rastogi et al. [69] propose improvements to Cimplifier [68] through symbolic execution.

Previous works have also focused on container security form the perspective of software protection mechanisms and vulnerabilities. Lin et al. [54] provide a dataset of security vulnerabilities and exploits which can potentially bypass the software isolation provided by the Linux Kernel. One of their recommendations is the use of stricter Seccomp policies for containers. Shu et al. [71] have created a framework for performing vulnerability scanning on images found on Docker Hub. Combe et al. [31] explored the security implications of using containers, by considering adversary models which assume complete access of an adversary to one container on a host.

9.2 Application Debloating

Most of the prior works in the area of debloating have focused on removing unnecessary code from individual processes. Mulliner and Neugschwandtner [58] proposed one of the first approaches for library specialization, which identifies and removes all non-imported library functions at load time. Quach et al. [66] developed a modified loader and compiler to perform shared library specialization by removing unnecessary functions extracted through call dependency and function boundary identification at compile time. Agadakos et al. [27] perform similar library specialization, but at the binary level. BlankIt [63] only loads library functions upon request, keeping the program and only parts of the library which are required at that moment in the process address space. Song et al. [72] used data dependency analysis to show the potential of fine-grained library customization of statically linked libraries. Shredder [56] and Saffire [57] restrict the arguments passed to critical system API functions to only legitimate values extracted from each application's code. Qian et al. [64] use training and heuristics to identify basic blocks which can be removed from a binary, while Ghaffarinia and Hamlen [36] restrict the control flow of the binary, instead of removing the extra code using a similar training approach.

Sysfilter [32] uses binary analysis to identify the set of required system calls for a given application, and restricts access to them through binary rewriting performed by Egalito [76]. While Confine mainly relies on the libc call graph generated through source code analysis, Sysfilter relies on the binary, which could cause loss of precision and overapproximation in identifying the set of required system calls. Temporal system call specialization [37] disables system calls according to the execution phase of server applications, allowing many security-critical system calls (e.g., `execve`) to be disabled after the application finishes its initialization phase.

Other works explore the potential of software debloating based on predefined features. CHISEL [41] is a framework for shrinking software using a reinforcement learning approach based on test cases provided by the user. The overall approach is driven by the test cases, reducing the code size while ensuring that none of the test cases fail. TRIMMER [39] uses inter-procedural analysis to find unnecessary parts of code based on user-defined configuration data.

Other works in this area have also focused on different programming languages [44, 73, 77]. Jred [77] performs static analysis on Java code to remove unused methods and classes. Jiang et al. [44] propose feature-based debloating for Java programs using data flow analysis.

9.3 Kernel Debloating

Several works focus on debloating the kernel and customizing it according to user requirements. KASR [79] and FACE-CHANGE [80] use dynamic analysis to identify unused parts of the kernel and use virtualization mechanisms to limit each application to its profile. Kurmus et al. [50] propose a method for tailoring the Linux kernel to special workloads through automatic generation of kernel configuration files.
10 Conclusion

Our work was motivated by the lack of a generic solution for the automated generation of restrictive system call policies for container environments—one that does not rely on training with realistic workloads, which is a cumbersome and error-prone method. We believe that the results of our experimental evaluation demonstrate the practicality of the proposed approach, as Confine managed to disable (without breaking any functionality) 145 or more system calls for more than half of the analyzed containers, neutralizing this way 51 previously disclosed kernel vulnerabilities. As part of our future work, we plan to address the limitations of our prototype and explore the generation of more fine-grained system call policies.

Acknowledgments

This work was supported by the Office of Naval Research (ONR) through award N00014-17-1-2891, the National Science Foundation (NSF) through award CNS-1749895, and the Defense Advanced Research Projects Agency (DARPA) through award D18AP00045, with additional support by Accenture. Any opinions, findings, and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the ONR, NSF, DARPA, or Accenture.

References

[52] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang, and Qi Li. SPEAKER: Split-phase execution of application containers. In

