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Abstract The performance gains of containers, however, come to the

Reducing the attack surface of the OS kernel is a promising
defense-in-depth approach for mitigating the fragile isola-
tion guarantees of container environments. In contrast to
hypervisor-based systems, malicious containers can exploit
vulnerabilities in the underlying kernel to fully compromise
the host and all other containers running on it. Previous con-
tainer attack surface reduction efforts have relied on dynamic
analysis and training using realistic workloads to limit the
set of system calls exposed to containers. These approaches,
however, do not capture exhaustively all the code that can
potentially be needed by future workloads or rare runtime
conditions, and are thus not appropriate as a generic solution.

Aiming to provide a practical solution for the protection
of arbitrary containers, in this paper we present a generic
approach for the automated generation of restrictive system
call policies for Docker containers. Our system, named
Confine, uses static code analysis to inspect the containerized
application and all its dependencies, identify the superset of
system calls required for the correct operation of the container,
and generate a corresponding Seccomp system call policy
that can be readily enforced while loading the container.
The results of our experimental evaluation with 150 publicly
available Docker images show that Confine can successfully
reduce their attack surface by disabling 145 or more system
calls (out of 326) for more than half of the containers, which
neutralizes 51 previously disclosed kernel vulnerabilities.

1 Introduction

The convenience of running containers and managing
them through orchestrators, such as Kubernetes [13], has
popularized their use by developers and organizations, as they
provide both lower cost and increased flexibility. In contrast
to virtual machines, which run their own operating system
(OS), multiple tenants can launch containers on top of the
same OS kernel of the host. This makes containers more
lightweight compared to VMs, and thus allows for running
a higher number of instances on the same hardware [30].

expense of weaker isolation compared to VMs. Isolation be-
tween containers running on the same host is enforced purely in
software by the underlying OS kernel. Therefore, adversaries
who have access to a container on a third-party host can exploit
kernel vulnerabilities to escalate their privileges and fully com-
promise the host (and all the other containers running on it).

The trusted computing base in container environments
essentially comprises the entire kernel, and thus all its
entry points become part of the attack surface exposed to
potentially malicious containers. Despite the use of strict
software isolation mechanisms provided by the OS, such as
capabilities [1] and namespaces [18], a malicious tenant can
leverage kernel vulnerabilities to bypass them. For example, a
vulnerability in the waitid system call [6] allowed malicious
users to run a privilege escalation attack [70] and escape the
container to gain access to the host.

At the same time, the code base of the Linux kernel has
been expanding to support new features, protocols, and
hardware. The increase in the number of exposed system calls
throughout the years is indicative of the kernel’s code “bloat.”
The first version of the Linux kernel (released in 1991) had
just 126 system calls, whereas version 4.15.0-76 (released
in 2018) supports 326 system calls. As shown in previous
works [40, 50, 51, 80], different applications use disparate
kernel features, leaving the rest unused—and available to be
exploited by attackers. Kurmus et al. [SO] showed that each
new kernel function is an entry point to accessing a large part of
the whole kernel code, which leads to attack surface expansion.

As a countermeasure to the ever expanding code base
of modern software, attack surface reduction techniques
have recently started gaining traction. The main idea behind
these techniques is to identify and remove (or neutralize)
code which, although is part of the program, it is either
i) completely inaccessible (e.g., non-imported functions from
shared libraries), or ii) not needed for a given workload or
configuration. A wide range of previous works have applied
this concept at different levels, including removing unused
functions from shared libraries [56, 58,66] or even removing



whole unneeded libraries [47]; tailoring kernel code based on
application requirements [50, 80]; or limiting system calls for
containers [8, 68,69, 75]. In fact, one of the suggestions in the
NIST container security guidelines [59] is to reduce the attack
surface by limiting the functionality available to containers.

Despite their diverse nature, a common underlying
challenge shared by all these approaches is how to accurately
identify and maximize the code that can be safely removed.
On one end of the spectrum, works based on static code
analysis follow a more conservative approach, and opt for
maintaining compatibility in the expense of not removing
all the code that is actually unneeded (i.e., “remove what
is not needed”). In contrast, some works rely on dynamic
analysis and training [8, 50, 68, 69, 75, 80] to exercise the
system using realistic workloads, and identify the actual code
that was executed while discarding the rest (i.e., “keep what
is needed”). For a given workload, this approach maximizes
the code that can be removed, but as we show in Section 4, it
does not capture exhaustively all the code that can potentially
be needed by different workloads—Iet alone parts of code that
are executed rarely, such as error handling routines.

Given that previous efforts in the area of attack surface
reduction for container environments have focused on dynamic
analysis [8, 68,69, 75], in this work we aim to provide a more
generic and practical solution that can be readily applied for
the protection of any container without the need for training.
To that end, we present an automated technique for generating
restrictive system call policies for arbitrary containers, and
limiting the exposed interface of the underlying kernel that can
be abused. By relying on static code analysis, our approach
inspects all execution paths of the containerized application
and all its dependencies, and identifies the superset of system
calls required for the correct operation of the container.

Our fully automated system, named Confine, takes a
container image as its input and generates a customized system
call policy. Containers, once initialized, run a single applica-
tion for their entire execution time. We use dynamic analysis
to capture all binary executables that might be invoked during
container initialization. This initial limited dynamic analysis
phase does not depend on the availability of any workloads,
and just pinpoints the set of executables that are invoked in the
container, which are then statically analyzed. We have chosen
Docker as the main supported type of container images, as it is
the most widely used open-source containerization technology.

We experimentally evaluated our prototype with a set of
150 publicly available Docker images, and demonstrate its
effectiveness in deriving strict system call policies without
breaking functionality. In particular, for about half of the
containers, Confine disables 145 or more system calls (out
of 326), while at least 100 or more system calls are disabled
in the worst case and 219 in the best case. This is in stark
contrast to Docker’s default list of 49 (plus four partially)
disabled system calls. More importantly, disabling these
system calls effectively neutralizes 51 previously disclosed

kernel vulnerabilities, in addition to the 25 vulnerabilities
mitigated by Docker’s default Seccomp policy.
The main contributions of our work include:

e We propose a generic approach for the automated
generation of restrictive, ready-to-use Seccomp system
call policies for arbitrary containers, without depending
on the availability of source code for the majority of the
target programs.

e We performed a thorough analysis of Linux kernel
CVEs, mapping them to functions in the kernel code. We
identified which system calls can be used to exploit each
CVE, and used this mapping as the basis for evaluating
the effectiveness of our approach.

e We examined more than 200 of the most popular publicly
available Docker images from Docker Hub [7] and
present an analysis of their characteristics.

e We experimentally evaluated our system with the above
images and demonstrate its effectiveness in generating
restrictive system call policies, which neutralize 51
previously disclosed kernel vulnerabilities.

Our Confine prototype is publicly available as an open-source
project from https://github.com/shamedgh/confine.

2 Background

The attack surface of the OS kernel used by containers can be
reduced by restricting the set of system calls available to each
container. In this section, we describe how Linux containers
provide isolation to different “containerized” processes, and
how SECure COMPuting with filters (Seccomp BPF) [23] can
be used to reduce the kernel code exposed to containers.

2.1 Linux Containers

Linux containers are an OS-level virtualization approach,
which can be used to execute multiple userlands on top of
the same kernel. The Linux kernel uses Capabilities [1],
Namespaces [18] and Control Groups (cgroups) [3] to provide
isolation among different containers.

Namespaces are a kernel feature that virtualizes global
system resources (specifically: mount points, process IDs,
network devices and network stacks, IPC objects, hostnames,
user and group IDs, and cgroups), providing the “illusion” of
exclusive use of these resources to processes within the same
namespace. Control Groups allow processes to be organized
into hierarchical groups, whose usage of various types of
resources (e.g., CPU time, memory, disk space, disk and net-
work I/O) can be limited, accounted, or prioritized accordingly.
Containers use cgroups to provide “fair” usage of resources.

Docker [7] is a platform that employs the software-as-a-
service and platform-as-a-service models for developing,
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deploying, and running containers. Every Docker container
launched is based on a Docker image, which is a file builtin lay-
ers, encapsulating the entire environment (including a whole
Linux distribution, libraries, and support utilities) required to
execute the containerized application(s). The specification of
the Docker image is described in a text file, called Dockerfile.
The Dockerfile essentially contains all the commands required
to assemble the respective image. Docker uses Linux names-
paces and cgroups to provide isolation between containers.

Docker Hub [7] is a central repository of both community-
based and official Docker images, which has drastically
popularized container use among system administrators. More
importantly, by building streamlined services with a minimal
code base, Docker has enabled corporations to increasingly
switch to the use of microservices. Each microservice can
be configured as a Docker image once, and then multiple
instances of it can be launched.

2.2 Seccomp BPF

User-space applications communicate with the OS kernel
through the provided set of system calls , i.e., a pre-defined
API that allows access to specific kernel functionalities
programmatically. More importantly, however, applications
typically need only a subset of the available system calls to
function properly, i.e., most applications do not make use of
all the provided system calls.

Nevertheless, although a program may not use all of the
provided system calls, the complete set is available to all
processes. This modus operandi has two issues: (1) a compro-
mised application may use additional system calls (from what
the author of the application originally intended) to carry out
malicious operations that require access to system resources
(e.g., filesystem, network) that the application never meant
to access; and (2) a malicious (or compromised) application
may invoke unused system calls to exploit underlying kernel
vulnerabilities (typically related to the implementation of a
given system call) for privilege escalation [45, 46], thereby
gaining access to every process and container on the host.

Seccomp BPF [23] is a mechanism for restricting the set
of system calls that are accessible by a given application.
Specifically, Seccomp BPF uses the Berkeley Packet Filter
language [55] for allowing developers to write arbitrary pro-
grams that act as system call filters, i.e., BPF programs that
inspect the system call number (as well as argument values, if
needed) and allow, log, or deny the execution of the respective
system call. Docker containers can be executed with Seccomp
BPF profiles, allowing users to provide allow/deny lists of per-
mitted/prohibited system calls. The specified allow/deny list is
applied to the entire process namespace, limiting all processes
executed inside the respective container. We use this mecha-
nism to reduce the kernel code available to each container.
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Figure 1: Example of control flow in Nginx that is missed by
dynamic analysis. Ovals represent functions, while rectangles
represent basic blocks. Dashed branches and blocks are not
executed during training.

3 Threat Model

We consider a local adversary who has full access to a container
running on a third-party host. This access may be granted either
legitimately (e.g., as a regular user of a cloud service), or as a
result of compromising a vulnerable process running on the
container. Potential victims include the OS kernel of the host,
as well as any other containers running on it. We specifically
focus on preventing the attacker from escaping a container—
preventing the exploitation of an application running on a
container is not the focus of our work. Any exploit mitigations
and defenses deployed on the host or individual containers are
orthogonal to our approach, as it does not rely on any additional
protection mechanisms being in place at user or kernel space.

Conlfine limits the set of system calls an attacker can invoke.
In case of vulnerability exploitation, this means that exploit
code (e.g., shellcode or ROP payload) or malicious programs
run by the attacker will have more limited capabilities, as
they cannot rely on system calls that are not needed by the
container. More importantly, by preventing access to less
frequently used and less tested system calls—the kernel
code of which may contain vulnerabilities that can lead to
privilege escalation [53]—an attacker cannot trigger those
vulnerabilities to compromise the kernel, as the respective
system calls cannot be invoked in the first place.

4 The Need for Static Analysis

Previous works [8, 68,69, 75] have used dynamic analysis to
derive the list of system calls used by a container. However,
dynamic analysis is not sound, and thus can miss system
calls along execution paths that were not exercised during
the training phase. To demonstrate this issue, we manually
analyzed Nginx and discovered three examples of system calls
that would be missed if only dynamic analysis were used. For
our evaluation, we use Nginx with the Cache Management
and Auto Index features enabled.

Nginx spawns a separate cache-manager process to handle
cache management. This process clears the older cached
files when the cache is full using the unlink system call.
Dynamically analyzing Nginx would capture the initialization



of the cache-manager process, but would likely fail to capture
the deletion of older cached files, and therefore fail to capture
the use of the unlink system call. As the unlink system call
is not invoked anywhere else during the normal execution of
the program, relying on training alone would cause it to be
marked as unused. Moreover, extending the training phase
for a longer duration would not solve the problem because the
deletion of older files is triggered only when the cache is full.
Training would need to request enough new files to fill up the
cache. Correctly setting up the training process to handle such
situations is thus challenging. Figure 1 shows the parts of the
control flow that are not discovered during training.

Another example of failure to capture a system call is
the use of 1stat when displaying directory listings. Apart
from this functionality, 1stat is not used in any other part
of Nginx. As listing a directory is usually triggered by users
who manually type a URL, and not by following any existing
URL on a website, it is unlikely that a training-based approach
would be able to capture this system call.

In yet another case, the Nginx binary can be updated with
a newer version without dropping client connections. The
system calls get sockopt and get sockname are used to hand
over the existing socket connections to the new process, and
are not used anywhere else in the code, making it challenging
for dynamic analysis to discover them.

The above examples are indicative of the trade off between
fragility and overapproximation faced by dynamic and static
analysis. Relying on dynamic analysis alone would require the
training to be comprehensive enough to anticipate and capture
all above corner cases. In contrast, static analysis results are
guaranteed to be sound, but may include system calls that are
never invoked by certain workloads. As we aim for a practical
and generic solution, we opt for using static analysis to capture
the superset of system calls used by an application.

5 Design

Our goal is to reduce the kernel attack surface available to
a malicious tenant of a container service by limiting the
number of system calls available to each container, which
can potentially be of use for malicious purposes (either as
part of exploit code, or as a gateway to exploiting kernel
vulnerabilities). To achieve this, Confine “hardens” the
container image once it has been fully configured by the user,
by limiting access to only those system calls that are actually
needed for the proper operation of the container.

Identifying the system calls that are necessary for the correct
execution of the container requires addressing the following re-
quirements: 1) identify all applications that may run on the con-
tainer; 2) identify all library functions imported by each appli-
cation; 3) map library functions to system calls; and 4) extract
direct system call invocations from applications and libraries.

Figure 2 presents a high-level overview of our approach,
which, given a container image, automatically generates

Seccomp rules that limit the system calls that may be invoked.
Conlfine currently supports Docker containers running on a na-
tive Linux-based host, but similar analysis could be performed
for other container environments and operating systems.

5.1 Identifying Running Applications

Although containers are usually specialized to run a single
application or service, they typically invoke many other utility
and support programs prior to executing the main program. For
example, the default MongoDB Docker image [16] invokes
the following supporting programs to set up the environment:
bash, chown, find, id, and numactl. To generate system call
policies, we must thus identify all programs that can potentially
run during the lifetime of a container. Confine relies on limited
dynamic analysis to capture the list of processes created on the
system. A profiling tool records every application launched
within a configurable time period (30 seconds by default)
since the creation of the container—long enough to capture
both system initialization, as well as the “stable” state of the
system. The obtained set of applications is then used to derive
the corresponding system call policy. We further discuss the
completeness of the derived list in Section 8.

Our approach is different from previous works that rely
on dynamic training using various workloads to derive a list
of allowable system calls [75]. In our approach, the goal of
the dynamic analysis is merely to identify the set of binary
executables to be analyzed—the system calls invoked by these
programs are then derived statically.

The above dynamic analysis is meant to be a convenient
and automated way to carry out the batch analysis of multiple
container images. For containers that may include applications
that are not launched from the beginning, our system supports
manually provided external lists of executables that should
be included in the analysis.

5.2 Static Analysis

Dynamic analysis often fails to exercise all possible code
paths, especially when comprehensive workloads are not
available during training. To ensure complete code coverage,
once we have the list of applications that are executed on the
container, we perform static analysis to extract the system calls
that are needed for the correct execution of each application.

Libc User programs typically invoke system calls through
the libc library, which provides corresponding wrapper func-
tions (e.g., the libc function read invokes the system call
SYS_read). Confine analyzes the source code of libc to derive a
mapping between exported functions and the system calls they
invoke. For the rest of the programs and libraries on a given con-
tainer, however, Confine only needs to analyze their binaries.

A libc function may have multiple control flow paths to the
actual system call. To correctly identify which system calls are
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Figure 2: Overview of Confine’s system call extraction process. A one-time dynamic analysis phase that does not require any
application-specific workloads is used for the sole purpose of identifying the applications running in the container. Each application
is then statically analyzed to identify all the library functions that it uses, and the system calls it relies on.

invoked by a given libc function, we thus need to analyze these
control flow paths. To that end, Confine statically analyzes the
source code of libc to derive its full call graph, and accurately
map each function to its respective system calls.

Function pointers are used widely in libc. However, per-
forming accurate points-to analysis has significant scalability
and performance issues [29,42]. To avoid having to perform
points-to analysis, we follow a more conservative approach
and retain all system calls that are invoked through any
function that has its address taken. In Section 6.1 we discuss
the technical challenges we encountered during this process.

Having an accurate mapping between libc functions and
system calls, it is then straightforward to analyze each program
(main executable and libraries), identify all imported libc
functions, and derive the set of all possible system calls the
program may invoke. It is important to stress that this phase
is performed only once per libc version—the derived mapping
is then saved and used across all containers.

Direct System Call Invocation In addition to using libc
wrappers, applications and libraries may also invoke system
calls directly using the syscall () function, or using the
syscall assembly instruction. Although the number of
applications and libraries which use this approach are limited,
for the sake of completeness, we use binary code disassembly
to extract any directly invoked system calls. We describe
in detail this process in Section 6.2. Some applications
developed in languages other than C/C++ also require special
considerations which we discuss in Section 6.3.

5.3 Hardening the Container Image

Once we have generated the list of system calls needed to run
the container, we can proceed to harden the container image.
Docker containers support the use of Seccomp filters to limit
the system calls accessible from the container. The user can
launch the container with a custom ruleset which specifies the
system calls that can be accessed by the container. This ruleset
can be either in the form of a deny list or an allow list of system
calls prohibited or permitted. For Confine, we use a deny list
of system calls that the container is not allowed to invoke.

Based on the analysis performed in Sections 5.1 and 5.2, we
use an automated script to derive the list of prohibited system
calls, and construct the corresponding Seccomp profile. If any
new application needs to be executed on the container after
this process, the administrator must run the analysis on the
application to update the Seccomp profile.

6 Implementation

6.1 Mapping Libc Functions to System Calls

To ensure correctness, a precise function call graph is required
to identify and filter unused system calls. Based on our analysis
of more than 200 popular Docker images from Docker Hub [7],
we found that even though most containers use the popular
glibc library as their main user-space libc library, musl-libc [17]
was also used in 12 occasions. Although both musl-libc and
glibc provide implementations of the C standard library func-
tions, and applications should be able to use both interchange-
ably, we discovered that the system calls used by standard libc
functions some times differ between musl-libc and glibc.

To maximize compatibility, we analyzed both libraries inde-
pendently to extract their call graphs and their corresponding
function-to-system-call mapping. Moreover, due to certain
differences between glibc and musl-libc, which we discuss
next, we had to use a different toolchain for the analysis of
each of these libraries.

6.1.1 Musl-Libc

Musl-libe [17] is a lightweight C standard library which has
a smaller codebase compared to glibc. For our analysis, we
compiled musl-libc with the LLVM [14] compiler toolchain
and implemented an LLVM pass to extract the complete call
graph. This pass operates on the intermediate representation
(IR) of the code and records each function call. To identify
system calls, in addition to recording each function call, we
make special note of calls to the syscall function. Using the
extracted call graph, we create a map between each exported
function in musl-libc and the system calls it invokes. We
modified the compiler toolchain to invoke the pass before



any optimization to prevent the loss of precision due to
optimizations and code transformations.

Musl-libc uses a weak_alias macro to define weak
symbols for functions. Weak symbols can be overridden by
strong symbols having the same name, without name collision
errors. Our LLVM pass keeps track of these aliases as well.

6.1.2 Glibc

Glibc is the most popular libc implementation used in most
containers. Glibc heavily relies on multiple GCC [11] features
which are not implemented in LLVM. Due to this issue,
we implemented a second analysis pass to extract the call
graph and system call information from glibc, based on the
GCC RTL (Register Translation Language) Intermediate
Representation. Our call graph extraction implementation
is based on the Egypt [38] tool, which operates on GCC’s
RTL IR. We discovered that there are three main mechanisms
through which glibc invokes system calls.

System Call via Inline Assembly and Assembly Files
This is the most straightforward mechanism for invoking sys-
tem calls. Functions such as accept4 (), which is responsible
for accepting incoming socket connections, contain inline
invocations using the x86-64 syscall instruction. Given the
source code, the Egypt tool constructs the function call graph
for any given application or library. We augmented Egypt to
iterate over every call instruction in the RTL IR and record
any native x86-64 syscall instruction. Similarly, assembly
files also contain syscall instruction. Therefore, we analyze
the assembly files and extract all syscall instructions.

System Call Wrapper Macros In addition to directly using
the syscall instruction, glibc also uses macro expansion
to generate wrappers to system calls. Other glibc routines
use these wrappers to invoke system calls. Because these
wrappers are implemented as architecture-dependent (in our
case x86-64) macros, they cannot be retrieved by analyzing
the RTL IR. Moreover, the parameters to these macros are
provided by a bash script during compile time.

The syscall-template.S file contains the macros
T_PSEUDO, T_PSEUDO_NOERRNO, and T_PSEUDO_ERRVAL,
that define wrappers to system calls. The list of system calls
to be generated, along with other information, such as symbol
names and the number of arguments, are provided in the
syscalls.list file. The Bash script make-syscalls.sh
reads this file at compile time, generates the correct macro
definitions, and invokes the expansion of the macros in the
syscall-template.S. This script is invoked as part of the
build process of glibc. During the compilation of glibc, we
trace the execution of this script and record the relevant macro
definitions observed during its execution. Using these macros
and macro definitions, we derive the mappings between these
wrappers and their respective system calls.

Weak Symbols and Versioned Symbols Similarly to musl-
libc, glibc uses the weak_alias macro to define weak symbols
for functions. GCC supports symbol versioning, and glibc uses
this feature to support multiple versions of glibc. The versioned
symbols are defined using the macro versioned_symbol.
Both weak_alias and versioned_symbol provide aliases
for functions. Other functions within glibc, as well as the
applications using glibc, can invoke these aliased functions
either through the original function name or its alias. We
analyze the C source code to extract these aliases, and add
them to the call graph.

6.2 Binary Analysis

To capture a trace of all invoked executables, we leverage
Sysdig [26] to monitor the execve calls made during the
initial 30 seconds (configurable value) of the container. After
we generate the list of programs the container runs, we further
perform static analysis to extract the list of system calls
necessary for the correct execution of the container.

6.2.1 System Call Invocation Through Libc

After extracting the list of binaries, we recursively find any
other libraries (except libc) that are loaded by them, and then
use objdump to extract the superset of imported functions
across all main executables and libraries. This analysis gives
us the list of libc (glibc or musl-libc) functions that are
imported by an application and its libraries. Then, using the
libc-to-syscall map generated as described in Section 6.1, we
derive the list of system calls required by the application. In
addition to these, the Docker framework itself needs certain
system calls to run. Consequently, after deriving the required
system calls for all the programs of a container, we combine
them with the list of system calls which Docker requires by
default to launch the container.

6.2.2 Direct System Call Invocation

We further encountered a limited number of libraries and appli-
cations that invoke system calls directly through either the libc
syscall () interface, or the native syscall assembly instruc-
tion. Analyzing such invocations requires deriving the values
of the arguments being passed to the system call. Fortunately,
extracting the first argument, which specifies the system call
number, is straightforward, as it is typically set by the (few) in-
structions preceding the syscall instructionorthe syscall ()

function invocation. We therefore use binary code disassembly
to identify the system call number by extracting the values as-
signed to the RAX/EAX register for the syscall instruction, and
the RDI/EDI register for the syscall () function. Confine cur-
rently supports only x86-64, but adding support for other plat-
forms is straightforward by following their calling conventions.



6.2.3 Dynamically Loaded Libraries

An issue that requires special consideration is dynamic loading,
a mechanism through which applications can load modules on
demand throughout their execution. The dlopen (), dlsym(),
and dlclose () API functions are used to load a library,
retrieve its symbols, and close it, respectively. Because
these operations are performed at run time, any libraries
loaded in this way cannot be identified by looking at the
application’s ELF binary header. For instance, Apache Httpd
uses this feature to load libraries based on the user-defined
configuration. Quach and Prakash in [65] have shown that
only around 3% of the 3174 programs and 2% of the 4292
libraries analyzed in their dataset used these features, all of
which loaded the required libraries during initialization.

To identify such dynamically loaded libraries, we monitor
the list of libraries loaded by the application at run time
through the /proc virtual file system, which provides this
information for every process. In Section 6.3 we discuss how
we use the same technique of monitoring the procfs to detect
the list of libraries used by Java applications.

One consideration is that if an application dynamically loads
libc, we cannot identify the individual functions imported
by the application, and would have to retain all system calls
made by libc. However, it is unlikely that libc will be loaded
in this fashion, as dynamic loading is used for modules that
provide additional functionality to the application. We did not
encounter any such case in our experiments.

6.3 Language-specific Considerations

Different languages have different software stacks, and
therefore different analysis techniques to extract the system
call policies. The programming language of the containerized
application has an important effect on the analysis methods
used to identify the system calls required by a given application.
In this section, we describe the different techniques we used to
handle applications written in programming languages other
than C/C++, which we encountered during our study of the top
200 Docker images. In Section 7 we present statistics on the
usage of these languages across the container images studied.

Go Applications written in the Go language consist of
command packages and utility non-main packages. Go
applications can be compiled into executables using two
build-modes: default, and c-shared. When compiled with
the default build mode, all main packages are built into
executables, and all non-main packages are built into a static
.a archive that is linked statically with the executables. Go
applications use system call wrappers provided by Go’s
syscall and runtime packages to invoke system calls.

When compiled with the c-shared build-mode, the main
package relies on the standard libc library to invoke system
call wrapper functions.

The analysis of our dataset shows that most of the Go
applications in the studied containers are built using the default
build mode. Therefore, unlike C/C++ applications which
rely on glibc, these applications use the Go core packages,
syscall and runtime, to make system calls. Consequently,
for containers that include Go applications, we require the
source code of all running Go applications to identify their
system calls. We use the callgraph tool [19] to build the call
graph of Go applications and all their dependencies, which we
have extended to record all calls to the system call wrappers
specified in the syscall and runtime packages.

Java/NodeJS Both the Java and NodeJS runtime applica-
tions use libc as a shared library to invoke system calls. The
Java compiler compiles Java source code into Java bytecode
and uses its own virtual machine (JVM) to interpret the
bytecode. Java programs are not compiled to machine code
and a binary is thus not generated. The interpreter and JVM
is provided by the java binary, which is launched via an
execve system call. To find the system calls of a container
that hosts a Java type application, in addition to analyzing all
other running binaries, we also analyze the java binary that
contains this JVM, and any other libraries that are dynamically
loaded, as described above. Similarly, we handle the system
calls invoked by the node-js runtime.

Purely Interpreted Languages Scripting languages, such
as Python and Perl, are purely interpreted and require the
respective interpreter to run. We extract the required system
calls for these types of containers using the same approach
used for other binaries, by applying our method to the
interpreter binary and all its required libraries.

6.4 Seccomp Profile Generation

We automatically generate Seccomp policies by classifying
all system calls not present on the final list of required system
calls as “not-permitted,” and assigning them to a deny list.
The Docker Seccomp ruleset requires the name of the filtered
system calls, while our analysis of the containers generates
system call numbers. We map all the available system calls
in the kernel to their respective number by using the symbol
information related to the names of the system calls from the
procfs pseudo-filesystem. Based on the sys/syscall.h
header file, we map the system call name to its number, and use
it to convert the prohibited system call numbers to their names.
We create the Seccomp profile with a deny list containing
these system calls and apply it to the container.

Docker uses a JSON file to define the permitted system
calls. Listing 1 shows a sample ruleset which only disables
the pwrite64 system call. The default action for this ruleset
is to allow all system calls, except those specified under
the syscalls tag. Each system call is specified by three
arguments: its name, the action, and its arguments.
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Listing 1: Example of a Docker Seccomp ruleset file.

"defaultAction": "SCMP_ACT_ALLOW",

"architectures": |
"SCMP_ARCH_X86_64",
"SCMP_ARCH_X86",
"SCMP_ARCH_X32"

]I

"syscalls": |
{
"name": "pwrite64",
"action": "SCMP_ACT_ERRNO",
"args": []

7 Experimental Evaluation

We evaluated Confine with a set of 150 publicly available
Docker container images available from Docker Hub [7]. We
conducted experiments to get insight into the characteristics
of popular container images, assess the effectiveness of
our system call policy extraction approach, and evaluate its
security benefits in terms of attack surface reduction.

7.1 Analysis of Publicly Available Containers
7.1.1 Dataset Collection

Docker Hub [7] provides a set of 153 “official” container
images that are maintained by the service, along with many
other community-maintained images. For our evaluation,
we collected a data set comprising 1) the 153 official Docker
Hub images, and ii) the top 200 most popular community-
maintained images. Due to the overlap between the two lists,
our initial data set consists of 209 unique Docker images.

Out of these 209 images, 193 are available for free and
can be used without any paid licensing requirements—we
exclude the rest from our data set. Out of the remaining 193
images, 43 require some form of manual effort to setup, such
as launching prerequisite containers (e.g., rocket-chat), or
specifying complex configuration settings. We leave these
images out of the scope of our work due to the complexity of
the manual steps required to run them. Our final data set thus
comprises 150 Docker images (122 official and 28 unofficial)
that can be automatically processed by our system.

7.1.2 Container Statistics

Docker Hub assigns a popularity metric to each of the official
images based on its number of pull requests (downloads).
We retrieve this number through the official Docker Hub

API for the 153 official images (the returned value is zero
for most of the non-official images). Figure 3a shows the
popularity distribution in terms of number of downloads for
the 153 official Docker Hub images. We can see that 15% of
the Docker images account for most of the downloads, while
the rest are much less popular. This implies that including
more images to the evaluation set would not increase the
significance of the dataset in terms of container popularity.

In Section 6.3 we discussed how we tackle applications
written in languages other than C/C++. To gain some insight
about how commonly these languages are used, we gathered
some statistics about the programming languages used by the
containers in our dataset. The most common programming lan-
guages used in containerized applications include C/C++, Java
and Go. As shown in Table 1, many well-known server appli-
cations (e.g., Nginx, Apache Httpd, and MySQL) fall into the
C/C++ category, which comprises 61% of the containers. There
are, however, 22% images hosting Java-based applications,
such as Apache Cassandra (NoSQL database), Apache Solr
(open-source search engine platform), and Apache Tomcat.
Since Go has been used to develop many of the management
tools used in the Docker ecosystem, Go-based containers also
account for a considerable number of images (14%).

We classify containers as Java-based or Python/Perl-based
depending on the presence of the corresponding language
runtime in the container. Since most containers contain small
utility tools, such as sed, grep, and find, which would cause
a container to fall into the C/C++ category, Confine only clas-
sifies a container in the C/C++ category if it does not run any
other program written in some other programming language.
For example, the Cassandra [2] container invokes both sed
(a C program) and the java application. Instead of classifying
this container in both the C/C++ and Java categories, we only
consider it as a Java container for the results of Table 1.

As discussed in Section 6.2, we extract the list of executed
binaries in each container and retrieve their loaded libraries.
Figures 3b and 3c show the distribution of the number of
binaries executed and libraries loaded by the tested containers.
About 75% of the containers execute fewer than 16 binaries,
and 75% require fewer than 47 libraries.

7.2 System Call Filtering

We used the set of 150 Docker images to evaluate the
effectiveness of our approach in filtering unused system calls.
First, Confine automatically analyzes each container and
extracts the list of system calls required by its binaries based
on the analysis described in Section 6.2. Then, it generates
a Seccomp filter to prohibit the use of all remaining system
calls. Finally, we run the container on a Docker Engine, along
with our filter, to validate the correctness of our analysis.

We assess the effectiveness of our approach by measuring
the number of filtered system calls per container. Each
system call is an entry point to some kernel functionality,
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Figure 3: Cumulative distribution of number of downloads, executed binaries, and loaded libraries per container.

Table 1: Breakdown of Docker images according to the
programming language used for the main hosted application.

Language #Img. Example Applications

C/C++ 92  Nginx, Apache Httpd, MongoDB, MySQL
Java 34 Cassandra, Solr, Tomcat, Sonarqube, JRuby
Go 21  Traefik, Registry, Telegraph, Metricbeat
JavaScript 6  Kibana, Ghost, Hipache

Python 5  Celery, Plone, Hylang, Hipache, ROS

Perl 2 Nuxeo, GitLab Community Edition

and thus disabling a system call is equivalent to preventing
the exposure of vulnerabilities in all relevant code of that
kernel functionality (in addition to prohibiting the use of that
system call as part of malicious code)—we have measured the
degree of attack surface reduction in terms of known CVEs
that become neutralized and present our results in Section 7.3.
We leave the actual removal of the kernel code related to
each system call as part of our future work, but the number
of filtered system calls is indicative of the amount of kernel
code that could potentially be removed.

Figure 4 shows the cumulative distribution of the number
of filtered system calls for the 150 successfully analyzed
containers. For about half of the containers, Confine disables
145 or more system calls (out of the 326 currently available in
Linux). Even in the worst case (leftmost part of x axis), 100 or
more system calls are removed. This means that at least twice
or more system calls can be disabled compared to Docker’s
default Seccomp filter, which includes 49 system calls.

Confine filtered 148 system calls on average for the top-15
ranked Docker images that were successfully analyzed. The
list includes many popular applications, such as Nginx, Post-
greSQL, MySQL, and MongoDB. For Nginx, we observe that
160 system calls are required for its operation (166 are filtered
out of 326), whereas Wan et. al [75] identified only 76 through
dynamic analysis. The complete list is shown in Table 2.

7.2.1 Validation Methodology

To ensure that the generated system call policies do not break
any functionality, we performed additional validation runs.

Table 2: Number of filtered system calls for the top-15 images
with the highest number of downloads.

tmage Name Els Py
oracle-database-enterprise-edition 138 1
oracle-serverjre-8 190 2
mysql-enterprise-server 128 3
couchbase 140 5
db2-developer-c-edition 100 6
oracle-instant-client 190 7
redis 171 8
ibm-security-access-manager 110 9
mongo 143 10
ubuntu 184 11
busybox 142 12
node 150 13
postgres 133 14
nginx 166 15
mysql 135 16

General Validation First, we check if the container is
launched properly with the specified Seccomp profile.
Unless we filter system calls that are required by the Docker
framework itself, this step will succeed.

The Docker image is specified using a configuration file,
called Dockerfile. The Entrypoint attribute in the Dockerfile
specifies the application the container must invoke upon
launch. If this application exits (or crashes), the container
exits, and thus we verify that this does not happen.

Even if the application remains running, however, it
might still encounter errors. For example, it might encounter
exceptions that are gracefully handled by the application, but
still cause problems in its correct operation. To capture these
cases, we check the log files generated by the container. Docker
provides a streamlined process of reading the logs produced by
the containerized application. We compare the logs produced
by the hardened container with the default container. Because
values in the logs, such as timestamps and process IDs, might
differ between different executions, we ignore these values.



In-Depth Validation We further validated the soundness
of the profiles generated for some of the ready-to-use Docker
images, by testing them with available benchmark suites for
the corresponding applications. For this validation effort,
we focused on the most popular Docker images due to the
manual effort required. We collected a set of benchmarking
tools applicable to 10 of the top-50 Docker images. These
include domain-specific benchmarking tools, Selenium [24]
scripts, and the CloudSuite benchmarks [60]. We applied
the benchmarks to the following Docker images: MongoDB,
PostgreSQL, MySQL, Redis, Wordpress, PHP, Memcached,
Nginx, Apache Httpd and MediaWiki.

The web-serving benchmark of CloudSuite [60] is based
on the open-source social networking site Elgg [10]. Elggis a
PHP-based application that uses MySQL as the database server.
It also provides a media-streaming server running on the Nginx
server. Finally, it also provides a benchmark for Memcached.
We derived system call policies for containers running these
benchmarks and verified that the benchmarks successfully ran.

For MongoDB, we used mongo-perf [15], and applied
all the test cases in the simple_insert and simple_query test
suites on one thread for 10 seconds. For PostgreSQL, we used
pgbench [20], which first creates a new database and then
prepares and runs the test cases. For MySQL, we used the
sysbench tool [48]. After initializing a new database, we ran
the OLTP read and write tests using 16 threads on 10 tables.
For Redis, we used redis-benchmark [22], and ran multiple
tests changing the type and number of requests, number of
clients and size of data being loaded in each test.

Wordpress and Mediawiki run on Apache Httpd. We
ran a hardend MySQL container as their database and used
Selenium [24] to create content through automated user
interaction. We applied scripts created based on online
tutorials prepared and released by Azad et al. [28]. Through
these scripts, different operations, such as creating users,
posts, applying images and modifying them were performed.
All operations were performed successfully and no irregular
impact was identified through the logs or the script outputs.

7.2.2 Validation Results

Based on the above process, we verified that 146 out of the 150
containers run successfully, while 4 failed for the following
reasons. First, Confine failed to extract system calls for three
Go-based images, because the Go call graph tool (discussed
in Section 6.3) could not be applied on the source code of In-
fluxdb [12] and Chronograf [4] due to numerous dependencies,
while the source code of Sematext [25] was not available.

Second, Java provides the option of accessing OS interfaces
directly through its Java Native Interface. We would need to
analyze the Java code of each program to extract JNI-invoked
system calls. Elasticsearch [9] is the only example we saw in
our Java dataset which used this feature, and thus we did not
invest the time to implement this capability.
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system calls, as a percentage of all tested containers.

7.3 Security Evaluation

Previous works in the area of software debloating [41,47, 66]
mostly focus on the amount of code (and number of ROP
gadgets) removed as the main measure of improvement. In
contrast, our approach does not remove any code, but merely
restricts the system calls that a malicious container can
invoke, i.e., it reduces the attack surface of the host’s kernel by
reducing the number of system calls it exposes to (potentially
malicious) applications.

To demonstrate the effectiveness of our approach in reducing
the attack surface, we evaluate how removing unused system
calls can reduce the risk of privilege escalation attacks. To that
end, our starting point was the vulnerabilities used in a previous
study by Lin et al. [54]. These vulnerabilities are exploitable
despite the use of container isolation mechanisms, such as
namespaces [18], cgroups [3], and capabilities [1]. To gain
a better understanding of the impact that filtering individual
system calls has in neutralizing potential kernel vulnerabilities,
we mapped each CVE to its corresponding system calls.

7.3.1 Mapping Kernel CVEs to System Calls

To perform our analysis, we crawled the CVE website [5]
for Linux kernel vulnerabilities using a custom automated
tool. The tool parses each commit in the Linux kernel’s Git
repository to find the corresponding patch for a given CVE,
and retrieves the relevant file and function that was modified by
the patch. After mapping CVEs to their respective functions,
we built the Linux kernel call graph and analyzed which parts
of it can be exclusively accessed by a given system call.

We constructed the Linux kernel’s call graph using
KIRIN [78]. This allows us to map which functions in the
kernel are invoked from which system call, and therefore
reason about which part of the kernel’s code will never be
invoked when a set of system calls are filtered.

We discovered that while there are only a few CVEs
directly associated with the code of filtered system calls, many
CVEs are associated with files and functions that are invoked



Table 3: CVEs mitigated by removing unneeded system calls.

System Call(s) #CVEs CVE Examples CVE Type # Imgs. Docker Image Examples
set_thread_area 1 CVE-2014-8133 B 146 Nginx, MongoDB, Apach Httpd, MySQL
mq_notify 1 CVE-2017-11176 D 146 Redis, CouchDB, Apache Httpd, MySQL
sched_getattr 1 CVE-2014-9903 I 146 Postgresql, Nginx, Memcache

io_submit 1 CVE-2010-3066 D 142 Rethinkdb, Apache Httpd, Nginx, Redis
rt_(tg)sigqueueinfo 1 CVE-2011-1182 Other 140 MongoDB, Nginx, Apache Httpd, MySQL
clock_nanosleep 1 CVE-2018-13053 (0] 140 MongoDB, Nginx, Apache Httpd, MySQL
ioprio_get 1 CVE-2016-7911 PD 131 Redis, Nginx, Apache Httpd, MySQL
waitid 2 CVE-2017-14954, CVE-2017-5123 B.PI 114 Nginx, MongoDB, CouchDB, MySQL
inotify_initl 1 CVE-2010-4250 D 101 Nginx, Apache Httpd, MySQL

semctl 1 CVE-2010-4083 1 97 Nginx, CouchDB, Redis
inotify_add_watch 1 CVE-2019-9857 D 77 Nginx, Apache Httpd, MySQL

shmetl 2 CVE-2009-0859, CVE-2010-4072 LD 71 Iojs, Hylang, Rethinkdb

semget, msgget, shmget 1 CVE-2015-7613 P 62 Julia, Iojs, Clearlinux

splice 1 CVE-2009-1961 D 57 MongoDB, Rethinkdb, Oraclelinux
epoll_ctl 1 CVE-2012-3375 D 48 Crux, IBM-db2-warehouse-cc, Adminer
setsockopt 5 CVE-2016-4997, CVE-2016-8655 PM,0,.D 22 Euleros, Clearlinux
([f,]]Jremove,[f,1]set)xattr 1 CVE-2011-1090 D 22 Clearlinux, Fluentd

ioctl 26 CVE-2010-2478, CVE-2009-0745 LP,B,0,D 1 Nats

madvise 2 CVE-2012-3511, CVE-2017-18208 D 1 Busybox

I: Obtain Information, P: Gain Privileges, B: Bypass a Restriction, O: Overflow, D: Denial of Service, M: Memory Corruption

exclusively by the code of filtered system calls. By matching
the CVE:s to the call graph created by KIRIN, we were able
to pinpoint all the vulnerabilities that are related to the set of
system calls filtered by a given container. This provides us with
a quantifiable property to assess the attack surface reduction
achieved by our method, i.e., the number of CVEs that would
have been neutralized for a given container, if the respective
system call policy generated by Confine was applied.

7.3.2 CVEs Mitigated by Confine

Our results are summarized in Table 3. Linux kernel CVEs are
assigned a category depending on how their exploitation can
affect the underlying system. While privilege escalation has
the most severe outcome, others are important to consider as
well. Using a denial-of-service attack, the attacker can disrupt
the functionality of all containers and applications running on
the same host. The “Bypass a Restriction” category includes
attacks which allow the attacker to directly or indirectly bypass
isolation mechanisms. Similarly, exploiting a vulnerability in
the “Obtain Information” category could cause the leakage of
sensitive kernel data which endangers the isolation guarantees
provided to other containers.

Based on our analysis, in addition to the 25 CVEs mitigated
by Docker’s default Seccomp policy, 51 CVEs across all stud-
ied containers are effectively removed (i.e., the respective vul-
nerabilities cannot be triggered by the attacker) by applying our
generated policies. These include CVEs that an attacker could
exploit to perform denial-of-service attacks against the kernel
(CVE-2012-3375,CVE-2016-7911, and CVE-2017-11176),
perform privilege escalation attacks (CVE-2017-5123, CVE-
2016-7911, and CVE-2015-7613), or leak sensitive kernel in-
formation (CVE-2017-14954 and CVE-2014-9903). Of these
51 CVEs, seven were removed in more than 130 containers.

8 Discussion and Limitations

As shown in Table 3, the system calls filtered by our technique
are not very commonly used, but at the same time mitigate a
large number of previously disclosed kernel vulnerabilities.
We must emphasize that although system calls such as execve
and mmap are used as part of user-space exploits, any system
call associated with a kernel CVE can be used to exploit
the kernel. For an attacker seeking to escape a container,
exploiting commonly used system calls such as execve or
mmap provides no additional benefit over exploiting system
calls such as waitid, which are used less frequently.

In addition to launching applications from scripts and
the command line, most programming languages give the
programmer the ability to launch applications using special
library calls, such as execve. As it is not guaranteed that such
invocations will occur within our monitoring window, our
approach may fail to analyze any executables launched in
this way. Currently, the developer is expected to provide a list
of binaries executed using such library calls. Our approach
provides an initial list of applications for the user to build
upon, which can further reduce the manual effort required.

A better alternative would be to statically analyze the source
code of all invoked applications to identify process creation
events. This can easily be done for applications written in
interpreted languages, as they are typically supported by many
static analysis tools (e.g., php-ast [62] for PHP, or the built-in
AST [21] functionality for Python). We executed php-ast on
the Wordpress Docker image and validated the correctness of
extracting paths of binaries which could be passed to any exec-
like function (e.g., php_exec, shell_exec). This could easily
be extended to applications written in different languages. We
leave the full implementation of such a capability as part of
our future work, since it only requires engineering effort.



Although not recommended, some Docker images use cron
jobs to run periodic tasks in the container. In these cases we
expect the user to provide the list of programs which can be
executed through cron, although again such cases could be
automatically handled by parsing the crontab file.

9 Related Work

Static source code analysis for deriving system call policies
has been a widely used approach in the fields of sandboxing
and host-based intrusion detection [33-35,43,49,61,67,74].
Our work mainly falls in the area of software debloating, and
we thus discuss related works in this context.

9.1 Container Security and Debloating

Wan et al. [75] use dynamic analysis to profile the running
applications on a container and generate corresponding
Seccomp filters. DockerSlim [8] is an open source tool which
also relies on dynamic analysis to generate Seccomp profiles
and to remove unnecessary files from docker images. As
discussed in Section 7.2.2, all required system calls cannot be
reliably extracted through dynamic analysis alone—especially
for cases that handle exceptions and errors, which are typically
not part of the common execution paths. Therefore, dynamic
analysis cannot guarantee complete coverage of all the
system calls required by each application. Our system, on the
other hand, provides a more comprehensive static analysis
mechanism for extracting the system calls used by a container.
Speaker [52] separates the required system calls into two
main phases, booting and runtime. It dynamically extracts the
required system calls for each phase and filters them based
on the necessity of each state. Cimplifier [68] splits containers
running multiple applications into multiple single-purpose
containers using dynamic analysis. Rastogi et al. [69] propose
improvements to Cimplifier [68] through symbolic execution.
Previous works have also focused on container security
form the perspective of software protection mechanisms and
vulnerabilities. Lin et al. [54] provide a dataset of security
vulnerabilities and exploits which can potentially bypass the
software isolation provided by the Linux Kernel. One of their
recommendations is the use of stricter Seccomp policies for
containers. Shu et al. [71] have created a framework for per-
forming vulnerability scanning on images found on Docker
Hub. Combe et al. [31] explored the security implications of us-
ing containers, by considering adversary models which assume
complete access of an adversary to one container on a host.

9.2 Application Debloating

Most of the prior works in the area of debloating have focused
on removing unnecessary code from individual processes.
Mulliner and Neugschwandtner [58] proposed one of the
first approaches for library specialization, which identifies

and removes all non-imported library functions at load
time. Quach et al. [66] developed a modified loader and
compiler to perform shared library specialization by removing
unnecessary functions extracted through call dependency and
function boundary identification at compile time. Agadakos et
al. [27] perform similar library specialization, but at the binary
level. Blanklt [63] only loads library functions upon request,
keeping the program and only parts of the library which are
required at that moment in the process address space. Song et
al. [72] used data dependency analysis to show the potential of
fine-grained library customization of statically linked libraries.
Shredder [56] and Saffire [57] restrict the arguments passed
to critical system API functions to only legitimate values
extracted from each application’s code. Qian et al. [64] use
training and heuristics to identify basic blocks which can be
removed from a binary, while Ghaffarinia and Hamlen [36]
restrict the control flow of the binary, instead of removing the
extra code using a similar training approach.

Sysfilter [32] uses binary analysis to identify the set of re-
quired system calls for a given application, and restricts access
to them through binary rewriting performed by Egalito [76].
While Confine mainly relies on the libc call graph generated
through source code analysis, Sysfilter relies on the binary,
which could cause loss of precision and overapproximation in
identifying the set of required system calls. Temporal system
call specialization [37] disables system calls according to
the execution phase of server applications, allowing many
security-critical system calls (e.g., execve) to be disabled
after the application finishes its initialization phase.

Other works explore the potential of software debloating
based on predefined features. CHISEL [41] is a framework for
shrinking software using a reinforcement learning approach
based on test cases provided by the user. The overall approach
is driven by the test cases, reducing the code size while
ensuring that none of the test cases fail. TRIMMER [39] uses
inter-procedural analysis to find unnecessary parts of code
based on user-defined configuration data.

Other works in this area have also focused on different
programming languages [44,73,77]. Jred [77] performs static
analysis on Java code to remove unused methods and classes.
Jiang et al. [44] propose feature-based debloating for Java
programs using data flow analysis.

9.3 Kernel Debloating

Several works focus on debloating the kernel and customizing
it according to user requirements. KASR [79] and FACE-
CHANGE [80] use dynamic analysis to identify unused parts
of the kernel and use virtualization mechanisms to limit each
application to its profile. Kurmus et al. [S0] propose a method
for tailoring the Linux kernel to special workloads through
automatic generation of kernel configuration files.



10 Conclusion

Our work was motivated by the lack of a generic solution for
the automated generation of restrictive system call policies
for container environments—one that does not rely on training
with realistic workloads, which is a cumbersome and error-
prone method. We believe that the results of our experimental
evaluation demonstrate the practicality of the proposed
approach, as Confine managed to disable (without breaking
any functionality) 145 or more system calls for more than half
of the analyzed containers, neutralizing this way 51 previously
disclosed kernel vulnerabilities. As part of our future work,
we plan to address the limitations of our prototype and explore
the generation of more fine-grained system call policies.
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