CSE508 Network Security

11/14/2017 Email

Michalis Polychronakis
Stony Brook University
Email Overview

MUA: Mail User Agent
Thunderbird, webmail, Pine, …

MSA: Mail Submission Agent
SMTP (port 587)
Often same as initial MTA

MTA: Mail Transfer Agent
SMTP (port 25)

MDA: Mail Delivery Agent
IMAP (port 143), POP3 (port 110), local, …

Typical flow: MUA → MSA → MTA → … → MTA → MDA → MUA
SMTP Transport Example

S: 220 smtp.example.com ESMTP Postfix
C: HELO relay.example.org
S: 250 Hello relay.example.org, I am glad to meet you
C: MAIL FROM:<bob@example.org>
S: 250 Ok
C: RCPT TO:<alice@example.com>
S: 250 Ok
C: RCPT TO:<theboss@example.com>
S: 250 Ok
C: DATA
S: 354 End data with <CR><LF>.<CR><LF>
C: From: "Bob Example" <bob@example.org>
C: To: "Alice Example" <alice@example.com>
C: Cc: theboss@example.com
C: Date: Tue, 15 January 2008 16:02:43 -0500
C: Subject: Test message
C:
C: Hello Alice.
C: This is a test message with 5 header fields and 4 lines in the message body.
C: Your friend,
C: Bob
C: .
S: 250 Ok: queued as 12345
C: QUIT
S: 221 Bye
Email/Messaging Security and Privacy Goals

Protect message content

Verify communicating parties’ identities

Fight spam
 (subject of future lecture)

Fight phishing
 (subject of future lecture)

Hide communication patterns
 (subject of future lecture)
Who can read my email?

Adversaries with local or remote access to my devices

Intruders, spouse, administrator, ...

Malware, stolen credentials, physical access, ...
Who can read my email?

Adversaries with local or remote access to MTAs and other intermediary servers

Intruders, administrators, other insiders, LEAs, …
Who can read my email?

Adversaries with access to any intermediate network

Intruders, administrators, other insiders, LEAs, …

Passive eavesdropping, MitM, DNS poisoning, …
Confidentiality Threats Recap:

Stored messages

Compromised system (either local or remote)
Malware, intruder, insider, stolen/lost device, …

Compromised authentication
Password theft, brute-force phone pin, …

Messages in transit

Eavesdropping and interception

Displayed messages

Screendump, reflections, shoulder surfing, …
Securing Email Transit

These days encryption is *mandatory* for client-to-server email transmission and retrieval.

MUA ➔ MSA: STARTTLS (port 587/25), SMTPS (port 465)
MDA ➔ MUA: POP3S (port 995), IMAPS (port 993)

```
mikepo@capcom:~> nc smtp.gmail.com 25
220 mx.google.com ESMTP i185sm2356739qhc.49 - gsmtph
HELO foo.example.com
250 mx.google.com at your service
MAIL FROM:<mikepo@example.com>
530 5.7.0 Must issue a STARTTLS command first.
```

MTA ➔ MTA relaying: *Another story*...
STARTTLS: Opportunistic Encryption

Many legacy MTAs still do not support TLS
 Fail-open design is necessary

MTAs do their best to deliver messages
 A recipient MTA might present a self-signed certificate (common in antispam and email AV systems)
 There is no PKI for email...

MitM is trivially easy
 STARTTLS command is sent over a plaintext channel (!)
 Analogous to SSL stripping, but in this case the client has no indication that downgrade has happened
 Just assumes that the receiving MTA does not support TLS

Message interception is still possible
 Better than nothing: bulk passive eavesdropping not possible
I want to STARTTLS

mikepo@capcom:~> nc aspmx.1.google.com 25
220 mx.google.com ESMTP h126si17458667qhh.29 - gsmtph
EHLO foo.example.com
250-mx.google.com at your service, [128.59.23.41]
250-SIZE 157286400
250-8BITMIME
250-STARTTLS
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-CHUNKING
250 SMTPUTF8
STARTTLS
220 2.0.0 Ready to start TLS
<TLS Handshake>
I want to STARTTLS

mikepo@capcom:~> nc aspmx.1.google.com 25
220 mx.google.com ESMTP h126si17458667qhh.29 - gsmtp
EHLO foo.example.com
250-mx.google.com at your service, [128.59.23.41]
250-SIZE 157286400
250-8BITMIME
250-STARTTLS
250-ENHANCEDSTATUSCODES
250-PIPELINING
250-CHUNKING
250 SMPTUTF8
STARTTLS
220 2.0.0 Ready to start TLS
<TLS Handshake>

Can be stripped off by a MitM attacker
Facebook STARTTLS Study: May 2014

~60% of all messages sent via encrypted connection, but only ~30% pass strict validation (mostly due to self-signed certs)
Facebook STARTTLS Study: August 2014

~95% of outgoing messages encrypted with PFS and strict cert validation
Mostly due to changes by big recipient networks (Microsoft, Yahoo)
How much email was encrypted in transit?

Generally speaking, use of encryption in transit increases over time, as more providers enable and maintain their support. Factors such as varying volumes of email may explain other fluctuations.

Outbound

84%
Messages from Gmail to other providers.

Jan 2016

Inbound

73%
Messages from other providers to Gmail.

View Past
30 days
90 days
1 year

Download data
A tiny GUI change prompted many networks to deploy STARTTLS
Inbound email encryption: 88%

START 01/01/2013 END 11/12/2017
Google, Yahoo SMTP email servers hit in Thailand

Internet users in Thailand have been hit by a massive man-in-the-middle attack aimed at grabbing email login credentials from fake SMTP servers.

The attack has been verified on Google’s and Yahoo’s email servers and on two of the country’s largest fixed-line ISPs, though preliminary analysis suggest that all SMTP servers are targeted.

The STRIPTLS attack as it has become known works by inserting a man-in-the-middle at the ISPs. This is done via a transparent proxy.
On SMTP, STARTTLS and the Cisco ASA

During the course of trying to increase the security of my e-mail while in transit, I was working on enabling TLS in Postfix to opportunistically encrypt connections to SMTP servers. While verifying my configuration, I ran into an interesting issue.

In order to test my configuration out I was sending e-mails to a Gmail address via Postfix, unfortunately I wasn't seeing any logging in Postfix indicating that TLS was being used. So I attempted to investigate whether STARTTLS was actually being advertised by manually connecting to Google's SMTP servers using telnet:

telnet aspmx.1.google.com 25
Trying 2607:f8b0:4001:c02::1a...
Connected to aspmx.1.google.com.
Escape character is '^]'.
220 ***************************
EHLO example.com
250-mx.google.com at your service,
250-SIZE 35882577
250-8BITMIME
250-XXXXXXA
250 ENHANCEDSTATUSCODES

Every server I connected to in Google's MX record was not advertising STARTTLS. On a whim, I attempted to connect to Google's SMTP servers from an entirely different network:

telnet 173.194.68.26 25
Trying 173.194.68.26...
Connected to qa-in-f26.1e100.net (173.194.68.26).
Escape character is '^]'.
220 mx.google.com ESMTP l3si4081429qct.164
EHLO stomp.colorado.edu
250-mx.google.com at your service,
250-SIZE 35882577
250-8BITMIME
250-STARTTLS
250 ENHANCEDSTATUSCODES
DNS Hijacking

STARTTLS stripping is not the only interception way

DNS MX record poisoning: spoofed MX response
 Compromised name server, MotS, …
 Messages are diverted through the attacker’s mail server

DANE (DNS-based Authentication of Named Entities)

Allow X.509 certs to be bound to DNS names through DNSSEC
Trust anchor assertions: domain operator can securely convey information about which certificate authority should be trusted

MTA-STS (MTA Strict Transport Security) (ongoing effort)

Allows recipient domains to tell senders whether they support TLS, how MTAs should validate certificates, and what to do if TLS negotiation fails
Client-side policy cache provides TOFU-like protection
End-to-End Email Encryption

Two major standards: **PGP** and **S/MIME**

Similar, but incompatible
Both rely on public key cryptography
Both support signing and/or encryption

Main difference: how certificates are signed

Typical workflow

Encrypt message with a random symmetric key
Encrypt symmetric key with the public key(s) of recipient(s)
Digitally sign a hash of the message

Metadata still in the clear!

Email headers
Appended “Received:” records
Subject line
Pretty Good Privacy

De fact standard for secure email

PGP (Phil Zimmermann) ➔ OpenPGP (RFC 4880)
 Gnu Privacy Guard (GPG): GPL implementation

Authentication
 Senders attach their digital signature to the message
 Receivers verify the signature using public-key cryptography

Confidentiality
 Symmetric key encryption
 Random session key generated for each message
 Session key is encrypted with recipient’s public key

Both are typically used on the same message
PGP Encryption

Use a different keypair for signing and encryption

http://www.slideshare.net/rvenkatesh25/network-security-primer
PGP Signed Message Example

From: alice@wonderland.com
Date: Mon, 16 Nov 1998 19:03:30 -0600
Subject: Message signed with PGP
MIME-Version: 1.0
Content-Type: text/plain; charset=US-ASCII
Content-Transfer-Encoding: 7bit
Content-Description: "cc:Mail Note Part"

-----BEGIN PGP SIGNED MESSAGE-----

Bob,

This is a message signed with PGP, so you can see how much overhead PGP
signatures introduce. Compare this with a similar message signed with S/MIME.

Alice

-----BEGIN PGP SIGNATURE-----
Version: PGP for Personal Privacy 5.0
Charset: noconv

iQCVAwUBM+oTwFcsAarXHFeRAQEsJgP/X3noON57U/6XVygOFjSY51TpvAduPZ8M
aIFa1UkCNuLLGxmtsbwRiDWLtCeWG3k+7zXDfx4YxUcofGJn0QaTlk8b3nxADL0
O/EIVC/k8zJ6aGaPLB7rTIizamG0t5n6/08rPwwVkB03tmT8UNMAUCgoM02d6HX
rKvnc2aBPFI=
=mUaH
-----END PGP SIGNATURE-----

http://www.slideshare.net/rvenkatesh25/network-security-primer
PGP Additional Features

Compression

Sign ➔ Compress ➔ Encrypt
Compression after encryption is pointless (no redundancy)
Signature does not depend on the compression algorithm

Email Compatibility

Ciphertext contains arbitrary 8-bit octets
Some email systems may interpret some of them as control commands
Solution: base64 encoding (33% overhead)

Segmentation

Transparent message segmentation and reassembly for very large messages
Segments mailed separately
Encrypted Email: Two Main Challenges

Public key authenticity

Assurance that a public key is correct and belongs to the person or entity claimed

Has not been tampered with or replaced by an attacker

Public key discovery

How can we find the public key of a person/entity?

Especially the very first time we contact them
PGP: Web of Trust

Decentralized trust model

In contrast to the centralized hierarchical model of PKI
Users create their own certificates

Users validate other users’ certificates, forming a “web of trust”

No trusted authorities: trust is established through friends
Adjustable “skepticism” parameters: # fully and # partially trusted endorsers required to trust a new certificate (1 and 3 for GnuPG)
Key signing parties

Main problems

Privacy issues: social graph metadata
Bootstrapping: new users are not readily trusted by others
When opinions vary, “stronger set” wins: impersonation through collusion/compromised keys
Scalability: WoT for the whole world?
Hey, I just got home from the party with the IRC folks?

Yeah.

How was it?

Got too drunk. I screwed up, bad.

What happened?

There was a girl. No idea who she was. Don't even know her name. I was too drunk to care.

And what, you slept with her?

No.

I signed her public key.

Shit, man.
S/MIME

Based on standard X.509 certificates
 Analogous operation to SSL: trusted CA sign certificates
 Traditional PKI

Uses multipart MIME to include cryptographic information in the message

Widely supported by most email readers (e.g., iOS)

Works well within corporations
 Certificate distribution through Active Directory infrastructure
S/MIME Signed Message Example

From: alice@wonderland.com
Date: Mon, 16 Nov 1998 19:03:08 -0600
Subject: Message signed with S/MIME
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="simple boundary"

--simple boundary
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 7bit
Content-Description: "cc:Mail Note Part"

Bob,

This is a message signed with S/MIME, so you can see how much overhead S/MIME signatures introduce. Compare this with a similar message signed with PGP.

Alice

--simple boundary
Content-Type: application/octet-stream; name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Description: attachment; filename="smime.p7s"

MIIQQwYJKoZIhvcNAQcCoIiQDCCEDACAQExCzAJBgUrDgMCGgUMAAkGCSqGSIb3DQEHAaCCDnww
ggnGMII6I0gECAhBQQRRa+DX0FHXfQOVHqhpMA0GCSqGSIb3DQEBAUAAMGIxETAPBgNVBAcT
CEludGVybmV0MRcwFQYDVQQKEw5SWZJpU2lnbiwqSW5jLjE0MDIGA1UECxoMrVmaVNaNpZ24gQ2xh
c3MgMSBDbDQSAtIEluZGl2aWR1YWwgU3Vic2NyaWlcjAeFw05NzAxAwMDA0MDA0MDA0MDA0MDA0Mjcy
MzU5NTlaMIIBFzERMA8GA1UEBxMISW50ZXJuZXQxFTAVBgNVBAsTD1Zlcm1TaWduLCBhbmMuMTQw
MgYDVQQLEytZSWZJpU2lnbiBDGBFzcyAxIENBIC0gSW5kaXZpZHVhbCBTdWJzY3JpYmVvMUYwRAYD

http://www.slideshare.net/rvenkatesh25/network-security-primer
Finding Public Keys

Public PGP key servers
 pgp.mit.edu
 keyserver.pgp.com

Cache certificates from received emails

Integration with user management (LDAP)

Ad-hoc approaches
 List public key on home page
 Print on business card
 Exchange through another medium on a case by case basis

Association with social profiles/identities
 keybase.io
MIT PGP Public Key Server

Help: Extracting keys / Submitting keys / Email interface / About this server / FAQ
Related Info: Information about PGP /

Extract a key

Search String:
Do the search!

Index:
Verbose Index:

- Show PGP fingerprints for keys
- Only return exact matches

Submit a key

Enter ASCII-armored PGP key here:
keybase.io/mikepo

8EBD 8F30 8899 8AFF
polychronakis • tweet
polychronakis • gist

mikepo has an invitation available
If you know mikepo, you can ask them for an invitation to Keybase.

mikepo from the command line

first
keybase join # if you're new, or
keybase login # if you're not.

then
keybase push # if you already have a public key, or
keybase gen # if this is all new to you
Biggest Issue: Usability

Non-trivial setup

S/MIME: complex certificate enrollment process
PGP: user is responsible for everything

Key management

Key revocation

Public key fingerprints

Poor mail client integration

Can lead to catastrophic failures: e.g., Enigmail+Thunderbird silent encryption failure

(Let alone key discovery and trustworthiness issues)
Enigmail 1.7 is completely broken for my purposes.

Steps to reproduce the problem:

1) Write an email in TB.
2) Ensure "Force encryption" in Enigmail.
3) Ensure "Force signing" in Enigmail.
4) Recheck encryption and signing settings... OK.
5) Send the email.
6) Look at the received email. OOPS. It is NOT signed and NOT encrypted.

Sorry to say this so directly, but an encryption system, which CONFIRMS to the user in it's graphical user interface on two different places that it will encrypt AND THEN SENDS THE EMAIL WITHOUT ANY ENCRYPTION IN
PLAIN TEXT ... is just the BIGGEST IMAGINABLE CATASTROPHE.

Sorry for my profane language but there is simply no excuse for such
Swedish media org @Aftonbladet publishes its GPG private key for a second time (first time was in 2012):

Anders Nilsson @nilssonanders
Sweden's biggest newspaper #Aftonbladet includes their private key in guide to PGP mail them (via @_zuln) bit.ly/1FfHAO1
PSIRT PGP Key (0x33E9E596)

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: Mailvelope v1.8.0
Comment: https://www.mailvelope.com

xsFNBFm/2KMBEADbwToJM3BCVE10eC22HgVEqNEDppXzuD2dfgKuy0M4tx2LDe7GkJPo6AOsv4yi8bakLiidpw5B0J/AR1VtIjDIEmS0F9MRZeV0UKyA5qvyc9BafZnAicY7nezkIJUmyLcIVMC60pqSHzo0Ewy2PZjxz3cIv4DGHmcfV5X
R+duYld3LtVI+A/5jv326LB16bCNts/toHw2T0LraMPoCtdH84Z4tPcy335s8/dZ2C+EOId4iX1kImz1kgE2Nvcs1auRUxYy27sL01VHCmYmi66NWCEeHou2
2yJXMiBCniozBKZUwcR6ysg97nnq633dn9mf7V30PS3zAjlhOHmvzg3B/Nfoqzy2dAEU/JDUBhiAo+vr9VF3ZPOoC8jySOrgyUm/2t3TTBAhD+nsUSBiq05U
2T0n8x2r1FwxyZYNCTku5J0vPqRBFt13SvJD7tDpd62nqhpavB34erwuk
qIKt0TMRu9mB4Eqc+cnFR3ZpN1AKj+HoB/TUJwCJpVju2/3g0wgdqHh+OQLvC
Nm8vIGnQZWQ30WqH/UPoh3RPJ+WqnDq88NmgBq814aNv4u8MgoObd/zrtV
kAyWHbIzLo925NjFyPuxahWic0tKenv18dZefB8aB81RjYuImNCJ0GQus+JG8
TJyEesNdK/q8HD5h1kCRSzMDJ1+Ra3z/1+Ff1wARaQABozR1Bzg9iZSBQU01S
VCA8cHNPcRnAYRwRvYmUuY29tPsLBewqQAqALwUCWb/YrwUJaeEzgAALCQgH
AwIJEiBdAD8Kh3YWBUIAGdQgIBAkHBsDAh4BAAk2A//f+6PFzg4VMl
PszTzPoqPR/1/X1z7RiyQosHveFwyW0wWxU1u1s3EeD5Qo7Htq6NNMAOW51J
swFvFOWIAe9u6SHRSouU1kGTSESReOq5Hnx4DCBuksKmoMS68PuiZ88wYOIm4Up
9V9PUuaueOu4oSrYHnH5qBQqurt8v05C4utwfnjN7n4OH0++2910Pj68B
6+kMuQyG4swmxszHljqlgMHCs0/c/BuI3W+n5+w+XLM7N5jCTjNXR+TGMstdm
RPEoLW0so+ZFwFN0CLKjYUahp3p6H9x8R13wpr2re0GhqKRGt3D4UcAqsPs
-----END PGP PUBLIC KEY BLOCK-----
END PGP PUBLIC KEY BLOCK

BEGIN PGP PRIVATE KEY BLOCK

Version: Mailvelope v1.8.0
Comment: https://www.mailvelope.com

xcaGBFm/2KMBEADbwToJMJ3BCVE1OeC22HgVEqNEDppXzuD2dgfKuy0M4tx2LDe7GkPjo6AOsw4y18bakLiidp5B0Jj/AR1VtIjIDEsM8OF9MRZICV0UKyAsQv
c9BafZnAicY7nezkJUMyLcIVMC60pqSHzo0Ewy2PZjxzcI4vDGHmcfGFV5X
R+duIld3LtvI+A/5jv326B16bcNts/tohW2T0LraMPoCtdH84Z4tPcyp335
s8/dZ2C+BoMD4iX1kYmZ1kqEzF2Nvcs1sRUXy27sL01VHcYmi6UNWcEeHOu2
2yJxMiBCnizOBKZUwcR6ysg97nnq633dN9mf7V30PS3aAjh0Hvmzg3B/Nfo
qzy2dAEU/JDUBhiAo+xx9VF3ZPooC8JySORyUm/2t3TtBHa+DufsUBiqo5U
2T0n8x2R1FwxyZYNCTku5J0vPqRBft13SyJD7LDpp62nqhpaVb34eprwuk
qIk0TMRu9mB4EEc+cNFR3zPn1AkJ+hO8/TUJwCJpVju2/3g0wqdqHh+OQlvC
N8vGnCZQzQWo30WqHh/UPoh3RPj+WqMDq88NmqBq814aNV4u8Mqo0bd/zrTVx

QOC7

END PGP PRIVATE KEY BLOCK
End-to-End vs. Cloud-to-Cloud

IMAP: one of the oldest “cloud” services!
 - Keep messages on the server
 - Conveniently access them from multiple devices

Useful cloud-based email features
 - Powerful search, collaborative SPAM filtering, …
 - Need access to the plaintext! Gmail cannot index encrypted messages

Tradeoff: privacy vs. convenience
 - Active research on searchable encryption
Encrypted Webmail?

Several recent efforts to transparently combine the convenience of webmail with PGP encryption

Is this really possible in a secure way?

JavaScript crypto is not a good idea

Secure JS code delivery?
Secure key storage?
Secure runtime (it’s a web browser!)?

Google end-to-end: implement crypto functionality within a browser extension

More control, but still not trivial
After initial excitement, it seems the effort has been abandoned
My Fellow Users,

I have been forced to make a difficult decision: to become complicit in crimes against the American people or walk away from nearly ten years of hard work by shutting down Lavabit. After significant soul searching, I have decided to suspend operations. I wish that I could legally share with you the events that led to my decision. I cannot. I feel you deserve to know what’s going on--the first amendment is supposed to guarantee me the freedom to speak out in situations like this. Unfortunately, Congress has passed laws that say otherwise. As things currently stand, I cannot share my experiences over the last six weeks, even though I have twice made the appropriate requests.

What’s going to happen now? We’ve already started preparing the paperwork needed to continue to fight for the Constitution in the Fourth Circuit Court of Appeals. A favorable decision would allow me resurrect Lavabit as an American company.

This experience has taught me one very important lesson: without congressional action or a strong judicial precedent, I would _strongly_ recommend against anyone trusting their private data to a company with physical ties to the United States.

Sincerely,
Ladar Levison
Owner and Operator, Lavabit LLC

Defending the constitution is expensive! Help us by donating to the Lavabit Legal Defense Fund [here](http://lavabit.com/).
Lavabit: “so secure that even our administrators can’t read your e-mail”

But they could, if they wanted to…

“Basically we generate public and private keys for the user and then encrypt the private key using a derivative of the plain text password. We then encrypt user messages using their public key before writing them to disk.”

“Because we need the plain text password to decrypt a user’s private key, we don’t support secure password authentication. We decided to support SSL instead (which encrypts everything; not just the password).”