CSE508 Network Security

2/15/2016 Firewalls and Gateways

Michalis Polychronakis
Stony Brook University
Typical Network Topology
Firewalls: separate local networks from the Internet

Internal networks

Public/private wireless networks

“Demilitarized Zone” publicly accessible servers
Firewalls: Reality
Firewalls

Filter traffic according to a predefined policy
 Mostly statically defined, but dynamic updates are possible (e.g., to block an ongoing DoS attack)

Barrier between administrative domains
 Internal networks vs. the outside world
 Mission-specific subnets/VLANs (publicly accessible servers, machine clusters, user groups, printers, VoIP, …)
 Less trusted segments (guest WiFi network, contractors, …)

Main strategies
 Default-deny: drop everything unless explicitly allowed
 Default-allow: block specific protocols/hosts/ports/…
Firewalls: why are they needed?

Hosts may run vulnerable services: prevent outside attackers from accessing them
 Limit the “attack surface” ➔ expose less services

Internal hosts may get compromised: damage control
 Prevent propagation, outgoing attacks, exfiltration, …

No reason to reveal the structure of private networks: hinder network reconnaissance
 Block port scanning, service fingerprinting, …

Network intelligence: log interesting events
 Troubleshooting, monitoring/tuning, auditing, forensics, …

Simply block unwanted traffic: **policy enforcement**
 Noise, backscatter, spoofed packets, DoS attacks, brute-force password guessing, Bittorrent, Facebook, …
A Theory of Firewalls (Bellovin)

Three properties must hold for a firewall to be effective

The firewall should be placed at a topological chokepoint

 Not always true in modern enterprises: links to suppliers/contractors, cellular connectivity, VPN/proxy software, …

“Inside” nodes share the same security policy

 Do they? BYOD, IoT, …

“Inside” nodes are trusted, “outside” hosts are untrusted

 BYOD: an already infected device may appear inside the network
 Internal hosts can be infected due to client-side attacks (e.g., drive-by download attacks, malware, phishing, …)
 Insider threats, disgruntled employees, …
Stateless Filtering

Decide by considering each packet in isolation
 Rules mostly based on network and transport layer fields
 Simple implementation: no need to keep state

Limitations
 Dynamically negotiated/non-standard port numbers
 (FTP, SIP, BitTorrent, …)
 Connectionless protocols (e.g., UDP): cannot distinguish
 between queries and replies
 IP fragmentation: port numbers are present only in 1st fragment
 Rule sets can get complex and hard to understand

Still useful for simple scenarios
 Ingress/egress filtering, strict configurations, …
Stateless Firewalls and TCP

Common configuration: block incoming but allow outgoing connections

- Incoming (externally initiated) connections should be blocked
- Incoming packets of established connections should be allowed

Can be achieved without keeping state

- Block incoming SYN-only packets
- Allow incoming packets with the ACK bit set

Not an ideal solution

- ACK scanning
ACK-scanning \((\text{nmap } -sA)\)

Can determine whether a stateless firewall is used
 Not whether a specific port is open or not

When an ACK is sent to a closed port, or sent out-of-sync to an open port, the expected behavior is to respond with a RST
 Stateful firewalls discard out-of-sync ACK packets, leading to no response

Step 1: SYN \(\rightarrow\) SYN/ACK or RST
Step 2: ACK \(\rightarrow\) RST
 The port is unfiltered by any firewall type

Step 1: SYN \(\rightarrow\) SYN/ACK
Step 2: ACK \(\rightarrow\) no response
 Stateful firewall

Step 1. SYN \(\rightarrow\) no response
Step 2. ACK \(\rightarrow\) RST
 Stateless firewall
Stateful Filtering

Firewall keeps per-connection state

Track TCP three-way handshake, UDP query/responses, …
Decisions are made by considering each packet in the context of
the connection/session it belongs to

Most common firewall type

More flexible policies

Internally vs. externally initiated connections/sessions

Still cannot handle dynamically negotiated port
numbers and higher-level protocol semantics

Missing application-level context
Network Address Translation

Share a public IP address with many internal hosts

 In general: remap an IP address space into another
 Global shortage of IPv4 addresses
 Widely used (home networks, wireless networks, …)

Rewrite packet address and port information

 Keep per-connection state
NAT vs. Stateful Firewall

Similar functionality and state

NAT modifies packets: performs address/port translation

Are NATs firewalls?

Not in the strict sense, as they do not fully track the TCP 3-way handshake or any other higher-layer state

But they do provide some protection: allow only outgoing connections

Internal hosts can become accessible through port forwarding

Explicitly map a local IP:port to a public IP:port
UPnP

Universal Plug and Play

Widely supported protocol by home routers to enable device discovery and NAT traversal

“Please allow external hosts to reach me on port 12345”
Skype, Bittorrent, games, …

No authentication!

Malware can easily punch holes
Worse: Flash, XSS, …
Even worse: external requests (!)
Security Flaws in Universal Plug and Play: Unplug, Don't Play

This morning we released a whitepaper entitled Security Flaws in Universal Plug and Play. This paper is the result of a research project spanning the second half of 2012 that measured the global exposure of UPnP-enabled network devices. The results were shocking to the say the least. Over 80 million unique IPs were identified that responded to UPnP discovery requests from the internet. Somewhere between 40 and 50 million IPs are vulnerable to at least one of three attacks outlined in this paper. The two most commonly used UPnP software libraries both contained remotely exploitable vulnerabilities. In the case of the Portable UPnP SDK, over 23 million IPs are vulnerable to remote code execution through a single UDP packet. All told, we were able to identify over 6,900 product versions that were vulnerable through UPnP. This list encompasses over 1,500 vendors and only took into account devices that...
Generic Port Forwarding

Bypass firewall policies!

Example: connect from a private network to a host that is blocked by a local firewall

Remote host: `nc -l -p 12345 -c 'nc blocked.com 80'`
Local host: `wget remote.edu:12345`

Or using SSH local port forwarding

`ssh -L 12345:blocked.com:80 remote.edu`

Also the other way around: remote port forwarding

Example: allow public access to a server running in a private network

`ssh -R 8080:localhost:80 remote.edu`
Proxies

Intermediate “stepping stones”
 Operate at the application layer
 Act as both a client and a server

Application-level filtering
 Example: HTTP-level filtering (domains, URLs, ads, …)

Many non-security uses as well
 HTTP content caching (one of the first uses of web proxies)
 Reverse proxies (in front of application servers): quickly serve the same dynamically-generated content
 Transcoding

Explicit vs. transparent proxies
 The former require application configuration
SOCKS Proxies

Also known as circuit-level gateways

Socket Secure (SOCKS): protocol for generic forwarding of packets through a proxy

Supported by many applications and protocols
 HTTP, FTP, SMTP, POP3, NNTP, …

Example: dynamic application-level port forwarding
 ssh -D 12345 sshserver.com
 chrome --proxy-server='socks://localhost:12345'
A secure socks5 proxy, designed to protect your Internet traffic.

If you want to keep a secret, you must also hide it from yourself.

Super Fast
Bleeding edge techniques using Asynchronous I/O and Event-driven programming.

Flexible Encryption
Secured with industry level encryption algorithm. Flexible to support custom algorithms.

Mobile Ready
Optimized for mobile device and wireless network, without any keep-alive connections.

Cross Platform
Available on most platforms, including Windows, Linux, Mac, Android, iOS, and OpenWRT.

Open Source
Totally free and open source. A worldwide community devoted to deliver bug-free code and long-term support.

Easy Deployment
Easy deployment with pip, aur, freshports and many other package manager systems.
Application-level “Firewalls”

Similar to proxies, but less generic

- Application-specific filtering
- Often built into applications

Example: SMTP

- Spam filtering, phishing detection, attachment scanning, …

Begin to overlap with more generic intrusion detection systems (future lecture)

Recent buzzword: web application firewalls (WAF)

- Server-side HTTP filtering for common attack patterns (XSS, SQL injection, …)
- A specific instance of application-level filtering/scanning
Host-based Firewalls

Firewalls running on end hosts
 Windows firewall
 IPtables

“Personal” firewalls: apply common-sense policies (deny incoming, allow outgoing)
 Particularly important for home users, laptops, etc.

On-by-default client firewall deployment contributed significantly in ending the era of internet worms
Simple IPtables Example

flush all chains
iptables -F
iptables -X

defaults for predefined chains
iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

allow anything on localhost interface
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

allow all traffic from specific subnets
iptables -A INPUT -s 128.59.0.0/255.255.0.0 -j ACCEPT
iptables -A INPUT -s 160.39.0.0/255.255.0.0 -j ACCEPT
Simple IPtables Example

allow all inbound traffic for specific services
iptables -A INPUT -p tcp -m tcp --syn --dport 22 -j ACCEPT
iptables -A INPUT -p tcp -m tcp --syn --dport 80 -j ACCEPT

allow inbound established and related outside communication
iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT

allow ICMP
iptables -A INPUT -p icmp -j ACCEPT

allow all outgoing traffic
iptables -A OUTPUT -j ACCEPT

Is that a good idea?
Before Host-based Firewalls:

After Host-based Firewalls:
Per-process Firewall

Most “personal” firewalls still allow all outgoing traffic by default
 Severe usability problems otherwise

Do all programs really need to communicate with the outside world?

Deny by default and whiltelist only what is needed
 No easy solution for this in most OSes – need to rely on hacks or third party solutions
Virtual Private Networks

Users may not always be behind the firewall, but still need full access to an internal network

 Offices at different locations, employees on the move, remote access to home “cloud,” …

VPNs bridge private networks across a public (untrusted) network

 Virtual point-to-point secure connections (encryption)
 Create a *trusted* shared network among them

Remote host/network virtually becomes part of the local network
VPN Examples

Regional Office

Regional Office

Internet

Head-office

Remote / roaming users

VPN Implementations

Tunneling/encapsulation: packets of one network protocol are transferred as data over another protocol

Three major families in wide use today:

PPTP: L2, commonly used in Windows
 Broken

IPsec: L3, widely supported
 - Authenticate and encrypt IP packets of a communication session
 - Completely transparent to applications
 - Tunnel is handled directly by the TCP/IP stack

SSL: Application layer – OpenVPN
 - User-space implementation, multiplatform
 - Typically requires installation of a software client
Algo VPN

Algo VPN is a set of Ansible scripts that simplify the setup of a personal IPSEC VPN. It uses the most secure defaults available, works with common cloud providers, and does not require client software on most devices. See our release announcement for more information.

Features

- Supports only IKEv2 with strong crypto: AES-GCM, SHA2, and P-256
- Generates Apple profiles to auto-configure iOS and macOS devices
- Includes a helper script to add and remove users
- Blocks ads with a local DNS resolver (optional)
- Sets up limited SSH users for tunneling traffic (optional)
- Based on current versions of Ubuntu and strongSwan
- Installs to DigitalOcean, Amazon EC2, Microsoft Azure, Google Cloud

Anti-features

- Does not support legacy cipher suites or protocols like L2TP, IKEv1, or RSA
- Does not install Tor, OpenVPN, or other risky servers
- Does not depend on the security of TLS
- Does not require client software on most platforms
- Does not claim to provide anonymity or censorship avoidance
- Does not claim to protect you from the FSB, MSS, DGSE, or FSM

Trivially easy to set up a personal IPsec VPN in the cloud!
No excuse for not using a VPN when you are in a public WiFi!
“Secure Gateways”

Nowadays most of the discussed technologies are consolidated into a single box

Routing, Firewall, NAT, VPN, Proxy, …

Common in home and enterprise settings

Routers and firewalls used to be “simple” devices – not anymore

Features ➔ complexity ➔ security issues

Critical hosts in the network that need to be protected

Administrative interface, OS patches/updates, service vulnerabilities, …
Welcome to the internet's largest and most updated default router passwords database.

Select Router Manufacturer:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Protocol</th>
<th>Username</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO</td>
<td>CACHE ENGINE</td>
<td>CONSOLE</td>
<td>admin</td>
<td>diamond</td>
</tr>
<tr>
<td>CISCO</td>
<td>CONFIGMAKER</td>
<td></td>
<td>cmaker</td>
<td>cmaker</td>
</tr>
<tr>
<td>CISCO</td>
<td>CNR Rev. ALL</td>
<td>CNR GUI</td>
<td>admin</td>
<td>changeme</td>
</tr>
<tr>
<td>CISCO</td>
<td>NETRANGER/SECURE IDS</td>
<td>MULTI</td>
<td>netrangr</td>
<td>attack</td>
</tr>
<tr>
<td>CISCO</td>
<td>BBSM Rev. 5.0 AND 5.1</td>
<td>TELNET OR NAMED PIPES</td>
<td>bbsd-client</td>
<td>changeme2</td>
</tr>
<tr>
<td>CISCO</td>
<td>BBSD MSDE CLIENT Rev. 5.0 AND 5.1</td>
<td>TELNET OR NAMED PIPES</td>
<td>bbsd-client</td>
<td>NULL</td>
</tr>
</tbody>
</table>
Results 1 - 10 of about 75932 for cisco-ios

Services

- **HTTP**: 35,848
- **HTTPS**: 26,003
- **SNMP**: 6,488
- **SIP**: 5,509
- **Telnet**: 1,968

Top Countries

- **United States**: 17,838
- **Turkey**: 5,905
- **China**: 3,731
- **Mexico**: 3,455
- **United Kingdom**: 3,110

71.181.180.236

- **Verizon Internet Services**
- **Added on 12.11.2013**
- **Wilkes Barre**
- **pool-71-181-180-236.sctnpa.east.verizon.net**
- **HTTP/1.0 401 Unauthorized**
- **Date: Tue, 16 Jul 2002 14:51:33 GMT**
- **Server: cisco-IOS**
- **Connection: close**
- **Accept-Ranges: none**
- **WWW-Authenticate: Basic realm="level_1"**

65.107.40.46

- **XO Communications**
- **Added on 12.11.2013**
- **65.107.40.46.ptr.us.xo.net**

190.148.8.222

- **Telgua**
- **Added on 12.11.2013**
Owning Modems And Routers Silently

Modems

Do you have cable internet? Own a surfboard modem? Since most of my buddies in AZ do, I sent them to this page and to my amusement, they got knocked off the net for a few minutes. How? Javascript. Specifically a CSRF in the Motorola Surfboard.

The Surfboard cable modem offers little in functionality besides rebooting unless of course I wanted to be malicious and remove all settings on the cable modem and essentially turn it into a door stop until the thing can be activated again by the ISP.

![Surfboard Cable Modem](image)

Configuration

- **Frequency Plan:** North American Standard/HRC/IRC
- **Custom Frequency Ordering:** Default
- **Upstream Channel ID:** 2
- **Favorite Frequency (Hz):** 2500000
- **DOCSIS MIMO:** Honor MDD IP Mode
- **Modem's IP Mode:** IPv4 Only

DHCP Server Enabled
The SURFboard cable modem can be used as a gateway to the internet by a maximum of 32 users on a Local Area Network (LAN). When the Cable Modem is connected to the internet, users on the LAN can be dynamically assigned IP addresses by the Cable Modem DHCP Server. These addresses are assigned from an address pool which begins with 192.168.190.10 and ends with 192.168.149.42. Statically assigned IP addresses for other devices on the LAN should be chosen from outside of this range.

Note: Resetting the cable modem to its factory default configuration will remove all stored parameters learned by the cable modem during prior initializations. The process to get back online from a factory default solution could take from 5 to 30 minutes. Please reference the cable modem User Guide for details of the power up sequence.
Discussion Topic: Port Knocking

Open firewalled ports on demand by “knocking” the right combination of ports

- Firewall opens the port once connection attempts to the right combination of (closed) ports are seen
- Variation: single packet authorization
- Sometimes recommended for securing SSH servers etc.

Is port knocking useful or pointless?