CSE508 Network Security

3/2/2016 Authentication

Michalis Polychronakis

Stony Brook University

Authentication

The process of reliably verifying the identity of
someone (or something)

What is identity?

Which characteristics uniquely identify an entity?

Authentication is a critical service, as many other
security mechanisms are based on it
Entity authentication is the security service [\.

that enables communicating parties to _
verify the identity of their peers R

Two main types
Human to computer
Computer to computer]

Credentials
Evidence used to prove an identity

User Authentication: credentials supplied by the user
Something you know
Something you have
Something you are

Computer authentication: crypto, location

Computers (in contrast to humans) can “remember”large secrets (keys)
and perform complex cryptographic operations

Location: evidence that an entity is at a specific place (e.g., IP
address/subnet)

Authentication can be delegated

The verifying entity accepts that a trusted third party has already
established authentication

Something You Know: Password-based Authentication

Passwords, passphrases, pins, key-phrases, access codes, ...
Say the magic word

Good passwords are easy to remember and hard to guess

Easy to remember = easy to crack
Hard to crack = hard to remember
Bad ideas: DOB, SSN, zip code, favorite team name, ...

Password space (bits) depends on:
Password length
Character set

Better way to think about strong passwords

Long passphrases, combined with custom variations, symbols,
numbers, capitalization, ...

UNCOMMON ORDER
o v

Tr@ubddor &3
CH:PS? 5%”%@% NOMERAL
PUNCTUATION

—

W00 CAN ADD A FEW) MeRE BT To
ECoUMT TOR THE FRCT ThAT THis
OMLY DWE OF & R Commp FORMATS)

= Iy

~28 BITS OF ENTROPY

2%= 3 Davs AT
1000 GUESSES /sE¢
(PLADSIBLE ATTACK oM A WEAK REMOTE
WER SERVICE. YES, CRACKING A STOLEM

HESH 14 FRSTER, BUT i BT WHAT THE
RVERAGE UMED SHOULD WY ABOUT.)

DIERCOLTY T0 GUESS:

EASY

WAS IT TROMBONE? NGO,
TROUBADOR. AND ONE OF
THE Os WRS A ZERQ?

\
AND THERE WAS
SOME SYMBOL...

(1]

DIFFICULTY To REMEMBER:
HARD

correct horse battery staple

FOUR RANDOM
COMMON WORDS

~ H4H RBITS OF ENTROPY

2™ =550 YEPRS AT
1000 GUESSES/SEC

DIFFICOLTY To GUESS:
HARD

DIFFICULTY T0 REMEMBER:
YOUVE ALREADY
MEMORIZED T

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TD USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Attacking Passwords
Offline cracking }

Brute force attacks
Online guessing
Eavesdropping

Capturing

Password Storage
Storing passwords as plaintext is disastrous
Better way: store a cryptographic hash of the password

Even better: store a “salted” version of the password

Prevent precomputation of hash values (wordlists of popular
passwords, rainbow tables, ...)

Even if two users have the same password, their hash values will be
different -> need to be cracked separately

Salting does not make guessing a given password harder!

Username Salt Password hash
Bobbie 4238 h(4238, $uperman)

Tony 2918 h(2918, 63%TaeFF)
Mitsos 6902 h(6902, zourlda)
Mark 1694 h(1694, Rockybrook#1l)

Still, password databases are getting leaked...

Password Cracking
Exhaustive search = infeasible for large password spaces

Dictionary attacks
Language words
List of previously leaked real user passwords

Variations and common patterns

Prepend/append symbols/numbers/dates, weird capitalization, I33tspeak,
visually similar characters, intended misspellings, ...

Target-specific information

DOB, family names, favorite team, pets, hobbies, anniversaries, language,
slang, ...

Many ease to acquire from social networking services
Particularly effective against“security questions”

Advanced techniques
Probabilistic context-free grammars, Markov models, ...

Combination of all the above

password
123456
12345678
1234
gwerty
12345
dragon
pussy
baseball
football

letmein
monkey
696969
abcl23
mustang
michael
shadow
master
jennifer
111111

25 Most-used (Worse) Passwords

2000
jordan
superman
harley
1234567

95
17

90

85 16

%0 15

75

70 14
Z 6 13
2 o0 _
Z. 55 12 Z
= 50 11 95:5'-./
O []
E s " &0
ﬁ L |
= 40 |
g
& 35 9

30 3

25

20 7

15 6

10

05 5

00 4

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
First two PIN digits

Distribution of 4-digit sequences within RockYou passwords

A birthday present every eleven wallets? The security of customer-chosen banking PINs. Joseph Bonneau, Soren Preibusch and Ross Anderson — FC 12

Wordlists

ce#ebc.dk
goddess5
20071002
271075711
zs3cu7za
scoopn
frygasl411
SL123456s1
12345687ee123
xuexi201e
daigoro
12345614
DICK4080
567891234
tilg80
62z08c861
:zark:
ravishsneha
150571611369
661189
passme
trolovinasveta
abdulkhaleque
007816

xLDSX
Florida2011
037037
WestCOuntry
hitsugaiya
955998126
3n3rmax

4637324
bugger825
marmaris
jinjinlil
170383gp
3484427
133321
zwqgrfg
67070857
432106969
6856
704870704870
pvo41886
20060814
512881535
milanimilani
472619
dbyxw888
85717221
cc841215
arianal9321l
bbbnnn
ang34hehiu
wj112358
Brenda85
786525pb
shi461988
pingu
yeybozip
71477nak
stokurew

gea8mwidyz
kukumbike
260888
jordile
lexusis
kjo11a039
c84bwlrb
priyanka@5
loveneverdies
u8Agebj576
FGYfgy77
659397
327296
74748585
19720919
050769585
nicopa
2232566
bearss
ndtpublic
isitrealeo
ashraf19760
48144
22471015
antyzhoul15
0167005246
ecl3kag
226226226226
6767537/33
mimilebrock
gueis8850

fujinshan
counter
N8mren
520057
adc123
bmaster
gbjhedzg
ueldaa79
EMANUELLI
yanjing
assynt
62157173
0704224950753
6903293
axaaxa
hilall
30091983
2510618981
soukuokpan
tosecondlife
p4os8méq
015614117
acw71790
1syljm2
2xgialdl
gaybar9
88203009
MK1tyh87
quiggle
2063775206
fr3iH3it

masich
pengaiwei
coalesce
56402768
thesis
aabbcc894
marion&maxime
614850
ydz220105
584521584521
txudecp
84410545
pietro.chiara
jmanl514
heryarma
39joinmam
timelapse
mwinkar
251422
willrock
YHrtfgDK
Xys96exq
mercadotecnia
8s5sBEx7
0125040344
margitka
omaopa
dfTi6nh
1314520521
pixma760
pearpear

gothpunksk8er
rftaeo48
8d7ReK
5172032
aicseo7
34mariah
dongginwei
samarica
caplels
0167387943
AE86Trueno
19700913
mcsuap
bu56mpbu
danbee
passw<>
money521
conan83
nxfjpl
rategl43
kojyihen
058336257
sarah4444
7363437
freindship
JytmvinO848
sb inbau
30907891
0515043111
1973@ati
wlxgjf

20081010
leelou44
8UfjeGbO
200358808
dellede
liangl123.
captainettekt
kwiki-mart
mdovydas
tigmys2001
denial
678ad5251
woaiwuai
1591591591212
hNbDGN
cardcap
13985039393
001104
desarell
412724198
nibhlkab
asferg
hgb555
Xgames?7
muckerlee
choqui6?7
12130911
lierweil2o
skytdvn
milenal995
kambalall

11

Password Hashing Functions

Problem: hash functions are very fast to evaluate & enable fast
guessing attacks

Solution: slow down the guessing process (password
“stretching”)

E.g., 10-100ms per check & significant cost for the server if it must handle
many users (!)

Make heavy use of available resources

Computation should be fast enough to validate honest users, but render
password guessing infeasible

Adaptable: flexible cost (time/memory complexity) parameters

Bcrypt [Provos and Mazieres, 1999]
Cost-parameterized, modified version of the Blowfish encryption algorithm
Tunable cost parameter (exponential number of loop iterations)

Alternatives: Scrypt (memory-hard), PBKDF2 (PKCS standard)

Online Guessing

Similar strategy to offline guessing, but rate-limited
Connect, try a few passwords, get disconnected, repeat...

Prerequisite: know a valid user name

Many failed attempts can lead to a system reaction
Introduce delay before accepting future attempts (exponential backoff)

Shut off completely (e.g., ATM capturing/disabling a card after 3 tries)
Ask user to solve a CAPTCHA

Very common against publicly accessible SSH, VPN, RDP,
and other servers

Main reason people move sshd to a non-default port

Fail2Ban: block IP address after many failed attempts = may allow an
attacker to lock you out of the server (!)

Better: disable password auth and use a key pair & cumbersome if
having to log in from many/others’ computers

LOGIN: mitch LOGIN: carol LOGIN: carol

PASSWORD: FooBar!-7 INVALID LOGIN NAME PASSWORD: Idunno
SUCCESSFUL LOGIN LOGIN: INVALID LOGIN
LOGIN:

(a) (b) (c)

(a) A successful login
(b) Login rejected after name is entered
(c) Login rejected after name and password are typed

Try the Default First

[Default Router Passwords %

=

= C' | [J www.routerpasswords.com

RouterPasswords

Welcome to the internets largets and most updated default router passwords database,

Select Router Manufacturer:

CISCO

Find Password

Manufacturer

CIsCo

CIsCo

CIsco

CIsco

CIsCo

CIsco

Model

CACHE ENGINE
CONFIGMAKER
CNR Rev. ALL

NETRANGER/SECURE
DS

BEBSM Rev. 5.0 AND 5.1

EBSD MSDE CLIENT Rev.
5.0AND 5.1

Protocol

CONSOLE

CNR GUI

MULTI

TELNET OR
NAMED
FIPES

TELNET OR
NAMED

o

Home | Add Password | About

Username
admin
cmaker
admin

netrangr

bbsd-client

bbsd-client

Password
diamaond
cmaker
changeme

attack

changeme?2

NULL

15

Eavesdropping and Replay
Physical world

Watch user type password (shoulder surfing)
Cameras (ATMs skimmers)

Lift fingerprints (iPhone)

Post-it notes

Network makes things easier
Sniffing (LAN, WiFi, ...)
Man-in-the-Middle attacks

Defenses
Encryption
One-time password schemes

Kerberos

Long-lived vs. session keys
Use long-lived key for authentication and negotiating session keys

Use “fresh,” ephemeral session keys (prevent replay, cryptanalysis, old
compromised keys) for encrypted communication, MAGCs, ...

Kerberos: most widely used (non-web) single sign-on system
Originally developed at MIT, now used in Unix, Windows, ...

Authenticate users to services: using their password as the
initial key, without having to retype it for every interaction

A Key Distribution Center (KDC) acts as a trusted third party for key
distribution

Online authentication: Variant of Needham-Schroeder protocol
Assumes a non-trusted network: prevents eavesdropping
Assumes that the Kerberos server and user workstations are secure...

Use cases: workstation login, remote share access, printers, ...

Password Capture

Hardware bugs/keyloggers
Software keyloggers/malware
Phishing

Social engineering

T

S————

iy

Login:

(a) Correct login screen
(b) Phony login screen

Login:

(b)

Something You Have: Authentication Tokens

One-time passcode tokens

Time-based
Counter-based

Other authentication tokens: store certificates,
encryption keys, challenge-response, ...

Smartcards (contact or contactless)
Identification, authentication, data storage, limited processing

Magnetic stripe cards, EMV (chip-n-pin credit cards), SIM cards,
RFID tags, ...

USB/bluetooth tokens, mobile phones, watches, ...

Can be used as authentication devices

Multi-factor Authentication
Present several separate credentials of different types

Most common: 2-factor authentication (2FA)

Example: Password + hardware token, mobile phone, ...
Example: ATM card + pin

Motivation: a lost/guessed password is now not enough
for attackers = not always true

Man-in-the-Middle: set up fake banking website, relay password to real
website, let the user deal with the second factor...

Man-in-the-browser: hijack/manipulate an established session after
authentication has completed (banking Trojans)

Dual infection: compromise both PC and mobile device

Implementation-dependent usability issues
In-flight WiFi, but cannot receive SMS...
Fallback: backup one-time-use passcodes (where to keep them?)

Biometrics

Fingerprint reader (iOS)
Face recognition (android)
Retina/Iris scanner

Voice recognition

Continuous authentication

Keystroke timing, usability patterns, ...

Crypto-based Authentication

Some way to use a cryptographic key to prove a user’s
identity

Basic idea: user performs a requested cryptographic
operation on a value (a challenge) that the verifier
supplies
Usually based on knowledge of a key (secret key or private key)
Can use symmetric (e.g., Kerberos) or public key schemes

How can we trust a key? Why is it authentic?
Need to establish a level of trust
Different approaches: TOFU, PKI, Web of trust
Emerging approach: blockchain/ledger-based PKI

Trust on First Use
Use case: SSH

Performs mutual authentication

Server always authenticates the client
password, key pair, ...

Client almost always authenticates the server — except the
first time!

First connection: server presents its public key
No other option for the user but to accept it: MitM opportunity

Subsequent connections: client remembers server’s key, and triggers an
alert on key mismatch

Pragmatic solution, but shifts the burden to users
Users must determine the validity of the presented key

Assuming a key change is valid without verifying the new key offers no
protection against MitM (unfortunately, that’s what most users do)

IT IS POSSIBELE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.

The fingerprint for the RSA key sent by the remote host is
df:c8:52:aa:cd:e3:da:8c:ec:50:46:db:4d:21:d9:c7.

Please contact your system administrator.

Add correct host key in /root/.ssh/known hosts to get rid of this message.
Offending key in /root/.ssh/known hosts:1

RSA host key for 192.168.2.5 has changed and you have requested strict checking.

Host key verification failed.

26

Certificates

How can we distribute “trusted” public keys?

Public directory -> risk of forgery and tampering
More practical solution: “certified” public keys

A certificate is a digitally signed message containing
an identity and a public key

Makes an association between a user/entity and a private key
Valid until a certain period

Why trust a certificate? CSECURE |,

Because it is signed by an “authority”

Third party’s signature prevents tampering

27

Public Key Infrastructures (PKIl)

Facilitate the authentication and distribution of public
keys based on identities

Set of roles, policies, and procedures to create, mange, distribute,
use, store, and revoke certificates

An issuer signs certificates for subjects

Trust anchor

Methods of certification
Certificate authorities (hierarchical structure — root of trust)
Web of trust (decentralized, peer-to-peer structure)

Certificate Authorities

Trusted third-parties responsible for certifying public keys
Most CAs are tree-structured
Single point of failure: CAs can be compromised!

Why should we trust an authority?
How do you know the public key of the Certificate Authority (CA)?

CA’s public key (trust anchor) must be provided out of
band

Trust has to start somewhere

Operating systems and browsers are pre-configured with
~200 trusted root certificates

A public key for any website in the world will be accepted without
warning if certified by any of these CAs

Web of Trust

Entirely decentralized authentication
No single point of failure

No need to by certs from CAs
Used in PGP

Users sign other users’keys

Only if they deem them trustworthy
Certificate signings can form an arbitrarily complex graph
Users can verify path to as many trust anchors as they wish

Drawbacks

Hard to use, requires in-person verification — key signing parties!
Hard to know what trust level to assign transitively

WoT Alternative:

& Michalis Polychronakis (%

Michalis Polychronakis

mikepo from the command line

keybase join

keybase login

&« C' | & https://keybase.io/mikepo

keybase.io/
a, 8F30
W polychronakis

€) polychronakis

8AFF

Online Social “Tracking”

31

Best Practices

User education is important!

Pick long passwords (passphrases)

Never reuse the same password on different services
Never share passwords

No post-its

Use two-factor authentication when possible

Use a password manager
Not only for passwords! Also for “security” questions...

Use SSH keys instead of passwords

