CSE331 Computer Security Fundamentals

11/14/2017 Malware

Michalis Polychronakis
Stony Brook University
Malicious Software

viruses, worms, rootkits, trojan horses
keyloggers, RATs, backdoors, downloaders
droppers, injectors, dialers, flooders
adware, spyware, ransomware, ...

Brain – first IBM PC virus
You became victim of the PETYA RANSOMWARE!

The harddisks of your computer have been encrypted with an military grade encryption algorithm. There is no way to restore your data without a special key. You can purchase this key on the darknet page shown in step 2.

To purchase your key and restore your data, please follow these three easy steps:

1. Download the Tor Browser at "https://www.torproject.org/". If you need help, please google for "access onion page".
2. Visit one of the following pages with the Tor Browser:

 http://petya[.]onion/g
 http://petya[.]onion/g

3. Enter your personal decryption code there:

 a65[...]43[...]5[...]
 nF[...]

If you already purchased your key, please enter it below.

Key: []
Dear Customer:

It is time to pay for your software lease from PC Cyborg Corporation. Complete the INVOICE and attach payment for the lease option of your choice. If you don’t use the printed INVOICE, then be sure to refer to the important reference numbers below in all correspondence. In return you will receive:

- a renewal software package with easy-to-follow, complete instructions;
- an automatic, self-installing diskette that anyone can apply in minutes.

Important reference numbers: A5599796-2695577-

The price of 365 user applications is US$189. The price of a lease for the lifetime of your hard disk is US$378. You must enclose a bankers draft, cashier’s check or international money order payable to PC CYBORG CORPORATION for the full amount of $189 or $378 with your order. Include your name, company, address, city, state, country, zip or postal code. Mail your order to PC Cyborg Corporation, P.O. Box 87-17-44, Panama 7, Panama.

Press ENTER to continue
Malware Characteristics

Code Environment
Machine code (executables, DLLs, drivers, shellcode), higher-level languages/interpreters (VB, macro, JS, Java), shell scripts, ...

Attack vector
Network packet/request, web page, email, document, USB, ...

Infection point
SMM/BIOS, firmware, boot sector, kernel, services/daemons, executable files, memory-only, browser-only...

Propagation strategy
File infection (local disk, remote shares, cloud drives), network scanning, contact/host/peer list, physical access, ...

Armoring techniques
Packing, polymorphism, obfuscation, anti-VM/sandbox tricks, anti-debugging tricks, ...
(Some) Common Malware Types

Downloaders/droppers
 Fetch additional modules from remote locations and plant them

Launchers/loaders
 (unpack and) drop a more complex module

Backdoors
 Provide access to infected system
 Reverse shells, RATs (remote access Trojan), bots, …

Keyloggers/credential stealers
 Capture passwords and authentication tokens
 User/kernel space keyloggers, hash dumpers, …
Worms vs. Viruses

Worm

A program that self-propagates across a network exploiting security or policy flaws in widely-used services
Malicious code (standalone or file-infecting) that propagates over a network, with or without human assistance

Classification not always clear

Main differences of worms from typical viruses

May not require user intervention
May not need to infect files
Network-oriented infection strategy
Worms: It all started back in 1988...

Morris worm

Created with no malicious intent
“Gauge the size of the internet”

Exploited multiple vulnerabilities

finger (stack smashing)
sendmail (DEBUG command allowed for remote cmd exec)
Weak passwords (cracking using dictionary)
rsh/rexec (/etc/hosts.equiv or .rhosts host-based authentication)

Infected about 10% of the internet
6,000 out of 60,000 hosts
DDoS attack that disrupted internet was largest of its kind in history, experts say

Dyn, the victim of last week's denial of service attack, said it was orchestrated using a weapon called the Mirai botnet as the 'primary source of malicious attack'.

Major cyber attack disrupts internet service across Europe and US

Probably less sophisticated than Morris worm...
And then…

13 July 2001 – CodeRed: Buffer overflow in Microsoft IIS

GET /default.ida?

Defaced affected website:
HELLO! Welcome to http://www.worm.com! Hacked By Chinese!

Days 1–19: propagate through random scanning

4 August 2001 – CodeRed II
Localized scanning
More to come...

18/9/2001 – Nimda

Many infection vectors

- Code Red IIS buffer overflow
- Bulk email to harvested addresses from victim host
- Open network shares
- Infect visitors of compromised web sites
- Microsoft IIS 4.0/5.0 directory traversal vulnerabilities
- Backdoors left behind by the Code Red II and Sadmind/IIS worms
Faster...

25 January 2003 – Slammer

Stack overflow in MS SQL Server 2000, 376-byte UDP packet

Slammer, 30 min after its release:
75,000+ infected hosts, 90% of the vulnerable population
Massive...

11 August 2003 – Blaster
 Buffer overflow in the DCOM RPC Windows service
 TFTP connect-back, download, and execute
 6176-byte UPX-compressed binary

SYN-flooding DDoS attack against windowsupdate.com

18 August 2003 – Welchia
 “helpful” worm: deletes Blaster and downloads patch
 Caused side-effects...
More…

19 March 2004 – Witty worm
 Vulnerability in ISS firewall products

30 April 2004 – Sasser
 Vulnerability in LSASS Windows service

13 August 2005 – Zotob
 MS05-039 PnP vulnerability

17 January 2007 – Storm
 Mass-mailing worm, built P2P botnet

21 November 2008 – Conficker
 MS08-067 RPC vulnerability
Conficker: Still spamming after all these years

How pathetic is the security in many enterprises? Almost six years since the patch to stop it was issued, Conficker is still one of the most common threats.

By Larry Seltzer for Zero Day | July 3, 2014

A recent TrendLabs Security Intelligence Blog entry reminds us of just how immune some enterprises are to reasonable security practices. It turns out that Conficker (which they call DOWNAD, one of a few names for this threat) is still the most common form of malware found in enterprises and small businesses.

Conficker was quite a big deal back in late 2008 and early 2009. When Microsoft released MS08-067 (“Vulnerability in Server Service Could Allow Remote Code Execution”) out of band on October 23, 2008, it was considered the most serious security threat ever to date. The exploit was used to install Conficker, but only on Windows XP systems with Service Pack 1 and Windows Server 2003.

Microsoft and Canonical partner to bring Ubuntu to Windows 10

How one hacker exposed thousands of insecure websites

Security

FBI tells local police it will help unlock iPhones when possible

Security

More firms in Singapore
Generic Structure of Internet Worms

Target discovery

Infection propagator

Activation

Payload
Target Discovery

Network scanning

Random scanning (CodeRed, Sasser, Slammer, Witty)
Localized random scanning (CodeRed II)
Linear subnet scanning (Blaster)
Combinations (Slapper, Welchia)

E-mail address harvesting

Address books, files, web crawling, monitoring SMTP activity, …

Network share enumeration/topology

Network Neighborhood, /etc/hosts, known_hosts, …

Other mediums

P2P shared folders, IM, Google (MyDoom.O, Santy), …
Target Discovery Nowadays

Worms rely mostly on lateral movement techniques
 - Credentials harvesting (Mimikatz, keyloggers, sniffing, …)
 - Internal reconnaissance (network shares, VPN connections, …)
 - Pivoting attacks (RDP, PsExec, VBScript, WMI, …)

WannaCry (May 2017)
 - Internal/external spreading via the patched MS17-010 SMB bug

NotPetya (June 2017)
 - PsExec pass the hash, WMI, Mimikatz, MS17-010

BadRabbit (October 2017)
 - Propagation strategy similar to NotPetya
Infection Propagator

Self-carried
 CodeRed, Slammer, Witty, …

Second channel
 Blaster, Conficker, …
 TFTP, FTP, HTTP, SMB, …
Activation

Self-activation

Vulnerability exploitation, file infection, …

Human activation

Social engineering

“Attached is an important message for you” [Melissa virus, 1999]

“Open this message to see who loves you” [ILOVEYOU virus, 2000]

Human activity-related activation

Double-click, user login, reboot, …
Payload

- click fraud
- port scanning
- extortion
- phishing
- illegal content
- DDoS
- code injection
- malicious websites
- spam
Botnets

Networks of compromised hosts
 Controlled remotely by an attacker
 Used for malicious activities

Command and Control (C&C)
 Centralized, P2P, web-based, …

Early botnets: bots just join an IRC channel
 Origin: benign IRC bots that perform automated actions

Push vs. pull model
 Example: IRC vs. HTTP
Botnets: what for?

Spam relaying
DDoS (for hire)
Mass information/identity theft
Extortion (DoS, ransomware)
Spreading new malware
Malicious page proxying/hosting
Manipulating online polls/games
Click fraud
Adware affiliate programs
Phishing web servers
Bitcoin mining
...

Some files are coded.
To buy decoder mail: <user>@yahoo.com
with subject: PGCoder000000000032

– Trojan.Gpcoder.C, 2005
Use Case: Torpig

Trojan distributed as part of Mebroot (MBR rootkit)

1: Victim visits malicious/infected website
2-4: Mebroot infection through a drive-by download attack
5: Mebroot downloads and installs Torpig
6: Torpig exfiltrates stolen data
7: Torpig downloads page templates to opportunistically launch man-in-the-browser attacks against online banking websites
Torpig’s man-in-the-browser phishing attack
DGA Botnets

What if the C&C server is gone?
Hardcoding domains or IP addresses in the bots not a good idea

Domain Generation Algorithm
Resilient C&C communication: generate and contact new domains periodically
If a domain is not available, just move on to the next one

Torpig’s DGA
Initial seed: current date
Weekly and daily domains
Hard-coded fall-back domains refreshed with each config file received from the C&C server

```python
def generate_domain(t, p):
    if t.year < 2007:
        t.year = 2007
    s = scramble_date(t, p)
    c1 = (((t.year >> 2) & 0x3fc0) + s) % 25 + 'a'
    c2 = (t.month + s) % 10 + 'a'
    c3 = ((t.year & 0xff) + s) % 25 + 'a'
    if t.day * 2 < '0' or t.day * 2 > '9':
        c4 = (t.day * 2) % 25 + 'a'
    else:
        c4 = t.day % 10 + '1'
    return c1 + 'h' + c2 + c3 + 'x' + c4 + suffix[t.month - 1]
```
Many other C&C possibilities…
Besides $$\triangledown$$

Espionage, intelligence gathering, sabotage, …
 Nation-state level threats

Example: Stuxnet (2008)
 Used multiple Windows 0days
 Infiltrated and physically destroyed Iranian nuclear centrifuges

Other examples
 Duqu: collection of malware modules, related to Stuxnet
 PlugX: RAT targeting government-related institutions/industries
 Regin: found in Belgacom, Belgium’s largest telco
 Flame: cyber espionage in Middle Eastern countries
 Gauss: cyber-espionage toolkit based on Flame
 …
Persistence

Startup folder

Registry keys

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Browser helper objects (BHO)

Winlogon Notify

Hook malware DLL as a handler that will be triggered by a given event

System services

Example: DLL injection into svchost.exe (Win32/Conficker)
Malware also often names its process “svchost.exe” to disguise itself

AppInit DLLs

Easy way to hook system APIs by allowing custom DLLs to be loaded into the address space of every interactive application (can be disabled using secure boot)

DLL Load-order (Windows)/LD_PRELOAD (Linux)

Exploit loader’s search order to load malicious DLLs

Trojanized binaries, kernel modification, module injection, …
Autoruns
Covert Malware Launching

IAT (Import Address Table) Hooking

Code patching
 Just overwrite exiting code with a JMP

DLL Injection
 E.g., CreateRemoteThread() + LoadLibrary()

Code injection
 More cumbersome: have to dynamically resolve any API dependencies (in the same way as regular shellcode does)

Process replacement
 Overwrite whole memory segments of a process
Evasion – “Stay under the radar”

Both anomaly and misuse detection systems can be evaded by breaking the detector’s assumptions

- Detectors rely on certain features
- Make those features look legitimate or at least non-suspicious

Many techniques

- Packing/mutation/polymorphism/metamorphisms
- Fragmentation
- Mimicry
- Rate adjustment (slow and stealthy vs. fast and noisy)
- Distribution and coordination (e.g., DoS vs. DDoS)
- Spoofing, stepping stones, redirection
 ...
Polymorphism

Used to evade content-based detection (AVs, IDS, …)

Known since the early 90’s from the virus scene

Each malware/attack instance is a different mutation of the original \(\rightarrow\) signature matching fails

_Might actually make an attack look more suspicious!

Different decryptor/key used in each attack instance
Packers and Unpacking

Goals

- AV evasion
- Payload compression
- Hinder analysis/reverse engineering

Typical steps

- Decrypt packed code (compression, encryption, …)
- Load code into memory (disk, same or section, heap, …)
- Resolve imports of original executable (automated or manual)
- Transfer control to original entry point

Virtualizers

- Turn x86 code into code of a random ISA that runs on an embedded VM

Many free and commercial packer/crypters/protectors

- UPX, PECompact, ASPack, Petite, WinUpack, Themida, …
Code Obfuscation (Metamorphism)

- **NOP interspersion**
 - inc ecx
 - dec ecx

- **Instruction substitution**
 - mov eax,0xF3
 - push 0xF3
 - pop eax

- **Block transposition**
 - sed -i 's/eax/ebx/g'

- **Register reassignment**
 - sed -i 's/eax/ebx/g'

- **Dead code insertion**
 - Opaque predicates, jump in the middle of instructions, stack frame manipulation, exception handling, …

Many more
Anti-debugging/Reverse Engineering

Make the life of malware analysts and automated malware analysis systems hard...

Obfuscate everything
 Obscure strings, IAT, function calls, code, …
 Erase headers from memory (anti-dumping)

Debugger detection
 Windows APIs (e.g., IsDebuggerPresent())
 Read TEB debugging flag
 Generate exceptions
 On-the-fly checksums of the code image (detect breakpoints)
 Timing checks (debuggers are slow)
 Many other techniques…
VM Detection and Environment-aware Malware

Evade automated malware analysis sandboxes

VMware artifacts

 VMware Tools, MAC address, BIOS vendor, …

Instruction inconsistencies: different behavior on bare metal vs. emulator/virtualized system

 cpuid, sidt, sgdt, sldt, smsw, …

Detect existing hooks/instrumentation

Detect user activity
Kernel-level Rootkits

Typically implemented as kernel modules/drivers

Modern OSes use signed drivers
 Install an existing signed driver with an exploitable vulnerability
 Sign malware with acquired/stolen certificate
 Exploit a kernel vulnerability

Hooking
 Interrupt Descriptor Table (IDT), System Descriptor Table
 Hooking (SSDT), IRP handlers, …
 Easy to detect

Code patching
 Detectable using checksumming
Covert Channels

Transfer information without being noticed
 Myriad ways to achieve this…

Hide in commonly used traffic
 HTTP, DNS, ICMP, …
 Protocol tunneling, packet field manipulation, size, timing, …

Contact only non-suspicious destinations
 Host C&C on Google, Amazon, …
 Use forums, twitter, comments, etc. for communication

Steganography
 Hide communication or exfiltrated data within images or other files

Many other mediums
 Radio/electrical signals, sounds, vibrations, temperature, …
Indicators of Compromise (IoCs)

Artifacts observed on a host or network that with high confidence indicate a computer intrusion

Host level
 - Hashes of malware executables/modules/files
 - Strings in malware binary
 - System-wide changes/behaviors

Network level
 - Resolved domains
 - Accessed IP addresses
 - URLs
 - Network request/packet content
I've got a bunch of virtual windows machines networked together, hooked up to an incoming pipe from the net. They execute email attachments, share files, and have no security patches.

Between them they have practically every virus.

There are mail trojans, warhol worms, and all sorts of exotic polymorphics. A monitoring system adds and wipes machines at random. The display shows the viruses as they move through the network, growing and struggling.

You know, normal people just have aquariums.

Good morning, blaster. Are you and W32.Welchia getting along?

Who's a good virus? You are! Yes, you are!