CSE331 Computer Security Fundamentals

9/28/2017 Public Key Cryptography

Michalis Polychronakis
Stony Brook University
Public Key Cryptography

Many algorithms with different purposes

One common property: pair of values, one public and one secret

Session key establishment

Exchange messages to create a shared secret key

Encryption

Anyone can encrypt a message using a recipient’s public key
Only the recipient can decrypt a message using their private key

No shared secret! Private key (secret) is stored only at one side

Digital signatures

Sign a message with a private key
Diffie–Hellman Key Exchange

Allows two parties to jointly establish a shared secret key over an insecure communication channel

The established key can then be used to encrypt subsequent communication using a symmetric key cipher

“New Directions in Cryptography” by Whitfield Diffie and Martin Hellman, 1976

Based on the discrete logarithm problem

\[3^{29} \mod 17 \quad easy \quad ?? \]

\[3^{??} \mod 17 \quad hard \quad 12 \]
Diffie–Hellman Key Exchange

Alice and Bob agree on a large (at least 1024 bit) prime number p and a base g — both public

- p is usually of the form $2q+1$ where q is also prime
- g is a generator of the multiplicative group of integers modulo p
 (for every x coprime to p there is a k such that $g^k \equiv x \mod p$)

Alice picks a secret (private) large random number a and sends to Bob $g^a \mod p$

Bob picks a secret large random number b and sends to Alice $g^b \mod p$

Alice calculates $s = (g^b \mod p)^a = g^{ba} \mod p$

Bob calculates $s = (g^a \mod p)^b = g^{ab} \mod p$

\[\{\text{shared key}\}\]
Alice

\[p = 23, \ g = 5 \]
\[a = 6 \]
\[5^6 \mod 23 = 8 \]

Bob

\[p = 23, \ g = 5 \]
\[b = 15 \]
\[5^{15} \mod 23 = 19 \]

Public transport

(assume that mixture separation is expensive)

\[19 \]
\[6 \]
\[19^6 \mod 23 = 2 \]

\[8 \]
\[15 \]
\[8^{15} \mod 23 = 2 \]
Man-in-the-Middle Attack

Alice and Bob share no secrets

\[g^a \mod p \rightarrow g^m \mod p \rightarrow g^m \mod p \rightarrow g^b \mod p \]

Shared key 1

Shared key 2

Mallory actively decrypts and re-encrypts all traffic

No authentication: Alice and Bob assume that they communicate directly

General problem: *need for a root of trust*
Symmetric Key Cryptography

Shared secret key

TOP SECRET MESSAGE

Encryption algorithm

01001100 10010011 00011101 01100111 01001000

Decryption algorithm

TOP SECRET MESSAGE

Unencrypted Message

Encrypted Message

Unencrypted Message
Public Key Cryptography

Receiver’s public key
- TOP SECRET MESSAGE
- Encryption algorithm
- 01001100 10010011 00011101 01100111 01001000

Receiver’s private key
- Decryption algorithm
- Unencrypted Message

Unencrypted Message
Advantages

No shared secrets
 Only private keys need to be kept secret, but they are never shared

Easier key management
 No need to transmit any secret key beforehand
 For n parties, n key pairs are needed (instead of $n(n-1)/2$ shared keys)

Provides both secrecy and authenticity

Disadvantages

More computationally intensive
 Encryption/decryption operations are 2–3 orders of magnitude slower than symmetric key primitives

About one order of magnitude larger keys

Key generation is more difficult
RSA

Named after its inventors: Rivest, Shamir, Adleman

Based on the assumption that factoring large numbers is hard

- Relatively easy to find two large prime numbers p and q
- No efficient methods are known to factor their product N

Variable key length

- Largest (publicly known) factored RSA modulus is 768-bit long
- That was in 2009: it took 2 years and many hundreds of machines
- It is believed that 1024-bit keys may already (or in the near future) be breakable by a sufficiently powerful attacker

2048-bit keys should be the absolute minimum

- For now (next decade or two)…
RSA

Choose two distinct large prime numbers p and q

Let $n = pq$ (modulus)

Select e as a relative prime to $(p - 1)(q - 1)$

Calculate d such that $de \equiv 1 \mod (p - 1)(q - 1)$

Public key $= (e, n)$

Private key $= d$

To encrypt m, calculate $c \equiv m^e \mod n$

Plaintext block must be smaller than the key length

To decrypt c, calculate $m \equiv c^d \mod n$

Ciphertext block will be as long as the key
RSA in Practice

RSA calculations are computationally expensive
 Two to three orders of magnitude slower than symmetric key primitives ➔ use RSA in combination with a symmetric key

Sending an encrypted message:
 Encrypt message with a random symmetric key
 Encrypt the symmetric key with recipient’s public key
 Transmit both the encrypted message and the encrypted key

Setting up an encrypted communication channel:
 Negotiate a symmetric key using RSA
 Use the symmetric key for subsequent communication

PKCS: Public-Key Cryptography Standards (#1–#15)
 Make different implementations interoperable
 Avoid various known pitfalls in commonly used schemes
Forward Secrecy

Threat: capture encrypted traffic now, use in the future
 Private keys may be compromised later on (e.g., infiltrate system)
 A cryptanalytic breakthrough may be achieved

FS: Ensure that even if current keys are compromised, past encrypted traffic cannot be compromised
 Generate random secret keys without using a deterministic algorithm
 Cannot read old messages
 Cannot forge a message and claim that it was sent in the past

Support
 IPsec, SSH, Off-the-Record messaging (OTR)
 TLS (Diffie–Hellman instead of RSA key exchange)

Note a panacea
 Ephemeral keys may be kept in memory for hours
 Server could be forced to record all session keys
 TLS session resumption needs careful treatment
Elliptic Curve Cryptography

Proposed in 1985, but not used until 15 years later

Relies on the intractability of a different mathematical problem: “elliptic curve discrete logarithm”

Main benefit over RSA: shorter key length

 E.g., a 256-bit elliptic curve public is believed to provide comparable security to a 3072-bit RSA public key

Endorsed by NIST

 Key exchange: elliptic curve Diffie–Hellman (ECDH)
 Digital signing: elliptic curve digital signature algorithm (ECDSA)
Q: What is the Commercial National Security Algorithm Suite?

A: The Commercial National Security Algorithm Suite is the suite of algorithms identified in CNSS Advisory Memorandum 02-15 for protecting NSS up to and including TOP SECRET classification. This suite of algorithms will be incorporated in a new version of the National Information Assurance Policy on the Use of Public Standards for the Secure Sharing of Information Among National Security Systems (CNSSP-15 dated October 2012). The Advisory

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA 3072-bit or larger</td>
<td>Key Establishment, Digital Signature</td>
</tr>
<tr>
<td>Diffie-Hellman (DH) 3072-bit or larger</td>
<td>Key Establishment</td>
</tr>
<tr>
<td>ECDH with NIST P-384</td>
<td>Key Establishment</td>
</tr>
<tr>
<td>ECDSA with NIST P-384</td>
<td>Digital Signature</td>
</tr>
<tr>
<td>SHA-384</td>
<td>Integrity</td>
</tr>
<tr>
<td>AES-256</td>
<td>Confidentiality</td>
</tr>
</tbody>
</table>
Cryptographic Hash Functions

Hash functions that are considered practically impossible to invert

Properties of an ideal cryptographic hash function
- Easy to compute the hash value for any given message
- Infeasible to generate a message that has a given hash
- Infeasible to modify a message without changing the hash
- Infeasible to find two different messages with the same hash

Many-to-one function: collisions can happen
Cryptographic Hash Function Properties

Pre-image resistance

Given a hash value h it should be computationally infeasible to find any input m such that $h = \text{hash}(m)$

Example: break a hashed password

Second pre-image resistance

Given m_1 it should be computationally infeasible to find m_2 such that $m_1 \neq m_2$ and \text{hash}(m_1) = \text{hash}(m_2)$

Example: forge an existing certificate

Collision Resistance

It should be computationally infeasible to find two different inputs m_1 and m_2 such that \text{hash}(m_1) = \text{hash}(m_2)$ (collision)

Example: prepare two contradicting versions of a contract
Birthday Paradox

How many people does it take before the odds are 50% or better of having...

...another person with the same birthday as you? 253

Second pre-image resistance

...two people with the same birthday? 23

Collision resistance
Uses of Cryptographic Hash Functions

Data integrity
Digital signatures
Message authentication
User authentication
Timestamping
Certificate revocation management
Common Hash Functions

MD5: 128-bit output

- 1993: Boer and Bosselaers, “pseudo-collision” of the MD5 compression function: 2 different IVs which produce an identical digest
- 1996: Dobbertin, collision of the MD5 compression function
- 2004: Wang, Feng, Lai, and Yu, collisions for the full MD5
- 2005: Lenstra, Wang, and de Weger, construction of two X.509 certificates with different public keys but same hash
- 2008: Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Wege, creating rogue CA certificates

Use it? NO, it’s unsafe

SHA-1: 160-bit output

- 2005: Rijmen and Oswald, attack on a reduced version of SHA1 (53 out of 80 rounds)
- 2005: Wang, Yao, and Yao, an improvement, lowering the complexity for finding a collision to 2^{63}
- 2006: Rechberger, attack with 2^{35} compression function evaluations
- 2015: Stevens, Karpman, and Thomas, freestart collision attack

Use it? Use SHA-256 or better instead
Message Authentication Codes (MACs)

Verify both message integrity and authenticity

Sender

Message

Secret Key

MAC Algorithm

MAC

Channel

Message

MAC

Receiver

Message

Secret Key

MAC Algorithm

MAC

MAC

= ?

Y

N

Message is authentic

Message has been altered

MAC = Message Authentication Code
MAC = H(key || message)

|| denotes concatenation

Problem: easy to append data to the message without knowing the key and obtain another valid MAC

Length-extension attack: calculate H(m₁ || m₂) for an attacker-controlled m₂ given only H(m₁) and the length of m₁

Keyed-hash message authentication code (HMAC)

HMAC(K, m) = H((K ⊕ opad) || H(K ⊕ ipad || m))

opad/ipad: outer/inner padding

Impossible to generate the HMAC of a message without knowing the secret key

Double nesting prevents various forms of length-extension attacks
Order of Encryption and MACing

Encrypted data usually must be protected with a MAC

Encryption alone protects only against passive adversaries

Different options:

MAC-and-Encrypt \(E(P) \| M(P) \)

No integrity of the ciphertext

MAC-then-Encrypt \(E(P \| M(P)) \)

No integrity of the ciphertext (have to decrypt it first)

Encrypt-then-MAC \(E(P) \| M(E(P)) \)

Preferable option – *always MAC the ciphertext*
Digital Signatures

Use RSA backwards:
 Sign (encrypt) with the private key
 Verify (decrypt) with the public key

Ownership of a private key turns it into a digital signature
 Anyone can verify that a message was signed by its owner
 Non-repudiation

Again, too expensive to sign the whole message
 Calculate a cryptographic hash of the message and sign the hash

What if a private key was stolen or deliberately leaked?
 All the signatures (past and future) of that signer become suspect
 The signer might know which signatures were issued legitimately, but there is no way for the verifier to distinguish them
Digital Signatures

Sender

Message

To be, or not to be, that is the question, whether tis nobler in the...

Message Digest Algorithm

Message Digest

Sender's Private Key

Encryption Algorithm

+"ɔ+\n\n\n−Ω:‘l’

|,;\c<<

Receiver

Message

To be, or not to be, that is the question, whether tis nobler in the...

Message Digest Algorithm

Message Digest

Sender's Public Key

Encryption Algorithm

+"ɔ+\n\n\n−Ω:‘l’

|,;\c<<

equal?

yes

Message transmitted correctly

no

Error! Message has been modified!

Encrypted Message Digest
Hashes vs. MACs vs. Digital Signatures

<table>
<thead>
<tr>
<th></th>
<th>Hash</th>
<th>MAC</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Authentication</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Non-repudiation</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Keys</td>
<td>None</td>
<td>Symmetric</td>
<td>Asymmetric</td>
</tr>
</tbody>
</table>

29
Public Key Authenticity

Authentication without confidence in the keys used is pointless

Need to gain confidence or proof that a particular public key is authentic

- It is correct and belongs to the person or entity claimed
- Has not been tampered with or replaced by an attacker

Different ways to establish trust

- TOFU: trust on first use (e.g., SSH)
- Web of trust – decentralized trust model (e.g., PGP)
- PKI: public key infrastructure (e.g., SSL)

(subject of future lecture)
Adi Shamir: Crypto is typically bypassed, not penetrated