CSE331 Computer Security Fundamentals

9/14/2017 Program Security

Michalis Polychronakis
Stony Brook University

Software Vulnerabilities
Program flaws can turn into exploitable vulnerabilities

Securing user-space applications is equally critical as
securing the OS

May run with superuser privileges: system daemons, setuid
programs, anything launched by the root account, ...

Non-privileged applications may be a stepping stone to full
system compromise & privilege escalation attacks

The OS is software too

Full system compromise may not even be needed (!)
User data is handled by user applications
Compromising an application may be just enough
Browsers, password managers, messaging apps, ...

Compilation and Linking e

Modular design is epi} —

file - hello i

indispensable for complex __— Il
app ications Assembly code

Multiple source code files and o

Aszsevhler

modules S

Object code file | Relocation ohject code

Static linking Lt % St e

All libraries and other N S—— Ly il

Execucable code -

components are compiled hello, hallo.are
together into a single H
executable Stored in secondary

storage such as hard
dizsk (hdd) as an
execahle imadge

Dynamic linking ————

Load | Puntime djects f maodules /
program [a process)

Libraries (defared lirding)

g

*IIIII

Shared libraries are loaded
separately when the program
iS invoked Process Lddress

Space

Dynamic Linking

The compiler and linker
cannot know the addresses
of imported functions

The linker creates an import
table with all the used
functions from external
modules

The loader initializes the
import table after modules
are mapped into their final
memory locations

Function addresses are found
by going over the exporting
module’s export table

ImportingModule. EXE

SomeModule.DLL

Export Section

Function1
Function2

Code Section

Export Section

Function1
Function2

Function3

AnotherModule.DLL

Export Section

Code Section

Function
Function2
Function3

Import Section

SomeModule.DLL:
Function1
Function2

AnotherModule.DLL:
Function4
Function 9

Code Section

Types of Software Vulnerabilities

Vast number of different types of programming flaws,
weaknesses, and other oversights

Many different corresponding exploitation techniques

Various classifications according to: type of bug, exploitation
strategy, SDL phase, programming language, system layer, ...

Example: MITRE's Common Weakness Enumeration
(CWE) classification

|

123 - Write-what-where Condition

125 - Out-of-bounds Read

/b 466 - Return of Pointer Value Outside of Expected Range / 124 - Buffer Underwrite ('Buffer Underflow’)
> | 786- Access of Memory Location Before Start of Buffer » | 127- Buffer Under-read
> | 787- Qut-of-bounds Write / 121 - Stack-based Buffer Overflow
—————— | 788- Access of Memory Location After End of Buffer » | 122- Heap-based Buffer Overflow
T | 805- Buffer Access with Incorrect Length Value \ 126 - Buffer Over-read
\> 822 - Untrusted Pointer Dereference \ 806 - Buffer Access Using Size of Source Buffer
\b 823 - Use of Out-of-range Pointer Offset
\b 824 - Access of Uninitialized Pointer

. | 415- Double Free
\b 825 - Expired Pointer Dereference

T —————— | 416 Use After Free

—_— | LA WHPTNEE WA T TV TR |

‘ 754 - Improper Check fior Unusual or Exceptional Conditions ‘
—» | 504 - Unexpected Status Code or Refum Value ‘
——— | 390 - Detection of Error Condition Without Action ‘
l 755« Improger Handling of Exceptional Conditions I
E—— ‘ 544 - Wissing Standardized Error Handling Mechanism ‘
. | 12. ASP.MET Misconfiguration: Mizsing Cuztom Error Page
756 - Missing Custem Error Page ‘

T ‘ T- J2EE Misconfiguration: Missing Custom Error Page

‘ 120 - Buffer Copy without Ghecking Size of Input ('Classic Bufier Overflow') ‘

‘ 123 - Write-what-where Condition ‘
| 125- Cut-of-bounds Read ‘
‘ 466 - Return of Pointer Value Ouiside of Expected Range ‘ / | 124 - Buffer Underwrite {Butfer Underflow’)
‘ 786 - Access of Memary Location Befora Start of Buffer ‘ —_— ‘ 127 - Buffer Under-read
| 787 - Out-of-bounds Write | | 121- Stack-based Bufter Ovarflow
o 119~ Impraper Restriction of DpaBr.:ll[nan:s within the Bounds of a Memory
| THE - Accass of Memary Location After End of Buffer | —_— | 122 Heap-based Buffer Overflow
‘ 805 - Bufier Accese with Incorrect Length Valua ‘ | 126 - Buffer Over-read
l B22- Untrusted Pointer Deraferance l \ | B0OG - Buffer Access Using Size of Sourca Buffer
823- Usz of Qut-of-range Pointer Offeet |
‘ 824 - Access of Uninitialized Pointer |
S | 415- Double Frea
‘ 825 - Expired Pointer Dereferance |
T | 416 - Use After Free
| 103 - Struts: Incomplate vakdate() Method Dadinition
| 115 - Misinterpretation of Input | | 104- Siruts: For Baan Does Not E Fallation Gl

| 253 - Incarract Chack of Function Return Valua

//——b ‘ 437 - Incomplete Model of Endpoint Features

//—- l 436 - Intarpretation Canflict I I, | = [Inmmretasmn mm;[r Howe SIE Qlioqwe ‘ 04~ Missing Criical Stag in Authentication
action Error —_— | 433 Benavioral Change in New Version or Envirenment ‘ | 650~ Trusting HTTP Permission M & ontha § ¢ Side ‘ 325 Missing Required Cryptograghsc Step
733 - Compiler Optimization Rag:lgnrmnduﬁcmlnn of Security-critical ‘ 14- Compiler Removal of Code to Clear Buffers | 358 - Improperly Implemented Security Check for Standard

D | ATE Tindaknad Babhauinr inr lnead tn ADI|

£
=
=
%
&
S
3
~
©
=
©
o
~
>
=
o
v
&
=
€
9]
2
O
-~
=
v
o3
=
=
=
:
w
o
=
=
@

Another example: OWASP Top 10 (2017 rc1)

“The ten most critical web application security risks”
A1 - Injection

A2 - Broken authentication and session management
A3 — Cross-site scripting (XSS)

A4 - Broken access control

A5 - Security misconfiguration

A6 — Sensitive data exposure

A7 - Insufficient attack protection

A8 — Cross-site request forgery (CSRF)

A9 - Using components with known vulnerabilities
A10 - Unprotected APIs

Some Basic Types of Software Vulnerabilities

Memory corruption: stack/heap buffer overflow, dangling
pointers, ...

Arithmetic errors: arithmetic overflow, signedness, array
indexing, ...

Race conditions: synchronization issues, TOCTTOU bugs, ...

Unvalidated input: format strings, SQL injection, command
injection, ...

Confused deputy: CSRF, clickjacking, ...
Side channels: timing, power, temperature, ...

Program logic/design/protocol flaws

Memory-related Errors

Very broad class of memory-related vulnerabilities
One of the most important and widely exploited

In contrast to memory safe languages, C and C++ do
not safeguard memory against illegal accesses

Under unexpected conditions, attackers may be able to read
from or write to arbitrary memory locations

Lower-level languages & performance

Operating systems, core services, desktop applications,
embedded systems, and many other programs are still
written in C/C++

Arithmetic Overflow
Finite number of bits to represent integers

Let’s assume a 32-bit system

Integers are expressed in two’s complement notation

Signed integers

Positive numbers: 0x00000000 - Ox7fffffff (0 to 23'-1)
Negative numbers: 0x80000000 - Oxffffffff (-(2°') to-1)

Unsigned integers
0x00000000 — OxfFffffff (0 to 232-1)

Both can overflow or underflow

“Only the first 5 clients can connect”

connections = 0;

/* new connection attempt */

connections++;

if (connections < 5) { How can an attacker connect
grant_access(); even if there are already 5

} established connections?

else {

deny access();

¥

“Only the first 5 clients can connect”

connections = 0;

/* new connection attempt */

if (connections < 5) { <«—— Upperbound of
connections++; 5 connections is

} enforced
if (connections < 5) {

grant_access();
}
else {

deny access();

¥

Buffer Overflow

C does not provide any automatic bounds checking
capability for allocated chunks of memory

Arrays: can be indexed past the last item
Pointers: can point outside the allocated object

Care must be taken when writing user-supplied or
user-derived data into memory

More data than expected may be supplied & overflow
The program should perform explicit bounds checks

An attacker can intentionally overflow the buffer and
access out-of-bounds memory

Modify critical control or program data (overwrite)
Leak sensitive information (overread)

Simple overflow example: unbounded string copy

main(argc, *argv[]) {
buf[16];
strcpy(buf, argv[l]);
printf("%s\n", buf);
return 0;

}

$./overflow AAAAAAAAAAAA

AAAAAAAAAAAAAAAA
$./overflow AAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAA
Segmentation fault (core dumped)

stackI

OXFFFFFFFF l

buf[16]

saved EBP

return address

argl

arg2

stackI

OXFFFFFFFF l

saved EBP

return address

argl

arg2

18

stackI

OXFFFFFFFF l

AW CEAVCEAVCEAVCE
\x65\x65\x65\x65
AWCEAVCEAVCEAV G
\x65\x65\x65\x65
AV GCEAV CEAV CEAV G
\X65\x65\x65\x65

\WCEAV CEAV GEAVGE)
\WGCEAV CEAV GEAVGE)

Overflow

19

Safer way

#define BUF_SIZE

main(argc, *argv[]) {
buf[BUF SIZE];
strncpy(buf, argv[1l], BUF_SIZE);
printf("%s\n", buf);
return 0;

¥

What can the attacker do? Overwrite control data

stackI

OXFFFFFFFF l

\x0f\x6a\xe8\x59
\XFFAXFF\XFF\xff
\x5e\xc1\x46\x80
\WEAVCEAVGIAVE]”
\Xx0b\x0e\xfa\x02
\Xx4b\x45\x49\x46

\x52\x4a\x4d\x4f

argl

arg2

Shellcode injection

spawn shell
listen for connections
add user account

download and execute
malware

(next lecture)

What can the attacker do? Overwrite program data

main(argc, *argv[]) {
authenticated = 9;
password[16];
gets(password);
if (check password(password) == TRUE) {
authenticated = 1;

}
authenticated;
}
$./authenticate AAAAAAAAAAAAAAAA && echo $?
5
$

./authenticate AAAAAAAAAAAAAAAAA && echo $?

$./authenticate “printf "AAAAAAAAAAAAAAAA\XO1"~ && echo $°?
1

stackI

OXFFFFFFFF l

buf[16]

authenticated

saved EBP

return address

argl

arg2

stackI

OXFFFFFFFF l

AW CEAVCEAV GEAVGE)
\WCEAV CEAV GEAVGE)

\WCEAV CEAV GEAVGE)

\x65\x65\x65\x65
\x01

saved EBP

return address

argl

arg2

What can the attacker do? Leak data

';? Heartbleed Bug ®

& - C [Y heartbleed.com I

The Heartbleed Bug A

The Heartbleed Bug is a serious vulnerzability in the popular OpenSsL
cryptographic software library. This weakness allows stealing the

| CVE-2014-0160: Missing bounds o

| check before a memcpy() call that
71 uses non-sanitized user inputas |of
‘I the length parameter.

54
Providers and 1o encrypt the trariic, ine Names and passwords or ine
users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to
impersonate services and users.

T

What leaks in practice? How to stop the leak?

We have tested some of our own services from As long as the vulnerable version of OpenSSLisinuse
attacker's perspective. We attacked ourselves from it can be abused. Fixed OpenSSL has been released
outside, without leaving a trace. Without using any and now it has to be deployed. Operating system
privileged information or credentials we were able vendors and distribution, appliance vendors,

steal from ourselves the secret keys used for our independent software vendors have to adopt the fix

R e N T o e [e P Rey S P [y S P P O g R A [ST I [S

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STILL THERE?
IFS0, REPH)PGTHW (ELEWEREJ) ser Meg wants these 6 letters: POTATO.

O
O

o

ser Meqg wants these 6 letters: POTATO.

O
O
o)

@l

© XKCD - https://xkcd.com/1354/

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY “BIRD" (4 LETTERS).

f)

Hﬂ"'?-"":"“. these 4 letters: BIRD.
t? f

© XKCD - https://xkcd.com/1354/

SERVER, ARE YOU STILL THERE? :
IF S0, REPLY "HAT" (sw m) Meg wants these 500 letters: HAT.

#

Meg wants these 500 letters: HAT.

HAT. Lucas requests the "missed comme
ctions” page. Eve (administrator) wan
ts to set server’'s master key to "148
350385347, Isabel wants pages about. '
Wmtwmlmq User Karen
wants to changc account msmor’d to '

© XKCD - https://xkcd.com/1354/

Pointer manipulation

vulnerable(*arg,
val = 0;
*ptr = NULL;
buf[128];

memcpy(buf, arg, len);
*ptr = val,;

len) {

“Arbitrary write” capability:
The attacker can write
controlled data into a
controlled location

Heap-based Overflows

main(argc, *argv[]) {

char *p, *q;

p = malloc(1624);

g = malloc(1624);
strcpy(p, argv[1]);
free(q);

free(p);

return 0;

Arbitrary write when free() is
called by carefully corrupting
heap metadata

free space

bwd_ptr

fwd_ptr

size

prev_size

user data

size

prev_size

free space

bwd_ptr

fwd_ptr

size

prev_size

Format String Vulnerabilities

The printf () family of functions accept a format
string denoting how a variable will be displayed

printf("%s", str) = printsstrvariable as string
printf("%d", num) = prints num as a decimal value
printf("%x", num) = prints num as a hexadecimal value

Format strings can also write to memory

printf("ABCD%n", &i) = write the number of bytes output
so far to the memory address of the first argument

What if...

The programmer does not supply a format string?

Fewer arguments are passed than the number of format string
parameters?

Simple format string error example

main(argc, *argv[]) {
printf("Input: ");
printf(argv[l]);
printf("\n");
}

$./fmt test
Input: test

$./fmt "%O8x %08x %08x %O8x"
input: b773c080 0804846b b7721ff4 08048460

$./fmt $(printf "\x18\xa@\x04\x08")%XHX%X%X%N

Safer way

main(argc, *argv[]) {
printf("Input: ");
printf("%s", argv[1l]);
printf("\n");
}

Other Memory-related Exploitable Conditions
NULL-termination errors

Dangling pointers

NULL pointer dereferences

String truncation

Single-byte overwrite

Off-by-one accesses

Double free

Race Conditions

Situations where the behavior of the program
depends on the timing of some event

Critical section

Opens up a window of opportunity for the attacker

Race conditions occur in many different contexts

Multi-threaded programs with different threads operating on the
same data

Distributed applications that perform multi-step transactions

Time of check to time of use (TOCTTOU): changes may happen
between checking a condition and using the results of the check

Remember the Sendmail vulnerability?

Filesystem race condition example

// setuid program

if (access("file”, W OK) !=0) { // access() checks the
exit(1l); // real uid (not eid)

< ln /etc/password file

fd = open(“file", O _WRONLY);
write(fd, buffer, sizeof(buffer)); // write() modifies
// /etc/passwd

iOS 8.1 Hardware-assisted Screenlock Bruteforce

Successfully brute-force device PIN even if “wipe out
after 10 failed attempts” is enabled (!)

Vulnerable code:
1. Display“incorrect pin” message

« Power off the device
2. ++attempts;

Correct code:
1. ++attempts; // gets written to flash memory

2. Display “incorrect pin” message

R . o s

Side Channels: TENEX Password Guessing Bug

Vulnerable password checking routine
Check each character in succession
Report failure on the first mismatched character

Attack: precisely align the password buffer across two pages
Place the first password character as the last byte of the first page

Ensure that second page is unmapped
Try all first characters until getting a page fault & correct guess!
Shift by one character and repeat

128" 2 128n

First Page Second Page

Program Logic Flaws: GOTO FAIL

iOS 7.0.6 signature verification error

Legitimate-looking TLS certificates with mismatched private keys
were unconditionally accepted...

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail; <= 21121217

if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)

goto fail; /

Check never executed

— fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

