Brain Facts and Figures

These data were obtained from several textbooks. All numbers are for humans unless otherwise indicated.

Table of Contents

Brain

Neuron

Spinal Cord

Sensory Apparatus

Blood Supply

Brain

Average Brain Weights (in grams)

<table>
<thead>
<tr>
<th>Species</th>
<th>Weight (g)</th>
<th>Species</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adult human</td>
<td>1,300 - 1,400</td>
<td>newborn human</td>
<td>350 - 400</td>
</tr>
<tr>
<td>sperm whale</td>
<td>7,800</td>
<td>fin whale</td>
<td>6,930</td>
</tr>
<tr>
<td>elephant</td>
<td>4,783</td>
<td>humpback whale</td>
<td>4,675</td>
</tr>
<tr>
<td>gray whale</td>
<td>4,317</td>
<td>killer whale</td>
<td>5,620</td>
</tr>
<tr>
<td>bowhead whale</td>
<td>2,738</td>
<td>pilot whale</td>
<td>2,670</td>
</tr>
<tr>
<td>bottle-nosed dolphin</td>
<td>1,500 - 1,600</td>
<td>walrus</td>
<td>1,020 - 1,126</td>
</tr>
<tr>
<td>Pithecanthropus Man</td>
<td>850 - 1,000</td>
<td>camel</td>
<td>762</td>
</tr>
<tr>
<td>giraffe</td>
<td>680</td>
<td>hippopotamus</td>
<td>582</td>
</tr>
<tr>
<td>leopard seal</td>
<td>542</td>
<td>horse</td>
<td>532</td>
</tr>
<tr>
<td>Animal</td>
<td>Brain Weight</td>
<td>Animal</td>
<td>Brain Weight</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>polar bear</td>
<td>498</td>
<td>gorilla</td>
<td>465 - 540</td>
</tr>
<tr>
<td>cow</td>
<td>425-458</td>
<td>chimpanzee</td>
<td>420</td>
</tr>
<tr>
<td>orangutan</td>
<td>370</td>
<td>California sea lion</td>
<td>363</td>
</tr>
<tr>
<td>manatee</td>
<td>360</td>
<td>tiger</td>
<td>263.5</td>
</tr>
<tr>
<td>lion</td>
<td>240</td>
<td>grizzly bear</td>
<td>234</td>
</tr>
<tr>
<td>pig</td>
<td>180</td>
<td>jaguar</td>
<td>157</td>
</tr>
<tr>
<td>sheep</td>
<td>140</td>
<td>baboon</td>
<td>137</td>
</tr>
<tr>
<td>rhesus monkey</td>
<td>90-97</td>
<td>dog (beagle)</td>
<td>72</td>
</tr>
<tr>
<td>aardvark</td>
<td>72</td>
<td>beaver</td>
<td>45</td>
</tr>
<tr>
<td>shark (great white)</td>
<td>34</td>
<td>shark (nurse)</td>
<td>32</td>
</tr>
<tr>
<td>cat</td>
<td>30</td>
<td>porcupine</td>
<td>25</td>
</tr>
<tr>
<td>squirrel monkey</td>
<td>22</td>
<td>marmot</td>
<td>17</td>
</tr>
<tr>
<td>rabbit</td>
<td>10-13</td>
<td>platypus</td>
<td>9</td>
</tr>
<tr>
<td>alligator</td>
<td>8.4</td>
<td>squirrel</td>
<td>7.6</td>
</tr>
<tr>
<td>opossum</td>
<td>6</td>
<td>flying lemur</td>
<td>6</td>
</tr>
<tr>
<td>fairy anteater</td>
<td>4.4</td>
<td>guinea pig</td>
<td>4</td>
</tr>
<tr>
<td>ring-necked pheasant</td>
<td>4.0</td>
<td>hedgehog</td>
<td>3.35</td>
</tr>
<tr>
<td>tree shrew</td>
<td>3</td>
<td>fairy armadillo</td>
<td>2.5</td>
</tr>
<tr>
<td>owl</td>
<td>2.2</td>
<td>grey partridge</td>
<td>1.9</td>
</tr>
<tr>
<td>rat (400 g body weight)</td>
<td>2</td>
<td>hamster</td>
<td>1.4</td>
</tr>
<tr>
<td>elephant shrew</td>
<td>1.3</td>
<td>house sparrow</td>
<td>1.0</td>
</tr>
<tr>
<td>european quail</td>
<td>0.9</td>
<td>turtle</td>
<td>0.3-0.7</td>
</tr>
<tr>
<td>bull frog</td>
<td>0.24</td>
<td>viper</td>
<td>0.1</td>
</tr>
<tr>
<td>goldfish</td>
<td>0.097</td>
<td>green lizard</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Reference for many of these brain weights:

1981.

% brain of total body weight (150 pound human) = 2%
Average brain width = 140 mm
Average brain length = 167 mm
Average brain height = 93 mm

Intracranial contents by volume (1,700 ml, 100%): brain = 1,400 ml (80%); blood = 150 ml (10%); cerebrospinal fluid = 150 ml (10%) (from Rengachary, S.S. and Ellenbogen, R.G., editors, *Principles of Neurosurgery*, Edinburgh: Elsevier Mosby, 2005)

Average number of neurons in the brain = 100 billion
Number of neurons in *octopus* brain = 300 million (from *How Animals See*, S. Sinclair, 1985)
Number of neurons in *Aplysia* nervous system = 18,000-20,000
Number of neurons in each segmental ganglia in the *leech* = 350
Volume of the brain of a *locust* = 6mm3 (from *The Neurobiology of the Insect Brain*, Burrows, M., 1996)

Ratio of the volume of grey matter to white matter in the cerebral hemispheres (50 yrs. old) = 1.1 (Miller et al., 1980)
Ratio of the volume of grey matter to white matter in the cerebral hemispheres (100 yrs. old) = 1.5 (Miller et al., 1980)
% of cerebral oxygen consumption by white matter = 6%
% of cerebral oxygen consumption by gray matter = 94%

Average number of glial cells in brain = 10-50 times the number of neurons (New research suggests the neuron-to-glia ratio may be much smaller, closer to 1:1)

Number of neocortical neurons (males) = 22.8 billion (Pakkenberg et al., 1997; 2003)
Average loss of neocortical neurons = 85,000 per day (~31 million per year) (Pakkenberg et al., 1997; 2003)
Average loss of neocortical neurons = 1 per second (Pakkenberg et al., 1997; 2003)
Average number of neocortical glial cells (young adults) = 39 billion (Pakkenberg et al., 1997; 2003)
Average number of neocortical glial cells (older adults) = 36 billion (Pakkenberg et al., 1997; 2003)
Length of myelinated nerve fibers in brain = 150,000-180,000 km (Pakkenberg et al., 1997; 2003)
Number of synapses in cortex = 0.15 quadrillion (Pakkenberg et al., 1997; 2003)
Difference number of neurons in the right and left hemispheres = 186 million MORE neurons on left side than right side (Pakkenberg et al., 1997; 2003)

<table>
<thead>
<tr>
<th></th>
<th>Proportion by Volume (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rat</td>
</tr>
<tr>
<td>Cerebral Cortex</td>
<td>31</td>
</tr>
<tr>
<td>Diencephalon</td>
<td>7</td>
</tr>
<tr>
<td>Midbrain</td>
<td>6</td>
</tr>
<tr>
<td>Hindbrain</td>
<td>7</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>10</td>
</tr>
<tr>
<td>Spinal Cord</td>
<td>35</td>
</tr>
</tbody>
</table>

Composition of Brain and Muscle

<table>
<thead>
<tr>
<th></th>
<th>Skeletal Muscle (%)</th>
<th>Whole Brain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>75</td>
<td>77 to 78</td>
</tr>
<tr>
<td>Lipids</td>
<td>5</td>
<td>10 to 12</td>
</tr>
<tr>
<td>Protein</td>
<td>18 to 20</td>
<td>8</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Soluble organic substances</td>
<td>3 to 5</td>
<td>2</td>
</tr>
<tr>
<td>Inorganic salts</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Total surface area of the cerebral cortex = 2,500 cm² (2.5 ft²; A. Peters, and E.G. Jones, Cerebral Cortex, 1984)

Total surface area of the cerebral cortex (lesser shrew) = 0.8 cm²
Total surface area of the cerebral cortex (rat) = 6 cm²
Total surface area of the cerebral cortex (cat) = 83 cm²
Total surface area of the cerebral cortex (African elephant) = 6,300 cm²
Total surface area of the cerebral cortex (Bottlenosed dolphin) = 3,745 cm² (S.H. Ridgway, The Cetacean Central Nervous System, p. 221)
Total surface area of the cerebral cortex (pilot whale) = 5,800 cm²
Total surface area of the cerebral cortex (false killer whale) = 7,400 cm²

Total number of synapses in cerebral cortex = 60 trillion (yes, trillion) (from G.M. Shepherd, The Synaptic Organization...

Percentage of total cerebral cortex volume (human): frontal lobe = 41%; temporal lobe = 22%; parietal lobe = 19%; occipital lobe = 18%. (Caviness Jr., et al. Cerebral Cortex, 8:372-384, 1998.)

Number of cortical layers = 6

 Thickness of cerebral cortex = 1.5-4.5 mm

 Thickness of cerebral cortex (Bottlenosed dolphin) = 1.3-1.8 mm (S.H. Ridgway, The Cetacean Central Nervous System, p. 221)

EEG - beta wave frequency = 13 to 30 Hz
EEG - alpha wave frequency = 8 to 13 Hz
EEG - theta wave frequency = 4 to 7 Hz
EEG - delta wave frequency = 0.5 to 4 Hz

World record, time without sleep = 264 hours (11 days) by Randy Gardner in 1965. Note: In Biopsychology (by J.P.J. Pinel, Boston: Allyn and Bacon, 2000, p. 322), the record for time awake is attributed to Mrs. Maureen Weston. She apparently spent 449 hours [18 days, 17 hours] awake in a rocking chair. The Guinness Book of World Records [1990] has the record belonging to Robert McDonald who spent 453 hours, 40 min in a rocking chair.

Time until unconsciousness after loss of blood supply to brain = 8-10 sec

Time until reflex loss after loss of blood supply to brain = 40-110 sec

Rate of neuron growth (early pregnancy) = 250,000 neurons/minute

Length of spiny terminals of a Purkinje cell = 40,700 micron

Number spines on a Purkinje cell dendritic branchlet = 61,000

Surface area of cerebellar cortex = 50,000 cm² (from G.M. Shepherd, The Synaptic Organization of the Brain, 1998, p. 255)

Number of Purkinje cells = 15-26 million

Number of synapses made on a Purkinje cell = up to 200,000

Weight of hypothalamus = 4 g

Volume of suprachiasmatic nucleus = 0.3 mm³

Number of fibers in pyramidal tract above decussation = 1,100,000

Number of fibers in corpus callosum = 250,000,000

Area of the corpus callosum (midsagittal section) = 6.2 cm²

<table>
<thead>
<tr>
<th>Species</th>
<th>Cerebellum Weight (grams)</th>
<th>Body Weight (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>0.09</td>
<td>58</td>
</tr>
<tr>
<td>Bat</td>
<td>0.09</td>
<td>30</td>
</tr>
<tr>
<td>Flying Fox</td>
<td>0.3</td>
<td>130</td>
</tr>
<tr>
<td>Pigeon</td>
<td>0.4</td>
<td>500</td>
</tr>
<tr>
<td>Guinea Pig</td>
<td>0.9</td>
<td>485</td>
</tr>
<tr>
<td>Squirrel</td>
<td>1.5</td>
<td>350</td>
</tr>
<tr>
<td>Chinchilla</td>
<td>1.7</td>
<td>500</td>
</tr>
<tr>
<td>Rabbit</td>
<td>1.9</td>
<td>1,800</td>
</tr>
<tr>
<td>Hare</td>
<td>2.3</td>
<td>3,000</td>
</tr>
<tr>
<td>Cat</td>
<td>5.3</td>
<td>3,500</td>
</tr>
<tr>
<td>Dog</td>
<td>6.0</td>
<td>3,500</td>
</tr>
</tbody>
</table>
Composition of Serum and Cerebrospinal Fluid (CSF)

<table>
<thead>
<tr>
<th></th>
<th>CSF</th>
<th>Serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (%)</td>
<td>99</td>
<td>93</td>
</tr>
<tr>
<td>Protein (mg/dl)</td>
<td>35</td>
<td>7000</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Osmolarity (mOsm/l)</td>
<td>295</td>
<td>295</td>
</tr>
<tr>
<td>Na (meq/l)</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>K (meq/l)</td>
<td>2.8</td>
<td>4.5</td>
</tr>
<tr>
<td>Ca (meq/l)</td>
<td>2.1</td>
<td>4.8</td>
</tr>
<tr>
<td>Mg (meq/l)</td>
<td>0.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Cl (meq/l)</td>
<td>119</td>
<td>102</td>
</tr>
<tr>
<td>pH</td>
<td>7.33</td>
<td>7.41</td>
</tr>
</tbody>
</table>

Number of cranial nerves = 12

I- olfactory

II- optic

Number of fibers in human optic nerve = 1,200,000
Number of fibers in cat optic nerve = 119,000
Number of fibers in albino rat optic nerve = 74,800

III- oculomotor

Number of fibers in oculomotor nerve = 25,000-35,000

IV- troclear

Number of fibers in troclear nerve = 2,000-3,500
Number of neurons in nucleus of the troclear nerve = 2,000-3,500

V- trigeminal

Number of fibers in motor root of trigeminal nerve = 8,100
Number of fibers in sensory root of trigeminal nerve = 140,000

VI- abducens

Number of fibers in abducens nerve (at exit from brain stem) = 3,700

VII- facial

Number of fibers in facial nerve (at exit from brain stem) = 9,000-10,000
Length of nucleus of the facial nerve = 2 to 5.6 mm
Number of neurons in nucleus of the facial nerve = 7,000

VIII-vestibulocochlear
IX- glossopharyngeal
X- vagus

Length of dorsal motor nucleus of the vagus nerve = 10 mm

XI- spinal accessory
XII- hypoglossal

Number of neurons in nucleus of the hypoglossal nerve = 4,500-7,500
Length of nucleus of the hypoglossal nerve = 10 mm

Spinal Cord

Length of human spinal cord = 45 cm (male); 43 cm (female)
Length of human vertebral column (male) = 71 cm
Length of human vertebral column (female) = 61 cm
Length of cat spinal cord = 34 cm
Length of rabbit spinal cord = 18 cm
Length of the filum terminale = 15 cm

Cross sectional area of the spinal cord (C2 level) = 110 mm2
Cross sectional area of the spinal cord (C4 level) = 122 mm2
Cross sectional area of the spinal cord (C5 level) = 78 mm²
Cross sectional area of the spinal cord (C7 level) = 85 mm²

Weight of human spinal cord = 35 g
Weight of rabbit spinal cord = 4 g

Weight of rat spinal cord (400 g body weight) = 0.7 g
Maximal circumference of cervical enlargement = 38 mm
Maximal circumference of lumbar enlargement = 35 mm
Pairs of Spinal Nerves = 31
Number of spinal cord segments (human)= 31

- 8 cervical segments
- 12 thoracic segments
- 5 lumbar segments
- 5 sacral segments
- 1 coccygeal segment

Number of Spinal Cord segments (rat)= 34

- 8 cervical segments
- 13 thoracic segments
- 6 lumbar segments
- 4 sacral segments
- 3 coccygeal segments

Sensory Apparatus

Audition

Length of the eustachian tube = 3.5 to 3.9 cm (*Hearing, Its Physiology and Pathophysiology*, A.R. Moller, San Diego, Academic Press, 2000.)

Number of hair cells in cochlea = 3,500 inner hair cells; 12,000 outer hair cells (*Hearing, Its Physiology and Pathophysiology*, A.R. Moller, San Diego, Academic Press, 2000.)

Number of neurons in cochlear nuclei = 8,800 (Northern, J.L. and Downs, M.P., Hearing in Children, 5th edition, Philadelphia: Lippincott Williams & Wilkins, 2002.)

Number of neurons in inferior colliculus = 392,000 (Northern, J.L. and Downs, M.P., Hearing in Children, 5th edition, Philadelphia: Lippincott Williams & Wilkins, 2002.)

Number of neurons in medial geniculate body = 570,000

Number of neurons in auditory cortex = 100,000,000

Hearing Range (young adult human) = 20 to 20,000 Hz
Hearing Range (elderly human) = 50 to 8,000 Hz (*Guyton, A.C., Textbook of Medical Physiology*, 1986)

Hearing Range (rat) = 1,000 to 50,000 Hz
Hearing Range (cat) = 100 to 60,000 Hz
Hearing Range (dolphin) = 200 to 150,000 Hz
Hearing Range (elephant) = 1 to 20,000 Hz
Hearing Range (goldfish) = 5 to 2,000 Hz
Hearing Range (moth, noctuid) = 1,000 to 240,000 Hz
Hearing Range (mouse) = 1,000 to 100,000 Hz
Hearing Range (sea lion) = 100 to 40,000 Hz
Most sensitive range of human hearing = 1,000-4,000 Hz
Length of external auditory meatus (ear canal) = 2.7 cm

Diameter of external auditory meatus (ear canal)= 0.7 cm
Weight of malleus = 23 mg; length of malleus = 8-9 mm
Weight of incus = 30 mg; dimensions of incus = 5 mm by 7 mm
Weight of stapes = 3-4 mg; dimensions of stapes = 3.5 mm high, 3 mm long, 1.4 mm wide

Length of cochlea = 35 mm
Width of cochlea = 10 mm
Number of turns in the cochlea = 2.2-2.9
Length of basilar membrane = 25-35 mm
Auditory Pain Threshold = 130 db
Threshold for hearing damage = 90 db for an extended period of time

<table>
<thead>
<tr>
<th>Decibels</th>
<th>Sound</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>Rocket launching pad</td>
</tr>
<tr>
<td>140</td>
<td>Jet plane</td>
</tr>
<tr>
<td>140</td>
<td>Gunshot blast</td>
</tr>
<tr>
<td>120</td>
<td>Automobile horn</td>
</tr>
<tr>
<td>130</td>
<td>Pain threshold</td>
</tr>
<tr>
<td>120</td>
<td>Discomfort</td>
</tr>
<tr>
<td>90</td>
<td>Subway</td>
</tr>
<tr>
<td>80</td>
<td>Noisy Restaurant</td>
</tr>
<tr>
<td>75</td>
<td>Busy traffic</td>
</tr>
<tr>
<td>66</td>
<td>Normal conversation</td>
</tr>
<tr>
<td>50</td>
<td>Average home</td>
</tr>
<tr>
<td>30</td>
<td>Soft whisper</td>
</tr>
</tbody>
</table>

Taste

Total number of human taste buds (tongue, palate, cheeks) = 10,000
Number of taste buds on the tongue = 9,000
Height of taste bud = 50-100 microns (From: Farbman, A.I., Taste Bud, in G. Adelman, eds., Encyclopedia of Neuroscience, 1987)
Diameter of taste bud = 30-60 microns (From: Farbman, A.I.)
Number of receptors on each taste bud = 50-150 (Boron, W.F. and Boulpaep, E.L., Medical Physiology. A Cellular and Molecular Approach, Philadelphia: Saunders, 2003)
Diameter of taste receptor = 10 micron
Diameter of taste fiber = less than 4 micron
Taste threshold for quinine sulfate = 3.376 mg/liter water

Smell

Number of rabbit olfactory receptor cells = 100 million
Number of dog olfactory receptor cells = 1 billion
Surface area of olfactory epithelium (contains olfactory receptor cells) in humans = 10 cm² (Bear, M.F., Connors, B.W. and Pradiso, M.A., Neuroscience: Exploring the Brain, 2nd edition, Baltimore: Lippincott Williams and Wilkins, 2001, p. 269)
Thickness of olfactory epithelium mucous layer = 20-50 microns. (Boron and Boulpaep, 2003)
Diameter of olfactory receptor axons = 0.1-0.2 micron
Diameter of distal end olfactory receptor cell = 1 micron
Diameter of olfactory receptor cell = 40-50 micron
Number of cilia per olfactory receptor cell = 10-30
Length of cilia on olfactory receptor cell = 100-150 micron
Concentration for detection threshold of musk = 0.00004 mg/liter air

Vision

Length of eyeball (newborn) = 16.5 mm (from Riordan-Eva and Whitcher, 2008)
Volume of eyeball = 5.5 cm³
Weight of eyeball = 7.5 g
Average time between blinks = 2.8 seconds
Average duration of a single blink = 0.1-0.4 seconds (Schiffman, H.R., Sensation and Perception. An Integrated Approach, New York: John Wiley and Sons, Inc., 2001)
Thickness of cornea = ~0.5 mm in center; ~1 mm in periphery (Foster, C.S., Azar, D.T. and Dohlman, C.H. Smolin and Thoft's The Cornea, Scientific Foundations and Clinical Practice, 4th edition, Philadelphia: Lippincott Williams & Wilkins, 2005)
Diameter of cornea = 11.5 mm
Thickness of lens = 4 mm (from Riordan-Eva and Whitcher, 2008)
Diameter of lens = 9 mm (from Riordan-Eva and Whitcher, 2008)
Composition of lens = 65% water; 35% protein (from Riordan-Eva and Whitcher, 2008)
Nerves in lens = 0 (from Riordan-Eva and Whitcher, 2008)
Blood vessels in lens = 0 (from Riordan-Eva and Whitcher, 2008)
Number of retinal receptor cells = 5-6 million cones; 120-140 million rods
Number of retinal ganglion cells = 800 thousand to 1 million
Number of fibers in optic nerve = 1,200,000
Number of neurons in lateral geniculate body = 570,000
Number of cells in visual cortex (area 17) = 538,000,000
Wavelength of visible light (human) = 400-700 nm
Amount of light necessary to excite a rod = 1 photon
Amount of light necessary to excite a cone = 100 photons
Location of the greatest density of rods = 20° from fovea
Highest density of rods = 160,000 per mm²
Peak density of rods (cat) = 400,000 per mm²
Density of cones in fovea = 200,000 per mm²
Diameter of fovea = 1.5 mm
Intraocular pressure = 10-20 mm Hg
Volume of orbit = 30 ml
Area of retina = 2,500 mm²
Thickness of retina = 120 microns (ranges from 100 to 230 microns)
Production rate of aqueous humor = 2 microliters/min
Turnover of aqueous humor = 15 times/day
% volume of eye occupied by the vitreous = 80%
Maximal sensitivity of red cones = 570 nm
Maximal sensitivity of green cones = 540 nm
Maximal sensitivity of blue cones = 440 nm
More Facts and Figures about the Human Retina from WebVision.

Touch

Surface area of skin (adult human) = 3,000 in² (~1.8 m²) (Source: Schiffman, H.R., Sensation and Perception. An Integrated Approach, New York: John Wiley and Sons, Inc., 2001)
Number of tactile receptors in the hand = 17,000
Number of nerve endings in hand = 1,300 per in²
von Frey threshold (Face) = 5 mg
2 point threshold (Finger) = 2-3 mm
Length of Meissner corpuscle = 90 - 120 micron
Density of receptors on finger tips = 2,500 per cm²
Density of Meissner's corpuscles on finger tips = 1,500 per cm²
Density of Merkel's cells on finger tips = 750 per cm²
Density of Pacinian corpuscles on finger tips = 75 per cm²
Density of Ruffini's corpuscles on finger tips = 75 per cm²
Thermal pain threshold = 45°C

Neurons

Number of synapses for a "typical" neuron = 1,000 to 10,000
Diameter of neuron = 4 micron (granule cell) to 100 micron (motor neuron in cord)
Diameter of neuron nucleus = 3 to 18 micron
Length of Giraffe primary afferent axon (from toe to neck) = 15 feet
Resting potential of squid giant axon = -70 mV
Conduction velocity of action potential = 0.6-120 m/s (1.2-250 miles/hr)

Single sodium pump maximum transport rate = 200 Na ions/sec; 130 K ions/sec
Typical number of sodium pumps = 1000 pumps/micron^2 of membrane surface (from Willis and Grossman, Medical Neurobiology, Mosby, St. Louis, 1981, p. 36)
Total number of sodium pumps for a small neuron = 1 million
Number of voltage-gated sodium channels at each node = 1,000 to 2,000 per micron^2 (from Nolte, J., The Human Brain, Mosby, 1999, p. 163.)
Number of voltage-gated sodium channels between nodes = 25 per micron^2 (from Nolte, J., The Human Brain, Mosby, 1999, p. 163.)
Number of voltage-gated sodium channels in unmyelinated axon = 100 to 200 per micron^2 (from Nolte, J., The Human Brain, Mosby, 1999, p. 163.)
Diameter of microtubule = 20 nanometer
Diameter of microfilament = 5 nanometer
Diameter of neurofilament = 10 nanometer
Thickness of neuronal membrane = 5 nanometer
Thickness of squid giant axon membrane = 50-100 A
Membrane surface area of a typical neuron = 250,000 um^2 (Bear et al., 2001)
Membrane surface area of 100 billion neurons = 25,000 m^2, the size of four soccer fields (Bear, M.F., Connors, B.W. and Pradiso, M.A., Neuroscience: Exploring the Brain, 2nd edition, Baltimore: Lippincott Williams and Wilkins, 2001, p. 97)

Typical synaptic cleft distance = 20-40 nanometers across (from Kandel et al., 2000, p. 176)
% neurons stained by the Golgi method = 5%
Slow axoplasmic transport rate = 0.2-4 mm/day (actin, tubulin)
Intermediate axoplasmic transport rate = 15-50 mm/day (mitochondrial protein)
Fast axoplasmic transport rate = 200-400 mm/day (peptides, glyolipids)
Number of molecules of neurotransmitter in one synaptic vesicle = 5,000 (from Kandel et al., 2000, p. 277)
Diameter of synaptic vesicle = 50 nanometer (small); 70-200 nanometer (large)
Diameter of neurofilament = 7 - 10 nm
Diameter of microtubule = 25 nm
Internodal Length = 150 - 1500 microns (depends on fiber diameter
% composition of myelin = 70-80% lipid; 20-30% protein

<table>
<thead>
<tr>
<th>Ion Concentration (mM) - SQUID NEURON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracellular</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Potassium</td>
</tr>
<tr>
<td>Sodium</td>
</tr>
<tr>
<td>Chloride</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
</tbody>
</table>

http://faculty.washington.edu/chudler/facts.html
Ion Concentration (mM) - MAMMALIAN NEURON

<table>
<thead>
<tr>
<th></th>
<th>Intracellular</th>
<th>Extracellular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>Sodium</td>
<td>5-15</td>
<td>145</td>
</tr>
<tr>
<td>Chloride</td>
<td>4-30</td>
<td>110</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.0001</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Neurotoxins

Blood Supply

- % brain utilization of total resting oxygen = 20%
- % blood flow from heart to brain = 15-20% (Kandel et al., 2000)
- Blood flow through whole brain (adult) = 750-1000 ml/min
- Blood flow through whole brain (adult) = 54 ml/100 g/min
- Blood flow through whole brain (child) = 105 ml/100 g/min
- Cerebral blood flow = 55 to 60 ml/100 g brain tissue/min
- Cerebral blood flow (gray matter) = 75 ml/100 g brain tissue/min
- Cerebral blood flow (white matter) = 45 ml/100 g brain tissue/min (Rengachary, S.S. and Ellenbogen, R.G., editors, Principles of Neurosurgery, Edinburgh: Elsevier Mosby, 2005)
- Oxygen consumption whole brain = 46 cm³/min
- Oxygen consumption whole brain = 3.3 ml/100 g/min
- Blood flow rate through basilar artery = 100-200 ml/min (Kandel et al., 2000)
- Diameter of vertebral artery = 2-3 mm
- Diameter of common carotid artery (adult) = 6 mm
- Diameter of common carotid artery (newborn) = 2.5 mm

[Return to Neuroscience for Kids] | [Return to Eric H. Chudler's Home Page]