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Educators recognize that group work and physical involvement with learning materials can greatly
enhance the understanding and retention of difficult concepts. As a result, math manipulatives - such as
pattern blocks and number lines - have increasingly been making their way into classrooms and children's
museums. Yet without the constant guidance of a teacher, students can easily become distracted,
confused, or frustrated.

This paper describes how math games with tangible user interfaces can address this need. Tangible user
interfaces allow the students to work together in a physical environment, while the underlying computer
system provides the guidance that a teacher would. This paper discusses pedagogical principles and an
approach to designing and developing games that utilize tangible technologies. A library of functions,
designed specifically for tracking visual tags in math games, is presented. The paper concludes with
examples of math games that have been prototyped with this library.
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INTRODUCTION

In an increasingly "flat earth" economy, math
and science education is vital to a country's
competitiveness in a global market. President
Bush reiterated this national priority in his
February 2006 State of the Union speech (Bush
2006). Yet it is not enough for students to learn
math; they must also understand it.

Math games — using manipulatives, puzzles,
and physical activities — provide numerous
benefits in the learning environment. First, they
provide concrete representations of abstract
concepts, thereby helping more children to
understand those concepts. Second, they provide
and opportunity for children to explore and test
their understanding of math concepts. Third,
they enable groups of children to work together,
talk about the problem at hand, and learn from
one another. Fourth, they give active young
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children the opportunity to be physically
engaged in their lessons, as opposed to sitting
through a "boring" lecture or filling out
workbooks. Finally, these physical activities
give children a fun way to practice their math
skills, which helps with retention and transfer as
cognitive scientists have shown.

Because of all these benefits, schools and
museums alike have embraced the use of
physical learning activities to supplement
learning. Teachers will often divide their classes
into small groups and have them work on a
particular manipulative. Other times, the teacher
will use overhead displays to talk about the
manipulatives while the children work at their
desks with their own pieces. At the Goudreau
Museum for Mathematics in Art and Science,
children look forward to being able to play with
the math puzzles after a more formal lesson. The
trouble comes in trying to direct and help thirty-
five children working on twenty-two puzzles all
at once. Students often need an attentive teacher
or guide, who will ask thought-provoking
questions and make suggestions that will help



them to discover the solution on their own. If the
teacher is busy with one group, other groups that
are "stuck" will quickly get bored and often find
inappropriate activities to occupy themselves
with. At the New York Hall of Science, student
"explainers" are available to provide help as
needed. This museum has discovered that having
a knowledgeable "guide on the side" helps their
visitors to get more out of the exhibits and
activities. Yet in some settings, this is not
always practical.

We address this issue by developing math
games that employ tangible user interfaces.
Tangible user interfaces are ideal because they
allow students to explore, test, and practice
mathematics both physically and collaboratively.
By making the math manipulatives part of the
user interface, the computer application is aware
of what the children are doing, and can therefore
provide appropriate feedback as needed. The
software can also record everything the children
do, so the teacher can refer back to it later.

Our contributions in this area are twofold.
First, we have developed a pedagogical
approach that emphasizes physical activity,
collaboration, practice, and teacher
customization. Second, we have created a library
of functions that enable a developer to rapidly
prototype a game with vision-based tracking in a
tangible user interface. This library is available
for free on our website. We have used both the
approach and the library to develop a series of
math games with tangible user interfaces.

This paper presents the background research
motivating this work, the pedagogical ideals that
guide this work, and the tools that we use to
create educational applications. It also describes
some of the math games that we developed,
including one with a front-end tool that enables
the teacher to customize an educational
application to suit his or her curriculum, class,
even individual students. Although the focus of
this paper is on math games, the approach — and
the tools — described here may be readily
extended to other learning activities in the
sciences, social sciences, and language arts.

RELATED WORK

The educational literature is riddled with
examples of how collaborative and exploratory

learning leads to greater understanding. This has
led to calls for teachers to engage students in
"active" learning. The National Council of
Teachers of Mathematics (2000) states,
"Students must learn mathematics with
understanding [by] actively building new
knowledge from experience ...". Holt (1983)
argues that children, when encouraged to
explore on their own, will come to understand
mathematical principles that most educators
would not dare to try to teach them. Gardner
(1983) theorizes that different people can be
"intelligent" in a variety of different ways, and
that teachers must therefore address these
multiple intelligences in order to teach
effectively.

As a result, math teachers are being
encouraged to involve students in collaborative
activities, plan differentiated tasks, and use
"workstations" to present the same material in
different ways (Bransford et al, 2000). In
response, teachers increasingly rely on math
manipulatives — such as Cuissenaire Rods,
Pattern Blocks, and Tangrams — to illustrate
math concepts and provide students with a way
of further exploring those concepts. Apparently
children who normally have trouble with math
find the concepts more understandable when
they are represented by tangible objects.

Tangible User Interfaces

Tangible user interfaces (TUI) are computer-
human interfaces in which the boundaries
between data and representation are blurred
(Ishii 1997). With this paradigm, data
representations are tangible, or physical, entities
in the environment. Manipulating these tangible
entities results in corresponding manipulations
of the data in the computer's memory. As a
consequence, working with the data becomes far
more intuitive (and potentially collaborative)
than it is with a traditional graphical user
interface using a mouse or keyboard. At a time
when teachers are being encouraged to make
learning experiences more hands-on, researchers
are exploring ways of using TUI for educational
purposes.

For example, several TUI projects are
designed to develop children's language arts
skills by encouraging them to tell stories (Zhou



et al, 2004 and Moher et al, 2005). In both of
these cases, the TUI provides props for telling
the stories as well as a means of recording the
stories. In a variation on this theme, Stanton et al
(2001) have had children help to design an
interface that enables other children to tell their
stories. The advantage of involving children in
the design process is that the result is more
likely to be usable by children than an
application written by adults with little insight
into how children think (Druin 1999).

Tangible user interfaces are also used to
teach children about how systems work
(McNerney 2004, Zuckerman 2005). In both of
these cases, children physically connect
computational components to build a system.
Resulting connections among these components
determines the behavior of the system; children
are then encouraged to make changes to the
system configuration to see the effects on the
output. Horn and Jacob (2006) have taken this
idea a step further, having developed a tangible
programming language called Quetzal. Elements
of the language are represented by physical
components that look a lot like elements in a
flow chart. Children connect these (in flow chart
fashion) to "write" a simple program for an RCX
brick.

A more recent trend is to look for
frameworks for analyzing and creating
applications with tangible user interfaces.
Marshall et al (2003) define different ways of
conceptualizing tangibles to support learning.
Specifically, they look at how learners will use
the tangibles ("ready-at-hand" versus "present-
to-hand"), the learning activities they will
engage in (expressive versus exploratory), and
the model embodied by the tangibles (theoretical
versus practical). Calvillo-Gomez et al (2003)
and Ullmer et al (2005) both propose using
"token+constraint" paradigms as a way of
understanding all tangible user interfaces. In
these paradigms, tokens are the physical
representations of data and constraints define
how those tokens can be manipulated. Fishkin
(2004) uses metaphor (i.e. the way that the
tangible represents abstract concepts) and
embodiment (i.e. how closely tied the input and
output representations are) in his taxonomy for
comparing and contrasting work on tangible user
interfaces.

Our project is unique in that it focuses on
TUI in math and science educational software
(Scarlatos 2002). Building on this initial work,
we have developed our approach to a point
where our principles and tools may be used by a
much wider audience to create a variety of
Tangible Math (and science) games.

PEDAGOGICAL APPROACH

Our approach to designing Tangible Math
software is to extend tried-and-true math puzzles
and activities — many recommended by the
National Council of Teachers of Mathematics
(2000) — using both TUI design concepts and
gameplay design guidelines. Culminating from
the experience of building and testing our own
educational software with tangible user
interfaces, we have developed a series of
pedagogical guidelines that are described below.
While each of these guidelines may appear to be
distinct, all must be blended together to create a
cohesive whole.

Physical Activity

Physical involvement in a learning activity —
whether a child is moving objects or his/her own
body — helps to make the activity more
meaningful for the child. This is partly because
the physical objects help children to see — and
therefore better understand — abstract concepts
in a new way. The other benefit of physical
involvement is that the child must use more than
his or her brain in the activity. It is difficult to
doze off when one is jumping around on a
number line.

The trick is discovering the best physical
representation of the abstract concepts being
taught, so that manipulation and computer-
supported feedback are leveraged to enhance
learning. Abstract concepts must be mapped to
physical entities and environments in a way that
helps the child to make the connection between
the concrete and the abstract. For example,
quantity may be translated from "area of a
polygon" to "number of triangles that fit in this
shape". One could argue that the kind of
understanding that evolves from the physical
notion of moving tiles around may be different
from the mental image produced by looking at a

polygon.



Collaborative Learning

Group work increases the learning potential of
an activity by allowing children to scaffold off
of each other's prior knowledge. This has been
shown to be especially effective for girls (Inkpen
et al 1995). Talking about the activity also helps
children to develop meta-cognitive connections
that are useful in transference of the knowledge.

Yet if one expects children to collaborate,
one must provide a learning environment that
gives all of the children equal access to the data
and equal opportunities to manipulate that data.
We, for example, have developed a TICLE
(tangible interfaces for collaborative learning
environments) table that we use in most of our
tangible math games (Scarlatos 2002). This table
(shown in figure 1) allows several children to
work with a puzzle or math manipulative at the
same time. A camera beneath the table (looking
up) eliminates the problem of visual obscuration,
while a touch screen gives all of the children
equal access to the software's extra help.

Figure 1. Children using a TICLE table have equal
access to the tangible data (puzzle pieces) and
further information (from the touch screen).

Practice That's Fun

Practice helps to reinforce concepts that have
been learned so that they are more deeply
engrained in the learner's mind. This is the
purpose of doing homework, though most
children find typical homework assignments to
be boring. Although new concepts are best
taught by teachers, computer software is well
suited to guiding students as they practice
applying those concepts.

The best way to make practice fun is to
make a game of it. Increasing difficulty, coupled
with increasing rewards, helps to keep the
activity interesting. In our observations, we have
noticed again and again that when children feel
that they have worked hard and then "won", they
are eager to try the activity again, even if it is
practicing math concepts. And how many
children finish their homework and then think, "I
won!"?

Immediate Feedback

One of the key advantages of having a computer
"watch" what the children are doing is that the
computer can provide immediate feedback. Our
software typically provides three types of
feedback.

First, when the children make progress
toward a goal, encouragement is given: either
verbal, visual, and/or a numeric score. When
designing the form of the encouragement, an
understanding of the system of rewards provided
by commercial video games, as described by
Oxland (2004), is essential. Our observations
(Scarlatos et al 2002) have revealed that too
much encouragement is seen as condescending,
and can even become annoying.

Alternatively, if the rules of the game are
not followed (e.g. the child does not use the
correct pieces), the software must provide
feedback that gets the child back on track. The
need for this type of feedback is unique to TUI
because, unlike a typical computer or video
game, the data representations in a TUI are not
under the control of the computer. We generally
address this with a gentle reminder about what
the goal is, and what constraints go along with
that goal. Again, it is important not to be
adamant about this; repeated reminders or
corrections can become distracting and
discouraging.

Finally, when the students are "stuck", the
software must be able to give them hints.
Students should have to ask for hints explicitly.
Again, we have observed that most children will
initially want to try to solve a problem without
any hints. It is only when they have failed to
make progress over a period of time (typically
two to five minutes) that they will ask for help.
The hints must be contextually relevant, i.e.



selected based on the state of the game or what
the students have already done. At the same
time, the hints must be designed to get children
to think about the problem at hand; telling
children to "put this there" doesn't help them to
solve a similar problem later. This ability to
transfer knowledge, and solve problems without
the help of a computer later on, is an essential
skill that all math games should strive to
develop.

Information Gathering

One of the greatest advantages of using a
computer for learning activities is that the
computer can record what the student has done.
The teacher may then review this information
later, to determine where the student (or the
class) is having trouble and deduce what they
need to receive additional instruction on.

All of our tangible math games record
student performance data for the teacher to look
at later on. Storing this data in a flat file (with a
time/date stamp) is simplest to implement and
allows for anonymous activity. For more
detailed analysis, it is preferable to store the
information in a database. This allows the
teacher to track a particular student's progress
over time, look for classroom trends, or get
different "views" of different student groups.

Teacher Customization

Despite a developer's best efforts, a computer
game can never meet all of a teacher's needs for
a particular subject and class combination. Even
within a single class, a teacher may feel the need
to provide slightly different learning activities
for different groups of children.

For this reason, most of our tangible math
applications rely on an input text file. This file
defines a wide variety of parameters, from what
the problem or puzzle is, to what tangible
entities are being tracked, to what hints should
be given in what circumstances. We then can
(and have) develop(ed) a separate teacher's
interface which is used to define these
parameters.

TECHNICAL APPROACH

When developing math games, we take an
iterative development approach using a

multimedia authoring tool. For most of our
applications, the tool we have chosen to use is
Macromedia Director. In addition to being an
excellent rapid prototyping tool, Director also
provides a powerful programming language
called Lingo. When Lingo does not satisfy all of
a developer's needs, Director's capabilities are
easily extended by integrating code libraries
known as Xtras.

The remainder of this section describes our
own Anna Xtra, which we use to track visual
tags in a collaborative learning game. We
created this Xtra because existing libraries did
not adequately support the tracking of visual
tags in games that use tangible user interfaces.
The functions supported by this library, and their
underlying algorithms, were first described by
Mbogho and Scarlatos (2005). Here, we describe
how Anna is used to build tangible math games,
supplementing the descriptions with code
samples. This Xtra is available as freeware on
our web site:
http://www .sci.brooklyn.cuny.edu/~lori/TICLE/.

Vision-Based Tagging

In our early work with tangible user interfaces,
we experimented with computer vision using a
third-party Xtra. Although we had good results
from the Tangram application that we produced
(Scarlatos 2002), calibration was difficult. This
problem arose because the functions were
looking for RGB colors with given tolerances or
allowable variance. Although small changes in
light are nearly imperceptible to human eyes,
they create changes in the RGB values that make
the color look very different to a computer. In
fact, some colors that are close to one another in
RGB space can look much more different to a
human (e.g. a color with red added to it) than
colors that are far apart (e.g. a color that is
lightened by adding equal parts of red, green,
and blue).

In response to this problem, we developed
our own computer vision Xtra which we call
Anna. Anna differs from earlier computer vision
Xtras in that it looks for matching colors in two
different color spaces: YIQ and HSV. YIQ
corresponds to the color system used in video,
and allows us to specify different tolerances in
terms of luminance (Y) and chrominance (IQ).



Consider, for example, an environment where
light conditions can change drastically, such as
outdoors or near a window. When looking for a
specific color, we would want the chrominance
(IQ) to be a close match, but could allow much
greater variance in the luminance (Y) values.

HSV (hue, saturation, value) corresponds
more closely to human vision. In our
experiments, we have discovered that looking
for a match in HSV space produces the most
reliable results when tracking visual tags. The
reason for this is that, to make the tags stand out,
we have chosen to use highly saturated colors.
Using HSV we can narrowly restrict the range of
hues (H) being sought, set a minimum saturation
(S) threshold, and allow for greater variance in
value (V or luminance). As a result, our tag
tracking is much less sensitive to changes in
light conditions in the environment.

An application using Anna is initialized by
creating a tag reader object, which is used in all
subsequent calls to Anna functions. Figure 2
provides the Lingo code for creating and
destroying this object.'

—— Initialize Anna
global TRobj -- Anna object

on startMovie
TRobj = new(xtra "Anna")
end startMovie

—— Clean up at the end
on stopMovie

TRobj = 0
end stopMovie

Figure 2. Lingo code to start up Anna Xtra.

Tagging Strategies

As we continued to build math games using
computer vision, we identified the following
visual tagging strategies as effective for a
number of 2D puzzles and manipulatives.
Objects with these tags may be tracked on a
TICLE table (with the tags on the underside).
They may also be viewed by a camera from
above (with the tags facing up) or from the side
(with the pieces stacked vertically).

" In Lingo, "--" marks the beginning of a comment. The end
of a line marks the end of a statement; statements that need
more than one line use the continuation character "\".

Space-Filling Tags

Some math manipulatives and puzzle pieces are
created from repetitions of a single elemental
shape. For example, each Cuisenaire rod is a
linear arrangement of N cubes, where N
represents the length, area, and numeric value of
the rod. Pentomino pieces are arrangements of
five squares, just as Tetris pieces are
arrangements of three squares. Pattern blocks are
(mostly) shapes made up of one or more
equilateral triangles: hexagon, trapezoid,
rhombus and triangle. All of these manipulatives
can be used to teach children about measuring
area and creating shapes. Thus in games using
these types of puzzle pieces, it is most important
to track how the pieces fill the space.

Figure 3. Space-filling tags mark the center of each
elemental shape, using color to identify the larger
piece using that shape.

Space-Filling Tags are created by placing a
colored spot in the exact center of each
elemental shape. For example, a hexagon would
be tagged with six spots; each pentomino piece
would have five spots. The colors of the spots
identify the overall shape of the piece. The
resulting pattern of spots seen by the camera, as
shown in Figure 3, can then be used to orient
and fill a triangular or square grid.

Figure 4 shows the Lingo code for
interpreting these tags and using that
information to fill in a grid space, which is
represented in the computer's memory. This
code assumes that functions (handlers) have
been specified to check the size of the bounding
rectangles (to make sure they are really tags) and



to calculate a grid index based on a tag's position
in the image.

-- Given an array of colors (CList)
-- and a list of color labels (CLabel)
-- fill in a Grid with those labels

global TRobj -- Anna object
on fillGrid CList, CLabel, Grid

-- initialize the Grid = all empty

repeat with i = 1 to Grid.count
Grid[i] = #empty

end repeat

—— Capture image of the game state
getImage (TRobj)

—- Loop through all of the tag colors
repeat with i = 1 to CList.count

-- find rectangles bounding

—- all tags with this color

cp = CList[i] -- color parameters

bounds = hsv_getBoundingRecs (TRobj, \
cp[#color], cp[#hueRange],\
cp[#satLimit], cp[#valRange])

-- get label to fill the grid with
thisLabel = CLabel[i]

—— loop through all rectangles, &
-- label grid elements
repeat with b in bounds

-- ensure spot is the right size
if sizeOK(b) then

-- get the Grid index (gi)
-- for this location
gi = getIndex(b)

—-- label the grid element
Grid[gi] = thisLabel
end if
end repeat
end repeat

end fillGrid

Figure 4. Detecting and interpreting space-filling tags
with Anna.

Orientation Tags

For some puzzle and game pieces, such as
Tangrams and Scramble Squares, it is important
to know not only what piece is visible and
where, but also how it is turned (oriented)
relative to the other pieces. This information can
be used to determine a relative configuration or

state of the puzzle that is independent of rotation
and translation factors. The game can then use
the state information to determine how close the
players are to reaching a solution. The game can
also use this information to select an appropriate
hint when asked.

Orientation Tags are composed of three
closely spaced collinear spots of color, similar to
the strategy used by Underkoffler and Ishii
(1998). One color (such as yellow) is reserved
for marking the center of mass for the piece. The
colors of the two adjacent spots uniquely
identify the piece. So, using three colors (in
addition to the color reserved for the center
spot), one can uniquely identify nine pieces. The
three spots form a vector, with its tail at the
center, which indicates the orientation of the
piece. Figure 5 shows a collection of Tangram
pieces with orientation tags.

Figure 5. Orientation tags identify the puzzle pieces
while also showing their location and orientation.

Figure 6 lists the Lingo code for finding a
set of tags. Here, it is assumed that a Tag class
(parent script) has been defined that includes
properties representing an identifier (indicating
the type of piece it is), an absolute location, and
an orientation vector. Methods are defined to
add spots to the tag pattern (addSpot2 and
addSpot3) and then update the properties of the
tag (update) based on these. If the spots in a tag
object are not collinear, or the pattern of colors
is not recognized in this game, then the update
method returns a value indicating that the result



is not valid. The code in figure 6 also assumes
that a function (getClosestTag) has been defined
to determine which Tag is closest to a given
bounding rectangle. Because this function uses
partitioning techniques to increase efficiency, a
value of VOID is returned if no tag center is
within a reasonable distance of the given
rectangle. The function inRange determines
whether a tag is reasonably within the given
distance of a given bounding rectangle.

Using the Tag data generated by this
function, a game can then match these tags to
known pieces of the puzzle, to determine where
those pieces are. Related to an internal
representation of the piece's geometry, this
information can then be used to determine how
two pieces are touching. This, in turn, can be
used to determine the current state of the puzzle
or game (Scarlatos 2002).

-- Given a list of colors (CList, where
—— CList[1] = the color of the center)
—- and a target distance between spots
-- (dist, measured center-to-center),
-- return a list of Tags, each one

—— having an identity, location

—- and orientation vector

global TRobj -- Anna object
on findTags CList, CLabel, dist

—- initialize the Tag list

Tag = []
nTags = 0 —-- number of tags found

-- Capture image of the game state
getImage (TRobj)

-- Find all the center spots

cp = CList[1l] -- color parameters

bounds = hsv_getBoundingRecs (TRobj, \
cp[#color], cp[#hueRange],\
cp[#satLimit], cp[#valRange])

—— Create new tag for each spot found
-- using bounds to indicate position
repeat with b in bounds
if sizeOK(b) then
nTags = nTags + 1
Tag[nTags] = new(script "Tag", b)
end if
end repeat

—— Loop through remaining tag colors
repeat with i = 2 to CList.count

—— get color label for tag info
thisLabel = CLabel[i]

—— find rectangles bounding

—- all spots of this color

cp = CList[i] -- color parameters

bounds = hsv_getBoundingRecs (TRobj, \
cp[#color], cp[#hueRange],\
cp[#satLimit], cp[#valRange])

—— loop through all rectangles
repeat with b in bounds

-- ensure spot is the right size
if sizeOK(b) then

-- find the closest tag
nearest = getClosestTag(b, Tag)

-- if something was returned,
-- see if this is part of a tag
if (nearest <> VOID) then
if inRange(b, nearest, dist) then
nearest.addSpot2(thisLabel, b)
else if inRange(b, nearest, \
dist*2) then
nearest.addSpot3(thisLabel, b)

end if
end if
end if -- sizeOK
end repeat -- every rectangle
end repeat -- every color

-- Update the tags, eliminating any
-- that are invalid
repeat with i = nTags down to 1

-- update tag, returning status
OKstatus = Tag[i].update()

—-- delete any tags that are not OK
if NOT OKstatus then
delete(Tag, i)
end if
end repeat

-- Return resulting list of tags
return Tag

end findTags
Figure 6. Detecting orientation tags with Anna.

Attribute Tags

Both mathematicians and scientists use
classification and data analysis techniques to
categorize things. Classification and data
analysis are important components of the math
and science standards (Van Der Wallen 2000),
and are tested on state standardized tests. To
gain experience with this activity, attribute
materials are typically used. These may be
structured sets — with exactly one piece for every



possible combination of values — or unstructured
sets — made up of sample objects collected by
the teacher or children. The attributes
themselves may be either binary or multi-valued.

Binary attributes either have a given
property, or they don't. For example, a rock may
be either shiny or not shiny. Binary attributes are
especially useful for a classification activity in
the sciences known as dichotomous sorting.
Binary Attribute Tags employ a solid-colored
spot to represent the presence of an attribute, and
a spot with a hole in it to represent the absence
of that attribute. The color of the spot indicates
which attribute it is. Figure 7 shows the under-
sides of an unstructured attribute set with five
different attributes.

Figure 7. Binary attributes are either there (solid) or
not there (hole).

Figure 8 shows Lingo code that determines,
for a given collection of objects, what attributes
those objects do and do not have. Although this
code does not consider the locations of the
attributes, the locations may be readily accessed.
This could then be used to imply an ordering of
a set or membership in a Venn diagram.

-- Given an array of colors (CList) and
-- % of size determining solidity (f)
-- return a list of attributes (Alist)
—-- indicating how many positive (#yes)
-- and negative (#no) values are found

global TRobj -- Anna object
on getAttributes CList, factor

—— initialize the Alist
Alist = []

-- Capture image of the game state
-- & save a copy in cast member 1
getImage (TRobj)

showImage (TRobj, 1)

—- Loop through all of the tag colors
repeat with i = 1 to CList.count

—- find rectangles bounding

—— all tags with this color

cp = CList[i] -- color parameters

bounds = hsv_getBoundingRecs (TRobj, \
cp[#color], cp[#hueRange],\
cp[#satLimit], cp[#valRange])

—— loop through all rectangles,
—-- counting attributes

yesAtt = 0

noAtt = 0

repeat with b in bounds

-- ensure spot is the right size
if sizeOK(b) then

-- count # of pixels with color

count = hsv_countPixels(TRobj, 1,\
cp[#color], b, cp[#hueRange],\
cp[#satLimit], cp[#valRange])

-- update count accordingly

if (count >= (sizeOf(b) * f)) then
yesAtt = yesAtt + 1

else
noAtt = noAtt + 1

end if

end if
end repeat

-- Add a record to the Alist
aRecord = [#yes yesAtt, #no
noAtt]
Alist[i] = aRecord
end repeat

—-- Return the results
return Alist

end getAttributes

Figure 8. Detecting and interpreting binary attribute
tags with Anna.

Multi-valued attributes appear in activities
that focus on sets, Venn diagrams, and
partitionings. Multi-Valued Attribute Tags can
be created from a bi-directional tri-color barcode
(Mbogho and Scarlatos 2005). Two of the colors
in the barcode represent binary values (0/1).
Bars in these colors represent a 4-bit number
(that is then repeated backwards) and mark the
start (and end) of the code. By repeating the



code in this manner, the orientation of the
barcode becomes unimportant. The third
(background) color in the barcode represents an
attribute category. Thus an image containing
many different barcodes, representing several
different attributes, can be interpreted without
regard for location, orientation, or scale. Figure
9 shows a rock with three different attributes
with values O (red), 3 (yellow), and 1 (blue).

Figure 9. Bi-directional barcodes represent different
attribute values, indicated by the background color.

Figure 10 shows the Lingo code for reading
these barcodes. This function returns, for each
attribute, a list of [value, position] pairs to
indicate what attribute values are found where.
This may then be used to check set orderings or
location in a Venn diagram.

-- Given an array of attribute

-- names (Nlist) and colors (CList),

-- return a list of attributes (Alist)

-- that specifies the value & location

-- of each tag found for that attribute

global TRobj -- Anna object
on getBarCodes CList, NList

—— initialize the Alist
Alist = []

-- Capture image of the game state
getImage (TRobj)

—-- Loop through all of the tag colors
repeat with i = 1 to CList.count

-- get attribute name
thisName = NList[i]

-- find rectangles bounding

-- all tags with this color

cp = CList[i] -- color parameters

bounds = hsv_getBoundingRecs (TRobj, \
cp[#color], cp[#hueRange],\
cp[#satLimit], cp[#valRange])

—— loop through all rectangles,
-- reading barcode values
values = []

repeat with b in bounds

-- ensure barcode is the right size
if sizeOK(b) then

-- read the value of the barcode

num = hsv_readTag(TRobj, \
cp[#color], b, cp[#hueRange],\
cp[#satLimit], cp[#valRange])

-- add it to the list
add (values, [num, centerOf(b)])
end if
end repeat

—— Add a record to the Alist
addProp(Alist, thisName, values)
end repeat

—-- Return the results
return Alist

end getBarCodes

Figure 10. Detecting and interpreting multi-valued
attribute tags (bi-directional bar codes) with Anna.

GAMES

Nearly all of the games that we have developed
use wooden pieces marked with visual tags.
Early on, we discovered that children tend to be
very rough with objects that they are handling,
especially in museum settings. The wooden
pieces can (and have) been stacked, knocked
over, and dropped on the floor; the most that we
have to do is occasionally touch up the tags.

Tangrams

The tangram is a classic puzzle used to teach
geometry concepts, such as comparing area and
creating shapes sets (Van de Walle 2000).
Tangrams also help to develop problem-solving
skills. Invented centuries ago in China, tangram
puzzles have appeared in books, games, and
state proficiency exams.



Figure 11. Tangram puzzle with tangible user
interface.

We created software that uses orientation
tags to track the tangram pieces on a TICLE
table (figure 11). Children select a Tangram
puzzle to solve, which determines the solution
being sought and the set of hints that may
appear, depending on the state of the puzzle
when they ask for help. While the children are
working on the puzzle, the software
continuously polls the computer vision system to
determine whether or not the children are
making progress. Encouragement is offered
periodically when they do make progress.
Context-sensitive hints, as shown in figure 12,
ask the children to solve sub-problems that are
designed to help them "see" what they need to
do next with the larger puzzle. The software
records a history of moves made by the children,
along with a history of the hints seen.

Make a shape
out of
different pieces

V4
B A

Fouch the Screen

I

Figure 12. Hints are designed to help students to
"see" how they might fill in a space in the puzzle.

Pattern Blocks

Patten blocks are simple polygonal shapes that
include a hexagon, a quadrilateral (half of the
hexagon), a rhombus (one third of the hexagon),
and an equilateral triangle (one half of the
rhombus). These blocks can be used in a wide
variety of ways to teach several different
concepts. For example, because the smaller
blocks can be combined to create larger blocks,
these can be used to teach fractions,
multiplication, and division. Pattern blocks can
also be used to teach tessellation concepts.

Use 2 hexagons and fill the rest with
TRIANGLES

How many triangles do you need?

—

Figure 13. Problem posed by Pattern Block software.

We developed software that helps children
to understand the concept of area by asking them
to cover a pattern using specific pattern blocks.
The software only looks at the space-filling tags
on these pieces if the question was answered
wrong; if the wrong pieces are being used, the
software reminds the children how they can
recognize the pieces they are looking for.

Cuisenaire Rods

Cuisenaire Rods have been used in classrooms
for decades (Holt 1983) to teach a variety of
number concepts. Among these are the
difference between odd and even numbers;
addition; multiplication as multiples of a given
number; and fractions.

We have developed an application that
focuses on the concept of odd versus even
numbers. Children are given a sequence of
increasingly difficult exercises that reinforce the
concepts. Children may also choose to solve
puzzles, in which they are asked to fill in a space



using a particular type of Cuisenaire rod. Figure
14 shows one of these puzzles. In all of these
activities, the computer checks to ensure that the
children are using the right type of rods (i.e.
odd- or even-numbered length).

What is
Even? |
Complete the puzzle by using only
even rods.

Figure 14. Puzzle using Cuisenaire rods reinforces
lessons on odd versus even numbers.

Tower of Hanoi

The Tower of Hanoi is a classic puzzle known
and loved by many. For younger children, it is a
challenging puzzle that can be made
successively harder by adding more and more
disks to the puzzle. For older children, it is an
ideal tool for demonstrating the concepts of
recursion and recurrence functions.

P

Figure 15. Children playing with the Tower of Hanoi.

Our Tower of Hanoi software uses an
overhead camera to track the movement of
brightly-colored disks on a stand with three pegs
(figure 15). In this application, the entire disk is
a tag: if it disappears from view for an extended
period of time, it is assumed that either the disk

is not in play, or it is underneath a larger disk.
Either condition constitutes a violation of the
rules. While the students work with the tower, a
diagram of Serpinski’s triangle shows the
sequence of steps as a path through a graph. In
this diagram, the optimal solution to the problem
is represented by the shortest path from one
corner of the triangle to another. The diagram
therefore helps children to "see" when they have
made an extraneous move.

Attribute Sorting

Classification (the process of making decisions
about how to categorize things) is an important
skill that is employed both in math and in
science. Children typically learn to classify
objects by working with attribute sets (Van de
Walle 2000).

We have developed a program that
encourages children to analyze and categorize an
unstructured attribute set assembled by the
teacher. As shown in figure 16, the advantage
of using real objects in a set is that children can
make observations that would not be possible
with virtual objects ... such as testing to see
which rocks are harder than a nail. In addition to
saving a list of hints seen and the state of the
system at key stages, the software collects and
stores the students' own reflections about what
the objects on the table have in common.

Figure 16. Children testing the hardness of a rock for
the attribute sorting program.

A separate teachers' program allows teachers
to define the attribute sets they are using, and the
hints that they wish to offer to the students.
Hints can be anything that can be displayed in a
web page, making this accessible to both



technical novices and technically savvy teachers.
We have had teachers use this interface to define
the attributes of rocks, leaves, flying insects, and
buttons.

FUTURE TRENDS

This work is continuing in three ways: through
development, testing, and extension.

Development includes the creation of
additional software activities with tangible user
interfaces. In the area of attribute sorting, we
plan to create math games that use Venn
Diagrams, "Which One Doesn't Belong", and
ordered sets. We have also been working on an
application that uses pattern blocks to learn
about and create tessellations. In addition, we
plan to develop teachers' interfaces for more of
our games.

Testing involves bringing our software to
the classroom and having teachers evaluate the
practicality and benefits of using the games.
Although we have been able to observe our
software being used in museum settings,
classroom use will allow us to learn more about
the long-term benefits of using math games with
tangible user interfaces.

Extension involves moving from two-
dimensional puzzles to the third dimension. We
are currently working with motion capture and
other multimodal inputs to track student activity
within a CAVE environment. This extension
will encourage even more activity on the
students' part, as well as increase the realm of
possible learning activities that we can track.

CONCLUSION

We have presented both a pedagogical approach
and software tools for developing educational
software with tangible user interfaces. We have
also described a series of software games that
we developed using the presented approach and
tools. Although the focus of our work has been
on mathematics, the tagging strategies and
pedagogy are clearly applicable to science, and
probably other topics as well.
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