
TOWARDS RELIABLE COMPUTER VISION-BASED TANGIBLE

USER INTERFACES

Audrey J.W. Mbogho

Computer Science Dept.

City University of New York Graduate Center

365 Fifth Ave, New York, NY 10016

USA

ambogho@gc.cuny.edu

Lori L. Scarlatos

Dept. of Computer and Information Science

Brooklyn College, CUNY

2900 Bedford Avenue, Brooklyn, NY 11210

USA

lori@sci.brooklyn.cuny.edu

ABSTRACT

A major obstacle in the development of computer vision-

based interfaces is the uncertainty in the image data.

Guaranteeing reliable program behavior while the inputs

cannot be relied upon to take any specific values is

desirable but extremely challenging. We have

experimented with various strategies for addressing this

problem in a controlled environment and have identified

some that we find promising. Using visual tags, we

encode object attributes, capture them with a camera, and

read them. The test applications are implemented as

Macromedia Director movies with Lingo scripting, while

the image analysis module is implemented in C++ as a

Lingo Xtra. We conclude that evaluation through rigorous

experimentation and testing is a suitable approach for

discovering techniques that work well and the conditions

that maximize the chances for optimal performance.

KEYWORDS

Visual tags, tangible user interfaces, reliability.

1. Introduction

The history of computing shows a clear gradual

continuum [1],[2]. We have moved from the machine

centered interfaces of the early days, requiring the user to

engage in a great deal of manual activity, to the graphical

user interfaces that currently dominate. More recently,

gaze (e.g. [3]) and gesture recognizers hint at a future

with fully human-centered, perceptual interfaces. Among

the most promising advances in this area are the tangible

user interfaces, which blur the distinctions between data

and its representations [4]. With these interfaces, users

manipulate data by manipulating physical objects in a

very natural way. In order for the computer to respond

appropriately, it must be able to track the physical objects

in the environment. This is often achieved with either

sensors or computer vision. One of the problems with

tangible user interfaces is that there are no standardized

input devices; each application dictates what the interface

should look and feel like.

We have addressed this problem by developing a suite of

visual tagging strategies, and a library of functions for

detecting those tags. Using our strategy, any ordinary

object – such as a puzzle piece, math manipulative, or

science specimen – can be made part of a tangible user

interface.

At the moment, full-fledged, sensor-based interfaces face

major obstacles. Some experimental ones include

cumbersome headgear, gloves, or other contraptions that

must be worn and manipulated in specific ways in order

for users to communicate their intentions to the computer.

Sensor systems are also limited in terms of the number of

sensors that may be tracked simultaneously, and therefore

do not scale easily.

Interfaces based on computer vision are attractive in that

the sensor (i.e. the camera) can receive input passively,

without discomfort to the user. Cameras can also track

large numbers of objects with minimal impact to the cost

or complexity of the software. In addition, because of

falling prices, cameras are readily available and are now

being integrated into computing devices, such as, cellular

phones. The main problem that has to be overcome is the

uncertainty inherent in image data. Noise – the random

effect resulting from changing environmental conditions

such as lighting, temperature, pressure, dust, humidity,

motion, and so on – causes the same image point to be

represented differently from frame to frame. Furthermore,

the sampling rate, which is dictated by camera

technology, and occlusion both result in loss of

information. In [2] the observation is made that general

purpose computer vision is still a far away goal, and that

to achieve real-time robust vision-based interfaces, we

must constrain problem domains, exploiting properties

specific to each.

An image identification algorithm, therefore, typically

makes certain assumptions about its inputs. As a result of

the uncertainty in the data, however, images may fail to

conform to algorithmic assumptions, causing the

algorithm to give inaccurate results. Errors in a vision

system that assists a pilot or a surgeon can result in loss of

life. Errors in a vision system assisting children in a

classroom can cause the children to become frustrated and

impede rather that facilitate learning. It is this latter

scenario that this research focuses on: how to develop

accurate vision-enabled interfaces in educational settings

and how to measure this accuracy.

Bearing in mind that a given vision-enabled interface

(VEI) cannot deliver the same degree of reliability all the

time, we need to be able to state how a system will

perform under a given set of circumstances. In addition,

within the ideal circumstances where a given VEI has the

potential for optimal performance, we need to determine

the set of input parameters that will make this desirable

performance a reality. In other words, we recognize two

situations that can make an otherwise good VEI perform

poorly. One is when it is put to use in a problem domain

for which it is not suited. The other is when input

parameters are poorly chosen. The goal of this research is

to address both these issues through experimentation and

evaluation of educational environments augmented with

visual tags.

2. Visual Tags

If the environment in which a vision system operates can

be controlled, we can overcome the problem of imperfect

image data by emphasizing the things that we want to

detect. One thing that we can do is identify those things

that we want to track with visual tags. A tag can be a plain

marker carrying one bit of information (present or

absent), or it can incorporate various shapes and colors

encoding a binary string of as many bits as the application

requires. By tagging, the problem of handling the large

amount of data associated with a large and complex

image is reduced to one of finding a small object (tag)

which stands out in its environment and whose

appearance is known a priori. A good tagging scheme

should maximize the amount of information it can

accurately hold in a small area.

In [5], TRIP, a system that uses barcodes and cameras to

locate users and objects in living and working

environments is described. One proposed application is

the use of a video camera to record locations of tagged

books in a library and link a book’s information to the

electronic catalog database with its exact physical

location in the stacks. In another application a software

agent associated with each person locates that person and

migrates an audio player and MP3 decoder to the

computer nearest to him. A third use is in recognizing

when a user is near a workstation and then logging that

user on automatically.

CyberCode, described in [6], is a tagging scheme for use

in augmented reality environments. The tag is a 2D black

and white barcode that is captured using low-cost CMOS

or CCD cameras such as those that come attached to

mobile devices. As with TRIP, both the tag and its

location are identified. One use is putting the tags on

printed documents to provide a link between the hard

copy and its electronic version. In another use, the tag,

once captured, brings up menu items on the screen that

can then be selected by moving the tagged object around.

In both [5] and [6], the barcodes are black and white. The

use of color is often shunned because of the difficulties it

presents. These difficulties arise from the wide range of

shades a color can take as illumination changes. That is,

the problem of uncertainty is worse in the presence of

color. On the other hand, color offers additional evidence

for or against an object’s identity. Humans use color this

way all the time, and it would be helpful if machines

could have the same ability. Therefore we made the

choice to use color in our applications and attempt to reap

the benefits it does offer over black and white or

grayscale analysis. Specifically, we used the YIQ color

model, which allows one to analyze and manipulate

luminance and chrominance information separately.

Color analysis is similarly used in [7], but with the RGB

model, to segment the hand in a system which replaces

the mouse with a pointing finger.

The system proposed in [8] is similar to ours in its use of

color and tangible objects as inputs. The physical objects

are color cubes that a user arranges on a semi-transparent

surface. A webcam under this surface captures this

arrangement, which represents a sketch of an image the

user wants to retrieve from a database. This “query by

example” approach tries to match the appearance and

placement of colors in the sketch with images in the

database.

 We are still experimenting to discover colors that stand

out best in the environment and that are easily

distinguishable from one another. We have experimented

with three tag designs, which we describe next, mostly

focusing on the color barcode as it best illustrates the

problem of imperfect data.

Unlike TRIP and CyberCode, our tags have a simple

design. This simplicity allows for fast image analysis,

which is crucial for true real-time interactive computing.

The classroom setting is an ideal test-bed for visual tags.

Many educational activities involve the identification of

objects. For example, playing physical puzzles involves

recognition of the puzzle pieces. Tagging the pieces

simplifies the automation of this task. Similarly, abstract

concepts can be represented using drawings on physical

objects (e.g. wooden cubes) which can then be tagged so

that the computer can recognize them as well. The basic

idea is to have a computer quickly recognize an object,

and perhaps also its position relative to other objects, so

that a vision-based application can guide, correct, or

encourage a child attempting to also identify that object as

part of an educational exercise. For each activity, the

tagging scheme chosen must allow the representation of

enough values to cover all the different objects used.

2.1 Single Bit (SB) Tag

The SB tag is identified by its color and the presence or

absence of a black patch, about 1/3 the size of the tag, at

the center (see figure 1). For each color, the SB tag

represents a 0 if it has a patch and a 1 if the patch is

absent. We read the SB tag by computing the proportion

of the tag’s area that is not covered by the black patch. If

this proportion is close to one, we conclude that there is

no patch and set the tag value to 1. Otherwise, the tag

value is set to 0. SB tags can be used to represent

attributes that have two values, such as, “yes” or “no.”

For example, a classroom activity might require children

to separate seashells according to whether they are hinged

or unhinged. SB tags can be used for computer vision-

based assistance in this activity.

Figure 1: An orange SB tag with value 1 and a green SB tag with

value 0.

2.2 Punch Hole (PH) Tag

In PH tags, shown in Figure 2, each tag has a different

number of holes punched into it. A tag with no holes

represents the value zero. A tag with n holes represents

the number n. A 2” by 1” tag can accommodate up to 15

holes, permitting the representation of 16 values per color.

To read PH tags, we first calculate the area occupied by a

tag with no holes. For tags with holes in them, we count

the number of pixels of the tag color still remaining on the

tag. Thus the largest area represents 0, while the smallest

area represents 15, for a given color.

Figure 2: PH tags with values 0 and 3.

2.3 The Tricolor Barcode

Other barcode-enhanced user interfaces have been

proposed, but many are black and white and require a

special barcode reading device. For example, in [9], a

bookmark management system is introduced for

barcoding objects so that they can be linked to the web

addresses with which they are associated. Scanning the

barcode using a barcode reader causes the current web

page address to be stored in a database. Scanning while

holding down the Ctrl key brings up the addresses

previously linked to the object.

Our tricolor barcode consists of three different colored

tags, such as, red, green, and blue. On a tag is a barcode

made up of black and white bars. The leftmost bar is

white. It marks the beginning of the code and also

indicates what color represents binary 1. Black bars

represent binary zero. The code itself begins at the second

bar and is read up to the middle of the tag. The remaining

half of the tag is a mirror image of the first half, so that

the code can be read in either direction. Figure 3 shows an

example of a tag representing binary 2.

Figure 3: Barcode representing binary 2 (0010)

2.4 Dichotomous Sorting

The tricolor barcode will initially be used in a

dichotomous sorting classroom activity for children in the

6 to 8 age range.

Dichotomous sorting involves asking children to take

miscellaneous objects and sort them according to some

predefined category. Tags such as the ones shown in

figure 1 are affixed to each object. Each tag color

represents a category or attribute, such as, rock density,

origin, type and so on (see figure 4, for example).

Figure 4: Each barcode color represents a specific attribute. The

number encoded by the barcode represents the value of that

attribute for this object.

The children place the objects on a mounted glass surface

with a camera below [10] (see Figure 5). Under the glass

is a camera that continuously sends a live video stream to

the computer running the dichotomous sorting

application. When the application receives a request to

process the current image, a sample is grabbed off the

stream and analyzed in a manner, described below, that

ensures a tag can be read regardless of its orientation.

Figure 5: Prototype setup for dichotomous sorting classroom

activity.

2.5 Barcode reading algorithm

Assuming for the sake of clarity that we are looking at red

tags in the captured image, we first find the bounding

boxes for all red tags in the image. These are encoded in a

list, which is then saved to a file. Each 4-tuple in the list

represents the minimum row, maximum row, minimum

column, and maximum column values for a bounding

box. Tags are read by analyzing the colors and color

transitions inside the area enclosed by each bounding box.

The tags may appear in the image oriented in any

direction. The tag reading algorithm, based on the barcode

reader found in [11], takes this into account by following

the steps below.

1. Attempt to read the tag horizontally. If the tag is

valid (i.e. has 20 transitions), go to step 5.

2. Attempt to read vertically. If the tag is valid go

to step 5.

3. Attempt to read in a diagonal direction. If the tag

is valid go to step 5.

4. Attempt to read the other diagonal direction.

5. If the final count of transitions is less than 20,

output an error code; otherwise output the value

read in one of the preceding steps.

3. Dealing with Imperfect Data

Initially, the system does not know what a red, green, or

blue tag is. We have to train it to recognize these colors.

We do this by taking a few pictures of the tags at the

beginning. We click on a tag of each color multiple times.

We have found that about 36 to 40 clicks are sufficient.

The average YIQ triple is computed. To compute the

luminance tolerance, we find the maximum absolute Y

difference between all samples and the average. We

compute the chrominance tolerance by finding the

maximum square difference between the (I, Q) pairs of

the samples and that of the average. We use this “farthest

from midpoint” heuristic in order to avoid missing any

pixels of a given color, but outliers can skew it. In future

work we will try other heuristics.

We use the contour tracing algorithm, due to Pavlidis

[12], to find tags. Contour tracing is sensitive to

discontinuities that inevitably appear in the image due to

the error prone nature of image acquisition cited earlier.

As a result, we often find a much larger number of tags of

a given color than are actually present. A partial solution

to this problem lies in the fact that many of these are

clearly invalid tags consisting of one pixel, a short straight

line, or a small rectangle. The tag reading procedure will

eliminate these, as it will not find the right number of bars

in any of them. We consider this a partial solution for two

reasons. The image can be of such poor quality that it is

split into many small tags, none of which are valid.

Secondly, when contour tracing produces a large number

of tags, the application slows down noticeably. It is

important to overcome this obstacle in our application, as

children can easily grow impatient and abandon the

system if it is slack to respond. Choosing the right

tolerance values is crucial to solving this problem.

Another method that we have used to come up with

suitable luminance and chrominance tolerance values is

through manual inspection of images. We look at the

image of a tag and if we see a wide variation in brightness

over the tag, we use a larger value for luminance

tolerance. Similarly if we see a wide variation in the color

of the tag, we use a larger value for the chrominance

tolerance. We have found that this technique results in

tags being read correctly for a significant proportion of

the trials. However, it is not immediately clear how to

automate this process. In future work we will investigate

an AI approach that somehow incorporates our

knowledge of tag image appearance and the physical

environment.

4. Experiments

We tested the barcode application by reading tags

repeatedly. We varied the experiment in four ways: (1)

using a web cam with a direct view of the tags, (2) using a

web cam viewing tags through Plexiglas, (3) using a

digital video camera with direct view, and (4) using a

digital video camera through Plexiglas. Ideally, for a

single tag, only one bounding box should be found. This

was the case when the application was tested with perfect

synthetic images. Multiple bounding boxes are found in

real images when degraded quality results in color

discontinuities. Thus the number of bounding boxes found

per tag is a good indicator of accuracy: the smaller this

number, the more accurate the system. The proportion of

trials in which tags are read correctly provides additional

evidence with respect to accuracy.

Bounding

boxes per tag

% Correct

readings

Webcam - direct 1 100

DVC - direct 1 100

DVC - Plexiglas 20 50
Table 1: SB Tag identification and reading accuracy

Bounding

boxes per tag

% Correct

readings

Webcam - direct 1 50

Webcam -Plexiglas 1.18 72

DVC - direct 1 62.5
Table 2: PH Tag identification and reading accuracy

Bounding

boxes per tag

% Correct

readings

Webcam - direct 1.5 90

DVC - Plexiglas 2.36 10
Table 3: Tricolor barcode identification and reading accuracy

The results, summarized in tables 1-3 above, show that,

while the use of a Plexiglas surface is more convenient,

direct view of objects affords greater accuracy. For

applications that use schemes such as SB tags, in which

pixel values are aggregated, degraded image quality

arising from the use of Plexiglas is not a significant

obstacle to accurate readings. However, where a single

misrepresented pixel can break the application, for

example in reading the color barcode, Plexiglas is not

suitable. We have tried to use clear glass and found that it

is worse than Plexiglas as it reflects objects from below

and this obscures the objects of interest that are on top.

Our current setup, however, does not allow for objects to

be viewed directly; they need to rest on top of something

transparent. We continue to work on discovering a setup

that is convenient for the children to use and that provides

high quality images at the same time. One of the ideas we

will be testing is an upright structure with shelves on

which to place objects from one side so that a camera on

the opposite side can see them directly.

A rather surprising observation we have made is that the

digital video camera images are of a lower quality, from a

computational analysis point of view, than those obtained

from a low-cost, low-resolution webcam.

We note also that the results for PH tags are inconclusive,

with unacceptably high percentages of incorrect readings

in all test cases. This is probably as a result of poor tag

design or a poor reading method for this tag type. In

future work we will look at the issue of tag design and tag

reading techniques that suit particular designs.

5. Conclusions

We have implemented a library of functions that detects

three different types of visual tags. This work contributes

to the state-of-the-art by providing a generic way of

tracking tangible user interfaces in an environment.

Our barcode reading algorithm works perfectly on perfect

synthetic images; these barcodes are read correctly the

first time. This underscores the importance of the problem

of imperfect data in vision-enabled interfaces, especially

when the intricate details of the image have meaning. We

feel that this problem has not received enough attention in

the literature. For any given new vision-enabled interface,

there will be conditions that can easily arise where it can

fail completely. We need greater acknowledgement of this

fact and increased research into how to deal with it. While

it may not be possible to produce systems that perform

well under all circumstances, it would be very beneficial

if we could enable users to determine the circumstances

and input parameters that can give the more accurate

performance. Our preliminary anecdotal observations

indicate that this is possible through rigorous empirical

evaluation.

6. Acknowledgments

This work is being supported by the National Science

Foundation under Grant No. 0203333.

References:

[1] F. Quek, Eyes in the interface, Image and Vision

Computing, 13(6), 1995, 511-525.

[2] F. Quek, Non-verbal vision-based interfaces.

Keynote speech, International Workshop in Human

Computer Interface Technology, Aizuwakamatsu,

Fukushima, Japan, 1995.

[3] J. J. Magee, M.R. Scott, B.N. Weber, & M. Betke,

EyeKeys: A real-time vision interface based on gaze

detection from a low-grade video camera, Proc. IEEE

Workshop on Real-Time Vision for Human-Computer

Interaction, Washington, D.C., 2004, 159-166.

[4] B. Ullmer & H. Ishii, Emerging frameworks for

tangible user interfaces, IBM Systems Journal,

39(3&4), 2000, 915-931.

[5] D. L. de Ipina, P. Mendonça, & A. Hopper, TRIP: A

low-cost vision-based location system for ubiquitous

computing, Personal and Ubiquitous Computing

Journal, 6(3), 2002, 206-219.

[6] J. Rekimoto & Y. Ayatsuka, CyberCode: Designing

Augmented Reality Environments with Visual Tags,

Proc. ACM Conf. on Designing Augmented Reality

Environments, Elsinore, Denmark, 2000, 1-10.

[7] F. Quek, T. Mysliwiec, & M. Zhao, FingerMouse: A

freehand pointing interface, in Proc. International

Workshop on Automatic Face and Gesture

Recognition, Zurich, Switzerland, 1995, 372-377.

[8] K. Matovic, T. Psik, & I. Wagner, Tangible image

query, Lecture Notes in Computer Science, 3031,

2004, 31-42.

[9] P. Ljungstrand, J. Redstrom, & L.E. Holmquist,

Webstickers: Using Physical Tokens to Access,

Manage and Share Bookmarks to the Web, Proc.

ACM Conf. on Designing Augmented Reality

Environments, Elsinore, Denmark, 2000, 23-31.

[10] L. Scarlatos, TICLE: Using multimedia multimodal

guidance to enhance learning, Information Sciences

140(1-2), 2002, 85-103.

[11] J.R. Parker, Practical Computer Vision Using C

(New York: John Wiley & Sons, 1994).

[12] T. Pavlidis, Algorithms for Graphics and Image

Processing (Rockville, Maryland: Computer Science

Press, 1982).

