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ABSTRACT

3D puzzles provide valuable opportunities for both

individuals and groups of people to explore, learn, and
create in a natural way. In educational settings, learners

using these tools can benefit from occasional intervention
by a knowledgeable “guide on the side”.  In our project,

Tangible Interfaces for Collaborative Learning
Environments (TICLE), we are exploring innovative ways

of enabling a computer to take on that role as children

manipulate physical puzzle pieces.

In this paper, we describe recent work on a system for

tracking and responding to manipulations of 3D puzzle
pieces. This work is unique in that we have developed 1)

strategies for tracking multiple wireless objects in a true 3D
space, and 2) translation- and rotation-invariant

representations of the 3D puzzle state that are used to

trigger appropriate responses.  We describe how these
strategies and representations are used in a system that

“watches” as children play with a Soma cube puzzle.

KEYWORDS: Tangible interface, ubiquitous computing,

collaborative learning, educational applications, K-12 math
and science education, puzzles, Soma cube, stereo vision,

sensors, guide on the side.

INTRODUCTION

Blocks and 3D puzzles provide people of all ages and

abilities with invaluable opportunities to explore, learn, and

create in a natural way [5, 14]. Young children learn about
their world by manipulating objects within it. Older

children can develop a better understanding of spatial
relationships and mathematical concepts by playing with

puzzles.  Occupational therapists give blocks and puzzles to
people whose functions have been impaired by physical

illness or injury, to help them develop their cognitive,

perceptual, and problem solving skills. For animators,
architects and designers, physical models aid the creative

process by helping them to better visualize and analyze
their creations. In all cases, the opportunity to work

collaboratively is an added benefit of working with physical

objects.

In learning situations, however, students working with
physical objects sometimes need the intervention of a

teacher or knowledgeable guide. This “guide on the side”

can reinforce key concepts, provide encouragement, get
learners to think in innovative ways, and help keep them

focused on the task at hand. Yet in these days of shrinking
budgets, instructors are rarely able to provide that level of

attention; they simply have too many students. What these

instructors need  are teams of teachers’ aides  to keep all of
their students on track while they (the real teachers) are

working with other students.
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In answer to this need, we are developing Tangible
Interfaces for Collaborative Learning Environments

(TICLE). This project strives to create computer-based
“guides on the side” that “watch” as children play with

physical puzzles, and offer help or suggestions as needed.
Our approach is to regard the physical puzzle pieces as

elements of a tangible interface. With this system, children

are free to explore and collaborate without having to share a
computer or learn to manipulate 3D objects using a mouse.

Yet they can still benefit from the computer’s instruction as
needed (and only when they want it). Previously, we had

successfully implemented and tested a 2D Tangram puzzle

using this approach [12, 13].

In this paper we present our most recent work, which
extends these ideas to the third dimension and applies them

to a Soma Cube puzzle. This work is unique in that we are

tracking multiple wireless 3D objects simultaneously in a
small space. Here, we present two approaches to this

problem. We have also developed novel representations for
the state of the 3D puzzle, which are translation- and

rotation-invariant. These representations enable our system

to select appropriate hints, give encouragement as progress
is made, and offer congratulations when the solution is

found. We describe how these techniques are applied to one

particular 3D puzzle, the Soma cube.

Although our focus has been on learning math concepts
with puzzles, the ideas presented here will readily extend to

many other applications. Potential applications include
puzzles used by occupational therapists, models used to

teach science concepts, and design tools for animators,

architects, and designers. Applying our techniques to these

other applications will be addressed in our future work.

BACKGROUND

As we looked into the range of possible techniques for

tracking 3D puzzle pieces, we found two approaches to be

promising. One is to use stereo vision; the other is to use

sensors with wireless communication.

Stereo Vision

Human beings use a variety of senses to learn about the

three-dimensional world we live in. Yet most people rely
primarily on our sense of sight, or vision. Because our eyes

are separated by a few centimeters, each eye sees a slightly

different image which is sent to the brain for processing.
The mind combines the two images by matching up the

similarities and adding in the small differences. This three-

dimensional perception is useful in making judgments
about distances, angles, shapes, volumes, and spatial

relationships. Like human binocular vision, stereo vision
uses two cameras to capture images of the world; stereo

algorithms reconstruct the structure of the scene. The
greatest difficulty in stereo vision is something that people

do quite naturally: identifying correspondence in the two

images.

Stereo vision has many application areas, including

measurement and controls for industry, biological sciences,
and surveillance and security. For example, José is a

visually guided mobile robot that can safely map, explore
and navigate unknown indoor environments [8]. It uses

three identical wide angle cameras and a frame grabber to
capture images that are sent via a radio modem to a host

computer for processing. Here, stereo vision enables the

robot to operate in unknown, unstructured environments.
As another example, the Mechatronic Systems and

Robotics Research Group at the University of Surrey is
developing robotic stereo head systems for autonomous

robot control and augmented reality [7]. Here, too, stereo

vision is used to intelligently derive information about a
scene, guide a robot through an unknown space, and enable

the robot to accomplish a variety of tasks (requiring object
recognition) once the robot gets there. Point Grey Research,

Inc.’s proprietary Digiclops Stereo Vision System is a full
software-hardware solution for real-time applications such

as 3D object modeling, face recognition, gesture interfaces,

and people tracking in surveillance systems [11].

Stereo vision has also been used extensively to do motion

tracking for animation. Here, multiple cameras track the
paths of tags placed at key positions on human actors. This

technology is continually being enhanced. For example,
Utsumi et al. [17] have developed a system for integrating

data from non-synchronous cameras. They use an
understanding of the human model to help decide which

camera view to use. Their system has the advantage of

scalability, in terms of both observable region and number
of observation nodes, because the cameras don’t need to be

synchronized.

Sensor Solutions

Although some tangible interface projects have used

computer vision to track objects on a 2D surface [12, 16],
many others explore alternative ways of sensing where the

elements of the tangible interface are. Anderson et al. use
modified Lego bricks that have circuit boards inside to
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build objects that the computer can recognize [1].
Electricity is sent through the bricks in such a way that

determines the shape of the structure.  All of the
information is then passed to a special brick, called a drain,

which has a serial connection to the computer.  Although
this is an excellent idea, it is not wireless; nor does it work

in real-time.  ActiveCube [6] is a set of cubes that connect

to each other in any arrangement, since the faces are the
same.  Although this is done in real-time, this

implementation does not eliminate the need for one cube to

be directly connected to the computer.

In a related effort, Gorbet et al. built a system that uses
tangible triangles to allow users to arrange presentations by

manipulating the triangles [4].  When two triangles are
connected or disconnected, they trigger events accordingly.

The applications described in their paper are concerned

solely with discerning which pieces are touching, and do
not require the distinction between which edges are

touching, although the paper states that this distinction can
be made.  Similarly, Camarata et al. use objects—cubes—

to affect a presentation based on their orientation and

connection to other pieces [2].  Depending on which faces
of the cubes are upturned, different information is

displayed.  Pieces can also be connected to each other if
they are related.  This is controlled with electromagnets.  In

their system, infrared is used to relay the state of the cubes

to the host computer.

APPROACH

For our application, we were faced with the task of keeping
track of where multiple 3D puzzle pieces are in relation to

one another, in real time. Our software also had to respond
to interrupts from learners, selecting appropriate hints based

on the current state of the puzzle. This meant that at least

once every second, our software must 1) sense where the
puzzle pieces are, 2) generate a representation of the current

state, and 3) respond appropriately to the current condition.

Working in educational settings imposed some additional

requirements. One is that our system had to work in an
environment where several students might be playing with

a puzzle simultaneously. Naturally, this environment is
filled with noise, both auditory and visual. A second

constraint is that the puzzle pieces had to be wireless. We

did not want children to get tangled up in wires, or
accidentally yank wires out of the back of a computer. A

third constraint is that the technologies we employ had to
be relatively inexpensive. Ultimately we would like to

make these puzzles available to educators, therapists,
schools and museums, all of whom have to work with

relatively low budgets.

Yet although we wanted to develop an approach that was

general enough to support a wide range of 3D puzzles, we
found that we could make several simplifying assumptions.

One assumption is that the precise positions and
orientations of the puzzle pieces are irrelevant; in fact, we

want to minimize such constraints on the children. What’s

really important are the relationships between the pieces. A
second assumption is that precise measurement of distances

between the puzzle pieces is unnecessary. Instead, we are
only concerned with whether two pieces are touching one

another and, if so, how they are touching one another.

We developed two parallel approaches for tracking the

puzzle pieces. Our first approach is to use stereo vision to
determine the positions and orientations of individual

pieces. We then convert these values to relative orientations

and positions in our representation of the current state. Our
second approach is to use sensors to detect touching pieces

and wireless communication to transmit that information to
the computer. We then use these data to derive a

representation of the whole puzzle. Both approaches

produce a translation- and rotation-invariant representation
of the state of the puzzle, which aids the selection of

relevant hints. Our strategies for representing the puzzle
support a range of possible puzzle types, and are

independent of the tracking method used.

Seeing Puzzle Positions

Our first approach to the tracking problem is to use stereo

vision, with images taken simultaneously by a pair of
digital cameras. For any computer vision system, the proper

input is the backbone of the system. For our system, we
paint the puzzle pieces to make them more recognizable.

We use distinctive fluorescent colors to identify the pieces,

selecting those colors such that they have the widest
possible distribution in the YUV color space. We also mark

the edges  of the puzzle pieces with reflective tape so that
they stand out in the images. Controlling the lighting in the

learning environment, with the light sources located near

the cameras, enables us to survey these edges properly.

Given a stereo pair, we first remove the noise from an
images using median filtering. Then we convert the RGB

images to YCbCr (luminance/chrominance color space) and

generate two temporary images for each original: a Y
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image, containing just the luminance values, and a CbCr

image, containing just the chrominance values. Next, we

perform the morphological operation of erosion on the Y
images, which causes the bright areas to shrink. This

reduces the apparent width of the tape on the puzzle edges,

making those edges more defined.

The next step is feature extraction. We first detect the
eroded edges in the Y images using the Sobel gradient

method, applying two 3x3 kernels that detect horizontal and

vertical gradients respectively. We then use Harris corner
detection to find corner points  in the image.  These corners

and edges define the boundaries of the polygonal faces of
the puzzle pieces. Then, the color in the center of each

polygon (found in the CbCr image) determines which puzzle
piece that polygon belongs to. Because the colors captured

are bound to vary, as shown in figure 1, we use nearest

neighbors to find the best match in the CbCr color space.
We then use these results to tag the corner points with

puzzle piece identifiers.

Figure 1: due to a variety of factors, colors in the

images will diverge from the colors being sought.

With the corners detected, the next problem is correlation
of the stereo pair. We do cross-correlation based on

intensity by comparing local neighborhoods of corners. As
a neighborhood, a small window of pixels centered around

the corner is considered. Epipolar geometry aids the search

for corresponding points, reducing the search space from
the entire second image to a single epipolar line. So, each

pixel in the reference image is compared with pixels along
the epipolar lines in other image. The comparison measure

is obtained as follows:

          N        N

C = Σ    Σ ( I(x-i , y-j ) - Î ) (I'(x'-i , y'-j ) - Î' )
    i=-N    j=-N

where I and I' are the intensity values at a certain point, and
Î and Î' are the mean intensity values of the considered

neighborhood. For a corner located at (x,y), this means that
the corner in the other image will have coordinates located
in the interval [x-wi, x + wi] ∉ [y-hi, y+hi], a small portion

of the overall image.  For each point found in both stereo
images, we calculate the three dimensional world

coordinates using:

         D (xL + xR)
X  =  
          2 (xL - xR)

            D y
Y  =  
         xL - xR

            D f
Z  =  
         xL - xR

where xL and xR are the x coordinates for an image point
in the left and right images respectively, D is the separation

between the cameras' centers and the constant f is the focal

length of the camera.

The final step is to determine the position and orientation of

each piece based on the positions of the corners. We apply
affine transformations to the corner points, rotating and

shifting the values until we achieve a reasonable match
with our internal representation of the puzzle piece. These

position and orientation values help us to determine which

pieces are touching and how.

Sensing Puzzle Positions

Our second approach to the tracking problem is to use
sensors within the puzzle pieces to detect their condition.

Although we experimented with strategies for sensing
absolute positions and orientations of the puzzle pieces, we

were not able to detect these values with the required level

of accuracy. However, we are able to detect which puzzle

pieces are touching one another, and how.

We extended Anderson et al.’s approach for computational
building blocks [1], which uses touching pieces to generate

a current that can be detected by the sensors. But instead of
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transmitting this information along wires, we use wireless
communications via radio frequency (RF) transceivers to

send information about the state of each puzzle piece to the

computer.

We use a configuration similar to the one shown in figure 2.
Two touching puzzle pieces complete a circuit, which

allows the passage of an electrical current through a current
sensor. By placing distinct resistors at each possible circuit,

we can tell which sides of which pieces are adjacent to each

other. With additional resistors, we can detect relative
orientation as well. The current sensor inputs data to a

Basic Stamp, which then formats a message and sends it to
the computer through the RF transceiver. The setup of the

leads on the outside of the pieces ensures that every
adjacency will be sensed twice, once by each of the two

pieces. These face-to-face relations then lead to a

representation of the current puzzle state.

Figure 2: two touching faces complete a circuit. The

resulting current is detected by the sensor,

interpreted by the Basic Stamp, and transmitted to

the computer.

Representing Puzzle State

In order to provide appropriate hints and responses to what
the children are doing, the tracking data must produce a

rotation- and translation-invariant representation of the state

of the puzzle. For most 3D puzzles, we are only concerned
with pieces that touch one another, face to face; disjoint

puzzle pieces are not yet part of the puzzle, and so we don’t
really care where they are. In addition, we are only

concerned with how they touch in general: precise
measurements are not required. Therefore, it is sufficient to

represent these relationships only, and then combine  them

in a unique way. For this, we use a variation of our

representation of 2D puzzle states [12].

For puzzles that have only one solution, this representation
is sufficient. However, some puzzles such as the Soma cube

provide numerous ways of producing a solution. In these
puzzles, it is the resulting shape that is most important.

Therefore, we have developed a supplemental strategy that

allows us to quickly check the overall shape of the
combined puzzle pieces. We describe both representations

here.

Face-to-Face Relationships.   We represent two touching

faces on two different pieces with a string of the form:

p1.f1.p2.f2.angle.relation

We presume that in a puzzle with n pieces, each puzzle
piece has been assigned an identifier, and that these

identifiers may be ordered such that P1 ≤ P2 ≤ … ≤ Pn. If
Pi = Pi+1, then the pieces are identical and therefore

interchangeable in the solution. Then  p1 and p2 ∈ [P1, P2,

… P n] identify the touching puzzle pieces. We also

presume that each puzzle piece pi is made up of mi

polygonal faces, each of which is labeled with an identifier
such that pi.F1 ≤ pi.F2 ≤ … ≤ pi.Fmi. In this case, faces that

have the same identifier represent symmetry in the piece,
allowing for alternative orientations. For example, a cube

may be turned any of six ways and still yield the same

result. Then f1 ∈  [p1.F1, p1.F2, … p1.Fm1] and f2 ∈  [p2.F1,

p2.F2, … p2.Fm2] represent the faces that are touching on

pieces p1 and p2 respectively. In our string representation,
we require that p1 ≤ p2; and if p1 =p2, then f1 ≤ f2. This

ensures that there is exactly one representation of each

possible face-to-face relationship.

Every face of every puzzle piece has an orientation vector
which is used to determine how that face is turned relative

to another face. If face f1 has an orientation vector v1, and

face f2 has an orientation vector v2, then angle in the string
representation indicates the angle from v1 to v2. This value

may be quantized to eliminate small measurement errors

and represent relevant changes in orientation only.

Finally, two faces can touch any one of several different
ways. The ways that these faces can touch is most generally

represented by the 2D topological relationships used in
mapping systems [3]. We represent this in the string with

relation, which can take on any one of the eight possible

topological relationships, as shown in figure 3.

Our string representation yields a single substring for every

possible 3D face-to-face relationship. Given a set of these
substrings, we can produce a unique string representation of

the puzzle’s current state by sorting and then concatenating
the substrings. We may then examine this state by looking
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for the presence or absence of particular relationships

required in the final solution.

Relation
Code

Example Relationship

0 disjoint

1 A meets B

2 A contains B

3
A contains B

and

A meets B

4 B contains A

5
B contains A

and

A meets B

6 A intersects B

7
A coincides with

B

Figure 3: eight possible face-to-face relationships

and their codes.

Voxel Space Representation.   For puzzles in which the
overall shape of the solution is more important than face-to-

face relationships, we need a volumetric representation of
the space. Voxels are the best choice for puzzles whose

pieces are composed of cubes or box-like pieces. Given the
face-to-face relationships, it is trivial to build a volumetric

representation of the touching pieces. To ensure a unique

representation of the puzzle state, we translate the voxel

model to align its origin with that of piece P1, and rotate the

voxel model to align its axes with those of piece P1.

IMPLEMENTATION

For our first 3D puzzle, we decided to implement the Soma

cube, invented by the Danish poet and inventor Piet Hein

[9]. The seven pieces of the Soma Cube are the set of all
irregular shapes formed by no more than four face-joined

cubes  (polycubes) as shown in figure 4. Hein first defined
this set of pieces, then discovered that  they could be put

together to form a 3x3x3 cube. In fact, there are 240
possible ways to do this. As with the Tangram, there are

many other figures that can be created with the Soma

puzzle pieces as well.

Figure 4: seven pieces of the Soma cube represent

all irregular combinations of no more than 4

polycubes.

The Soma cube puzzle has actually generated a great deal

of interest in the mathematics community, particularly in

the area of combinatorics [10, 18]. Apparently, significant
solution hints may be found by looking at the parity of the

cube, and by treating it as a partitioning problem.

For this puzzle, we decided to implement two versions: one

that uses stereo vision to track the puzzle pieces, and
another that uses sensors to detect face-to-face

relationships. We have not yet decided which approach is
better for this puzzle. Yet our strategy for representing the

current puzzle state, and the set of hints, are the same for

both versions. In both cases, the goal is to construct a

3x3x3 cube using the seven Soma cube puzzle pieces.

Stereo Vision Version

To help distinguish the Soma puzzle pieces from one

another, we painted them with seven different colors: red,

green, blue, yellow, magenta, gray and orange. The color
selection was based on their distribution in YUV space. We
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then marked the edges with reflecting tape, enabling us to

survey edges properly.

Figure 5: sequence of image processing operations

used to find corners for stereo correlation.

Figure 5 shows some of the image processing steps taken to

derive the puzzle pieces’ positions and orientations in

space. Although we have been discussing operations on one
pair of stereo images, we actually need to have multiple

pairs of cameras capturing images simultaneously. This is
because computer vision suffers from the problem of

obscuration. Although six orthogonally positioned pairs of
cameras would be optimal, we have found that two pairs of

cameras, mounted overhead, are generally sufficient.

The information returned by our algorithms is converted to

our Soma puzzle representation as described in the section

below.

Sensor Version

Using cardboard boxes to construct the Soma cube, we
place a Basic Stamp and radio frequency transceiver in

each of the seven pieces.  Attached to the Basic Stamp is a

current sensor for each face of the piece. In order to achieve
greater accuracy, we consider each outward facing side of a

polycube to be a separate face on the puzzle piece; and so,

each Soma puzzle piece has either 14 or 18 faces.

Each current sensor detects an initially incomplete circuit
which is completed when two pieces touch.  We have

arranged the leads such that each face has the potential to
complete one of two possible circuits, as shown in figure 6.

In this arrangement, opposite passive leads are connected

by a wire, a battery, and resistors. Each side also contains
one set of active leads, which are attached to the sensor and

Basic Stamp.

Figure 6: arrangement of leads on each face of the

Soma Cube. Solid lines = active leads, dashed lines

= passive leads.

When the active leads of one piece touch the passive leads

of another, a circuit is completed.  The current sensor
detects  the current on the circuit to determine which side of

which piece is being touched.  The rotation is also
determined this way.  Since all possible circuits will have

different amperage, 90/270 degree rotations are easily

differentiated from the 0/180 degree rotation.  To



8

differentiate the 0 degree rotation from the 180 degree
rotation, and 90 from 270, an extra resistor is put into the

circuit on the active leads half.  This resistor will affect the

amperage of the 180/270 degree rotations, but not the 0/90.

The Basic Stamp interprets the current data as adjacency
information, and then transmits it to the computer via the

radio frequency transceiver. The setup of the leads on the
outside of the pieces ensures that every adjacency will be

sensed by the two pieces. However, we eliminate the

duplication by having only the lower-ID piece transmit that
adjacency. This information readily translates to our face-

to-face representation.

Soma Puzzle Representations

With 240 possible solutions, we need a volumetric

representation of both the current state and solution state.
Because the Soma cube pieces are built from polycubes, a

voxel model is ideal for this puzzle. However, the transition
from tracking information to this representation requires

several intermediate representations. These include the
face-to-face representations described earlier, internal

models of the 3D puzzle pieces, and translation- and

rotation-invariant voxel models.

Representing 3D Puzzle Pieces.   We identify the seven

pieces of the Soma cube using the numbers typically used
in the literature and shown in figure 4. Three or four

polycubes, arranged on a grid, define the local geometry of
each Soma puzzle piece. For simplicity, we define the grid

such that each polycube is unit size. Then, the position of a
polycube in the model may be indicated by a coordinate

triple (x, y, z) representing the location of its lower-left

corner. Our representation of each Soma puzzle piece’s
local geometry therefore consists solely of three or four

coordinate triples.

In order to represent puzzle pieces that are touching, we

must map these local coordinates to a common coordinate
frame. Although we do store an absolute position (x, y, z)

and orientation (angles θ and φ  about the x and y axes

respectively) for each puzzle piece in the stereo vision
version, we need a representation of the world that is

translation- and rotation-invariant. For this representation,
we use the position and orientation of the piece with the

lowest-valued identifier (typically P1) to define this
common coordinate frame. The origin of the frame

corresponds to the origin of this piece, and the axes of the

frame are aligned with the axes of this piece. Then, we

store a rotation matrix and translation matrix for each
puzzle piece to achieve this mapping. These matrices are

used later on to create the voxel model described below.

Face-to-Face Relationships.   For the Soma cube puzzle, we

use the face-to-face representation to derive 3D puzzle

information for the sensor-based puzzle only.

Figure 7: face labels relate to the geometry of the

Soma cube puzzle pieces.

We have tried to pack as much relevant information as
possible about the 3D puzzle state into this representation.

Each face on a puzzle piece is labeled with a coordinate
triple representing the location of its corresponding

polycube, concatenated with a representation of where the
face appears on the polycube: R(ight), L(eft), T(op),

B(ottom), N(ear), or F(ar). Figure 7 shows some of the face

labels for piece P1.

For the Soma cube, the only valid angles of orientation

between touching faces are increments of 90 degrees. We
use orientation vectors corresponding to the j vector (y

axis) on the 3D model for all R(ight) and L(eft) faces, and
to the i vector (x axis) for all other faces. Furthermore, the

only relevant relationship between faces is 7 (i.e. the two

faces are coincident). Figure 8 gives the pseudo-code for
deriving the rotation (R) and translation (T) matrices that

align puzzle piece p2 with p1., and position p2 within the

voxel model.
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Align ( p1, f1, p2, f2, angle, relation, R1, T1 // input values
R2, T2) // output matrices for p2

{
// use angle to determine first rotation
R2 = rotation by –angle about axis normal to the face
// use table to determine second rotation;
// concatenate to first rotation
R2  = R2 * rotation to align normals to p1 and p2
// apply R2 to local coordinates of face f2
f2’ = R2 * f2
// calculate offset needed to align p1 and p2
T2 = f2’ – f1
// concatenate p1’s transformation matrices
R2 = R2 * R1
T2 = T2 * T1

}

Figure 8: pseudo-code for aligning puzzle piece p2

with p1, given their face-to-face relationship.

Voxel Space Representation.   We represent both the

current state and the solution state of the Soma cube  with
voxel models. Once again, each unit in the voxel grid

corresponds to the size of a single polycube.  Because we
are only interested in puzzle pieces that have been put

together (i.e. are touching), the current state only represents
clusters of touching Soma puzzle pieces. This means that

the current state may actually be represented by up to three

voxel models. Yet this actually simplifies our
representation. For any voxel model, the piece with the

lowest ID value defines the coordinate frame. Subsequent
pieces have relative orientations in 90 degree increments

and offsets expressed in polycube units. We do not have to
worry about free rotations or polycubes that are not aligned

with grid boundaries.

Voxel models are created dynamically, with dimensions

corresponding to the bounding box about the set of

touching pieces. Then, each voxel is either filled (i.e.
contains a polycube) or empty. A filled voxel specifies

which Soma cube puzzle piece fills that space. This helps to

determine which hint is appropriate when one is requested.

Guide on the Side

We generate our voxel model(s) of the current state
approximately once every second. If the current state is

represented by a single 3x3x3 voxel model in which each
voxel is occupied, then the solution has been found and

congratulations are offered. Otherwise, the current state can

be used to trigger a hint. Our basic hints are the following:

• The solution must be 3x3x3; remind users of this if the
voxel model extends beyond these dimensions in any

direction.

•  Disjoint voxels cannot be filled by any of the Soma

cube pieces; remind users of this if these are the only

unfilled spaces.

•  Sometimes there will be a space where a piece could
fit, but the user just doesn’t see it; suggest turning the

piece around and trying to fit it in the available space.

•  P5, P6 and P7 are the most complex shapes, and have

the smallest number of possible positions in the 3x3x3

cube; suggest putting these puzzle pieces together first.

We are also considering adding the following advanced

hints:

•  Using parity, one can prove that the central polycube
of P1 cannot lie in any of the corners of the final cube

[18]. Parity may also be used to determine whether the

current locations of P3 and P7 will prevent a solution

from being found.

•  Viewing this as a set partitioning problem, one can
evaluate a starting configuration and determine

whether it will be possible to find a solution [10].

CONCLUSIONS

We have presented two alternative strategies for tracking

3D puzzle pieces, and have described translation- and
rotation-invariant representations for the current state of a

3D puzzle. We have also described how these are
implemented in two versions of the Soma cube puzzle. In

the future, we plan to apply these techniques to a puzzle
that has a single solution, such as the Tower of Hanoi. We

also plan to apply this to puzzles used by occupational

therapists to evaluate cognitive abilities of clients. Finally,
we would like to explore other potential educational

applications in the sciences.
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