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ABSTRACT

Smart object interfaces enable a computer to respond to a group of users’ manipulations of a physical
environment. This unobtrusive interface is especially well suited for providing guidance as students
attempt to solve mathematical and scientific puzzles. This paper introduces a formalism for describing
arrangements of smart objects on a 2D surface, and suggests a strategy for efficiently representing such
arrangements in a computer application. It then shows how these techniques are implemented in a
Tangram with a smart objects interface, which provides multimedia feedback as children play with the
puzzle pieces.
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INTRODUCTION

Graphical user interfaces rely on metaphors to
achieve a familiarity that allows people to learn to
use them with minimal effort. Yet nothing is as easy
as manipulating things in the real world. Consider,
for example, a group of children attempting to solve
a puzzle on a computer. One child – who is
particularly adept at translating real-world actions
into cursor manipulations – operates the mouse
while the other children passively look on. Now
compare this to a situation where a group of
children is working with a 3D puzzle. They’re all
on the floor; everyone is participating and actively
learning.

With smart object interfaces, a computer responds to
one’s very natural manipulations of objects in the
physical realm. This allows people to focus on the
task at hand without having to worry about how to
give instructions to a machine. Yet building a smart
objects interface is non-trivial. Some of the
problems are:

• tracking multiple objects simultaneously in a
noisy (real world) environment,

• representing and detecting states that the
computer should respond to,

• providing feedback in a timely manner, and

• developing a solution general enough to apply
to a large class of possible situations.

This paper focuses on solutions to the last three
problems1. It also describes how these techniques
are being used in a prototype smart objects interface
for a mathematical puzzle at the Goudreau Museum
of Mathematics in Art and Science. This work is
unique in that it:

• Extends the standard set of 2D topological
spatial relationships to express all possible
arrangements of two solid 2D objects relative to
one another. This gives us a formalism for
describing states or configurations of the
interface that we wish to respond to.

• Describes an abstract data representation that
incorporates these topological relations, and
shows how this may be quickly updated and
used to detect full or partial solutions and
respond appropriately. Such rapid response is
essential in a smart objects interface.

• Implements these techniques in a puzzle
designed to make math and science more
accessible to middle school age children.
Multimedia feedback to the children’s actions
provides gentle, unobtrusive guidance, and
increases chances that children will successfully
complete and learn from the puzzle.

Although the focus of this paper is on mathematical
puzzles, the techniques described in this paper may

                                                       

1 Solutions to the first problem are described in a
technical report by the author [Scarl98a].



be applied to any other smart objects interface that
needs to detect 2D arrangements of objects. Some
examples include system simulations, planning, and
design applications.

MATHEMATICAL PUZZLES

For many students, math and science are “hard”
subjects that must be avoided at all cost. Yet all
children – even infants – are intrigued by physical
puzzles. Babies will spend hours putting things in
containers and taking them out again; older
children will see how high they can pile things
before they fall down. For many scientists and
mathematicians, our job is to solve puzzles. By
showing children the physical puzzles behind math
and science, we can gain their interest and help
them to understand and appreciate more abstract
concepts.

Bernard Goudreau, an engineer and mathematics
teacher, recognized this possibility and rose to the
challenge. He built twenty-two mathematical
puzzles and activities, and installed them in his
Museum of Mathematics in Art and Science which
he founded in 1980. Located in New Hyde Park,
NY, this unique learning and resource center
reaches more than 15,000 people annually through
workshops, programs, special events and
exhibitions. A large number of the visitors enjoy
working with the puzzles most of all. Yet the help
of a skilled instructor is often needed to clarify
puzzle objectives, remind players of the rules,
provide helpful hints when the players are “stuck”,
encourage players when they’re on the right track,
and explain the underlying mathematical concepts.
With only one instructor available for each group of
up to 35 visitors, students don’t always get the help
they need, and so they give up in frustration. The
smart objects project was initiated to overcome this
problem. Puzzles equipped with smart object
interfaces can passively “observe” students as they
play, offering help, hints, reminders and
explanations only when they are needed.

Other researchers, mostly at the MIT Media Labs,
have done some very innovative work on using
physical objects to interface with computers. The
Physics and Media group is working on self-sensing
everyday objects [Verpl96a] and using the user’s
body as an input device [Smith98a]. The
Epistemology and Learning group has developed
programmable play objects [Resni96a] that allow
children to build their own robots. Most directly
related to the smart objects is the work being done
by the Tangible Media group [Ishii97a].
Underkoffler’s illuminating light interface
[Under98a] inspired the approach I took for
detecting the puzzle piece locations [Scarl98a]. Yet

none of these efforts has produced the general
methodology for tracking and detecting multiple
objects that is needed for smart objects interfaces at
the Goudreau Museum.

SPATIAL RELATIONS AMONG PUZZLE
PIECES

If we want a computer to react appropriately to
arrangements of puzzle pieces – such as the puzzle
solution – we must be able to represent those
arrangements internally. It is important that each
arrangement have a single representation that is
invariant to affine transformations2. Likewise, an
internal representation should not be applicable to
more than one physical arrangement of the pieces.

In describing arrangements of two-dimensional
puzzle pieces, I assume the following for the
purposes of this paper.

1. A puzzle consists of a partially ordered set of
puzzle pieces. Identical puzzle pieces are
interchangeable, and may therefore have
identical labels. We will need to respond to at
least one solution (or arrangement or state) to
the puzzle. We will also need to be able to
recognize partial solutions.

2. Each puzzle piece is a solid polygonal area that
may be defined by its boundary. This boundary
may be described in terms of one or more
simple polygons. A simple polygon is described
by a cyclic sequence of non-intersecting straight
line segments (edges) connecting a set of
vertices (endpoints). Without loss of generality,
we can require that these endpoints be listed in
a particular order (e.g. clockwise)3.

3. In describing arrangements, we are primarily
interested in how two puzzle pieces meet. This
means that we need to indicate which
edges/endpoints are touching. Disjoint
arrangements are not considered. Most of the
other standard topological relations are of little
interest here. Because the pieces are solid, one
piece cannot contain another, nor can their
boundaries intersect. Pieces can overlap, but
this only happens when one piece is stacked on

                                                       

2 Translation, scaling, and rotation in particular.

3 More generally, we can insist that for any edge ei

defined by vertices vi and vi+1 the solid area should
be to the right of the vector from vi to vi+1. This
allows us to have holes in the puzzle pieces.



top of another, which is not allowed in two-
dimensional puzzles.

4. For symmetrical pieces, such as those shown in
Fig. 1, pieces may fit together several different
ways. Therefore multiple edges on symmetrical
pieces may have the same label, so that
different arrangements do not need to be
defined for different rotations of the piece.

Figure 1. Symmetrical puzzle pieces may have
duplicate edge labels.

5. When aligning puzzle pieces with respect to
one another, we only need to be concerned with
matching up endpoints. If both endpoints of a
smaller edge lie on a larger edge, we assume
that it does not matter if the piece is off-center4.

6. The puzzle pieces’ relationship to an external
coordinate system is irrelevant. Therefore all
spatial relations must be expressed relative to
the pieces themselves.

Past Work

Researchers working on artificial intelligence (AI)
and geographic information systems (GIS) have
produced a large body of literature on spatial
relationships. In the area of GIS, the focus is on
either topological or direction spatial relations
[Papad97a].  Although the 2D topological relations
are well defined [Egenh89a] and are useful for
describing relations among spatial entities in GIS,
they include relations that cannot occur among solid
objects (e.g. intersects) and do not represent how
two entities meet. Direction spatial relations
describe how entities relate within an external frame
of reference (e.g. north or south-east) and are
therefore not transformation invariant.

AI researchers typically extend the ideas behind
spatial relationships for GIS to support reasoning
about those relations [Elger96a], handle boundary

                                                       

4 If the pieces need to be more precisely aligned,
artificial endpoints may be added to the boundary
description.

uncertainties [Cleme97a] and express changes over
time [Gagne96a]. Although these are worthy ideas,
they still do not address the problem of how objects
meet.

Spatial Relations of Physical Objects

Suppose we have a puzzle made up of an ordered set
of n puzzle pieces: P = [P1, P2, …, Pn]. Now
consider two of those puzzle pieces, P1 and P2. Let
E1 = [e11, e12, …, e1m] be the edges bounding P1.
Each edge e1i is delimited by vertices v1i and v1j

from the set V1 = [v11, v12, …, v1m] where j = (i
mod m) + 1. Furthermore, let us assume that a
clockwise ordering is imposed on the vertices in V1.
Let P2 be defined similarly. Then we can define the
following relationships between P1 and P2.

Definition 1: Two puzzle pieces meet if at least one
edge e1i in E1 touches at least one edge e2j in E2.

Edge e1i meets edge e2j if and only if
• one of the endpoints of e1i (v1i or v1i+1) touches

edge e2j, or
• one of the endpoints of e2j (v2j or v2j+1)

touches edge e1i.

We can show this by considering two possible cases.

Case 1: The edges lie on different lines in space.
Then, by definition, these edges will intersect only if
the point where these infinite lines intersect lies on
both edges. If this intersection point is not any of
the edges’ endpoints, then the boundaries intersect;
they do not meet, and so they are not considered
here.

Case 2: The edges lie on the same line in space. If
the edges meet at one point, then it must be at the
endpoints. If the edges meet at more than one point,
then consider the set of points that are touching.
Because the edges are finite in length, this set of
points must also be finite, with a beginning and an
end. And because all of the points lie on a straight
line, the bounds of this point set must coincide with
an endpoint of one of the edges.

Table 1 illustrates all of the ways that two edges
may meet. The Representation column illustrates
all possible relationships between two edges.
Columns labeled a1, a2, b1, b2 indicate whether or
not that particular endpoint touches the other edge.
Note that some of the cases are equivalent,
depending on which edge one is looking at.
Therefore we may impose the following rule: if the
only point on an edge touching another edge is an
endpoint, then that point must be either a) the first
endpoint on the lower numbered puzzle piece, or b)
the second endpoint on the higher numbered puzzle



piece. This ensures a unique description of
adjacencies. Given this rule, the OK column in
Table 1 indicates which relationships satisfy this
condition. This set of 12 possible relationships is
complete, in that for any two edges that meet, there
is a unique relationship that represents it.

OK a1 a2 b1 b2 Representation

0 0 0 0 disjoint

X 0 0 0 1

0 0 1 0

X 0 0 1 1

0 1 0 0

X 0 1 0 1

0 1 1 0

X 0 1 1 1

X 1 0 0 0

X 1 0 0 1

X 1 0 1 0

X 1 0 1 1

X 1 1 0 0

X 1 1 0 1

X 1 1 1 0

X 1 1 1 1

Table 1. For any pair of polygons that meet at
their edges [a1, a2] and [b1, b2], how these

edges meet may be expressed in terms of
whether their endpoints touch the other edge.

Because we are dealing with the real world here, it
is also important to consider some degree of
fuzziness in these relations. Therefore I use a broad
boundary definition for the vertices [Cleme97a].
This is easily implemented by considering a
distance ε when examining the proximity of points
to edges.

Definition 2: Assuming that puzzle piece P1

precedes P2 in the ordering, edge e1i touches edge
e2j if either a) vertex v1i is within distance ε of edge
e2j, or b) vertex v2j+1 is within distance ε of edge
e1i.

ARRANGEMENTS OF PHYSICAL OBJECTS

Given the spatial relations defined above, we may
represent a puzzle arrangement as a graph with one
node per puzzle piece. For each pair of puzzle
pieces that meet, an arc connects the nodes. This arc
is labeled with the edges that meet and a code (i.e. a
decimal number representing the binary values in
columns a1, a2, b1, b2) indicating how those edges
meet. Fig. 2 shows a sample puzzle arrangement
and its graph. We can now use this representation to
define a solution.

Figure 2. A puzzle solution (a) may be
represented by a graph with labeled arcs (b).

Definition 3: A solution is a graph that represents
all of the meeting edges in the desired puzzle
arrangement. A partial solution is a graph that can
be made into a solution by simply adding arcs.

It can be shown that the resulting graph is always
unique in that a) an arrangement of puzzle pieces
has only one graph representation, and b) a graph
represents only one possible arrangement of the
puzzle pieces.

a2 a1

a1

b2

b1

b1

a2 a1

a2 a1

a2 a1

a2 a1

a2 a1

b1 b2

b1 b2

b1 b2

b1 b2

b1 b2

b1 b2

a2

a2

a1

b2

a2 a1

b1 b2

b1 b2

b1 b2

b1 b2

b1 b2

a2 a1

a2 a1

a2 a1

a2 a1



Representing the Graph

Each arc in the graph may be uniquely represented
by a substring of the form:

Pi.ei.Pj.ej.code

where Pi and Pj are puzzle pieces (i <= j), ei is the
edge on Pi that touches Pj (ei <= ej if i = j), ej is the
edge on Pj that touches Pi, and code is a code from
Table 1 indicating how the edges meet.

After they are generated, these substrings may be
sorted in alphabetical order and concatenated
together, separated by a ‘:’ character. For example,
the following string represents the graph in Fig. 2:

1.c.2.b.11:1.c.3.c.7:2.a.3.a.15: 2.b.3.c.15:3.b.3.c.9

Because the individual substrings are unique, and
because an alphabetical sorting is unique, the
resulting string is a unique representation of the
graph, and therefore of the arrangement itself.

Manipulating the Graph

For a graph with n arcs, it takes O(n lg n) steps to
generate the substrings, sort them, and generate a
full string representation. If puzzle pieces are moved
one at a time, it takes O(lg n) time to add an arc to
the graph (and a substring to the sorted list) and
O(lg n) time to delete an arc.

The current puzzle arrangement is a solution if the
string representation of the graph is identical to the
string representation of the solution. This may be
checked in O(n) time. The current puzzle
arrangement is a partial solution if every string
representing an arc in the graph is a substring of the
solution string. If examining the sorted list of
solution substrings, this comparison takes O(n lg n)
time.

THE TANGRAM

To test these ideas out, I have chosen to implement
a smart objects interface for an old Chinese puzzle
known as the Tangram. Five triangles, one square,
and one parallelogram, precisely cut from a large
square, make up the pieces of this puzzle as shown
in Fig. 3. Although one may choose to reconstruct
literally hundreds of different shapes with the
Tangram pieces, the first (and most important)
challenge is to reconstruct the square from the
pieces. In solving this initial problem, one may
discover underlying geometry principles.

Figure 3. Tangram puzzle

Detecting Puzzle Pieces

For reasons described in [Scarl98a], I have chosen
to use computer vision techniques to track the smart
objects. Like Underkoffler [Under98a], I use a color
QuickCam with an adjacent light source to capture
images of the current puzzle arrangement on a
table. A tinted reflective surface on the puzzle
pieces helps to identify the individual pieces, and
makes it easy to threshold out everything else in the
scene.

The tracking module uses standard segmentation
and feature extraction techniques to find individual
puzzle pieces in the image. By comparing images
over time, it is able to focus on those areas where
the puzzle arrangement has changed. The tracking
module returns information about the position and
orientation of puzzle pieces. Missing or partially
obscured pieces are also noted.

Determining Appropriate Responses

Given the output of the tracking module, the
program then updates the internal representation of
the puzzle arrangement and “decides” what to do.
Following are some of the cases that arise, and the
responses that they elicit.

• The current arrangement is the solution.
Respond with a congratulatory message, and
offer to explain what the students should have
learned about geometry by playing with the
Tangram.



• The current arrangement is a partial solution.
Offer encouragement.

• Pieces are being arranged incorrectly, or there
is a long pause in the action. Offer to give the
players a hint.

• A piece is either missing or partially obscured,
and has been for some time5. Warn the students
that this is not allowed, and offer to review the
rules.

Providing User Feedback

Multimedia feedback provides the unobtrusive
guidance that this application calls for. We
developed the graphical user interface – and many
of the system responses to user actions – using
Macromedia Director. In general, text and/or audio
feedback is used to comment on the students’
progress and offer help. Although one of the
students must click a button to actually get that
help, this is the extent of their direct interaction
with the computer.

For example, when students first approach the
puzzle they are greeted by an opening screen that
offers to explain the objective and the rules of the
puzzle. If a student clicks the button, an animation
synchronized with text and a voice-over provides
that explanation.  This explanation then remains
available to the students throughout the game. As
another example, the interface offers to give
students a hint when they appear to be “stuck” or
are not making progress toward the solution. Again,
students must click a button to actually see the hint.

CONCLUSIONS

In this paper I have introduced an extended set of
topological spatial relations for smart objects in a
2D space, and described a strategy for using these
relations to depict arrangements of a physical
puzzle. This work is unique in that it expresses
information about how two solid objects meet. I
have also shown how to represent an arrangement
internally (in the computer), and discussed how
these techniques were incorporated in a smart
objects interface for a real puzzle: the Tangram.

Future work will include developing an interface
that will allow others to build smart object interfaces

                                                       

5 Pieces may disappear or cover one another briefly
when in transition. Therefore the program will only
issue a warning if a sufficient period of time passes
and the piece does not reappear.

for other 2D puzzles, using topological relations to
describe puzzle solutions. I also plan to extend these
ideas to the third dimension.
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