
Chapter 6.

Merging Spatial Data Representations

Spatial databases come in a variety of flavors, employing nearly as many

different data representations as there are uses for the data. In cartographic sys-

tems, for example, vector databases support the development of customized map

products and analytic functions such as the measuring of distance and area.

Systems that focus on the processing and display of imagery depend on raster

data structures. For systems like civil engineering packages that provide three-

dimensional visualization, triangulated irregular networks (TIN) and constructive

solid geometry (CSG) models represent terrain and other objects. Past work has

produced numerous data structures that effectively support one or more of the

various applications of spatial data. Many of these are summarized in surveys

such as [NW79, SW88, Cla90, Nie90, EH91, Gat91, RK91, WH91].

Yet as Guenther and Buchmann observed [GB90], one of the challenges

still confronting spatial database builders is how to integrate these different repre-

sentations. Because different spatial data representations are designed to serve

different purposes, relying on only one representation precludes the ability to sup-

port some functions. As noted by Nievergelt [Nie90], failing to take advantage of

the rich spatial structures can adversely affect performance of spatial operations.

Merging Spatial Data Representations 105

Rather than force all data to conform to one data representation, methods are

needed for merging data representations in real time. These methods should allow

applications to make use of all capabilities without requiring the casual user to be

cognizant of any differences in data representation.

The objective of the work described in this chapter is to develop tech-

niques for doing just that. Numerous applications require these three-dimensional

models to be integrated with cultural information in vector form and pictorial

information in raster form. In response to this need I developed techniques for

merging my adaptive hierarchical triangulations with vector and raster data.

Although the focus of this discussion is on cartographic systems, other applica-

tions using spatial data may use similar structures to achieve their particular

goals.

My approach is to exploit the advantages of each data structure, designing

algorithms that perform well in reality as well as asymptotically. Building upon

past research in the areas of computational geometry and geographic information

systems, I have developed novel techniques for rapidly merging a hierarchical tri-

angulation with raster representations, other triangulations, and vector features.

The primary theoretical contribution of this chapter is the introduction of my

polygonal sweep method. This technique can significantly reduce the time it takes

to find all polygonal patches inside or crossing an area boundary without restric-

tions.

Together, these techniques form the basis of a toolkit for merging two-

and three-dimensional spatial data representations in real time. My hope is that

this will begin to open a new world of possibilities to those applications that have

had to settle for one data representation at the expense of another.

106 Spatial Data Representations

6.1. Background

Much is already known about the data representations that I selected for

merging. In this section I provide a brief overview of some of these known quan-

tities. First I review characteristics of the two-dimensional data being merged

with the adaptive hierarchical triangulation. Then I discuss past work on merging

data. Finally I outline past work on spatial operations done in the areas of compu-

tational geometry and geographic information systems.

6.1.1. 2D spatial data representations

Users and builders of geographic information systems (GIS) have argued

for well over a decade over which of two representations is best suited for GIS:

vector or raster [NW79, Oos89, Goo91]. Yet as three-dimensional visualization

and analysis gain importance in spatial applications, still another structure has

gained acceptance in the world of GIS: the triangulated irregular network (TIN).

The truth of the matter is that all three structures have undeniable advantages

when it comes to the applications that they were designed to accommodate. TIN

structures have already been discussed at length in earlier chapters of this disser-

tation. Characteristics, advantages, and disadvantages of vector and raster data

representations are discussed below.

Merging Spatial Data Representations 107

6.1.1.1. Vector

Of the three data structures that I am merging, vector representations are

most commonly used in current geographic information systems (GIS). Systems

relying on this data representation — including ARC/INFO, GRASS, GeoVision,

and Genamap — typically emphasize analytical and map-creation capabilities

[Moo85, GIS89].

Vector feature representations use topological graph structures — com-

posed of nodes, edges, and faces — to depict spatial entities and their relation-

ships. Features that reference this topological graph are attributed with spatial

(e.g. height, width) and non-spatial (e.g. name, surface material) characteristics.

This representation has several advantages. First, it is well suited for ana-

lytical functions such as graph problems (network flow, single-source shortest

path), topological relationships (adjacency, inclusion), and algebraic functions

(distance, area). Second, it is affine transformation invariant, representing

absolute ground coordinates and elevation values. Third, they efficiently describe

graphic entities such as points, lines and areas.

Yet the simplicity that makes vector feature representations ideal for two-

dimensional map applications also makes them cumbersome for other applica-

tions. For example, displays created from these features cannot easily represent

greater pictorial detail or higher dimensionality without great difficulty. They are

cumbersome at best in applications such as pictorial display, image processing,

and three-dimensional modeling.

108 Spatial Data Representations

Digital vector data sources include the U.S. Geological Survey's Digital

Line Graphs (USGS DLG), Defense Mapping Agency's Digital Feature Analysis

Data (DMA DFAD), and Digital Chart of the World (DCW). Yet many groups

still get their vector data by tracing it off of charts and images, so data entry is

still a major part of most vector GIS.

6.1.1.2. Raster

Raster data partitions a picture plane or other surface into a regular grid of

pixels or cells, each of which is assigned a value. This value may represent nearly

anything including color, intensity, elevation, or surface material code. Raster

data representations form the foundation of those GIS that emphasize image pro-

cessing capabilities applied to photographs and digitized maps. Erdas, MapBox,

and ER Mapper, for example, are raster-based GIS [GIS89].

Raster systems boast numerous advantages due to their regularity. Image

processing functions, for example, rely on this regular representation. Displaying

raster structures on raster displays requires little or no transformation. Because

raster cells may contain any type of value, raster structures are also used to store

surface models. The advantage of this is that the regularly spaced elevation posts

have implied ground positions which need not be stored.

Yet this regularity is also the source of several disadvantages. By their

nature raster structures are resolution- and transformation-dependent. This leads

to aliasing and lost information when resolutions are too coarse, and unnecessari-

ly large data volumes when resolutions are too fine. In addition, raster structures

Merging Spatial Data Representations 109

do not lend themselves as well to graph, topological, or algebraic analysis func-

tions as vector representations do.

Digital raster data sources include DMA Digital Terrain Elevation Data

(DTED), USGS Digital Elevation Models (DEM), and a wide variety of scanned

charts and images (e.g. SPOT and Landsat satellite images).

6.1.2. Past work on merging data structures

Although some work has already been done on the merging of data struc-

tures, much of this focuses on merging data using similar structures. Raster struc-

tures may be merged together trivially using boolean operations or algebraic and

image processing functions such as averaging [Pra78]. In his PhD thesis, van

Oosteram discusses merging vector representations using reactive data structures

[Oos89]. Others have described methods for merging data represented by

quadtrees [HS79, SW88a, HS91]. Guibas and Seidel [GS87] invented a clever

method for merging two triangulations, which is discussed further below.

Some work has also been done to merge vector and raster structures

together. Gupta et al. describe an extended object-oriented data model for large

image bases [GWJ91] that defines four different viewing planes showing the

inter-relationships among vector and raster data structures. Zhou and Garner are

investigating methods of merging data from a vector GIS (ARC/INFO) with an

in-house raster database containing spatial index links [ZG91]. Yet in most cases

this is achieved by translating vector to raster information, or raster to vector

[LB87, GS89, ESRI90, Li93]. Clarke [Cla90] provides a thorough survey of map

data structure transformations and the issues involved.

110 Spatial Data Representations

Little work has been done to merge two-dimensional and three-dimen-

sional data structures. Most algorithms in this area focus on texture-mapping (e.g.

[W83]). Using the filtering capabilities of multi-level structures for the merging

of two- and three-dimensional data is a virtually unexplored area.

6.1.3. Spatial relationships

Computational geometry provides a wealth of algorithms and data struc-

tures devoted to various merging-type problems. Many of these ideas are applica-

ble to the objectives of this research: finding relationships between different spa-

tial entities. I outline some of the techniques most relevant to this topic below.

6.1.2.1. Inclusion problems

The point location problem may be stated as follows. Given a partition of

the plane, find the region R that contains a point P. The problem of merging a tri-

angulated model with point data in a vector representation is a special case of this

problem.

Most algorithms in this area focus on defining planar partitions to aid the

search. For the most part, these facilitate searches taking O(log n) time. Several

of these are outlined in a paper by Preparata [Pre90]. Slab methods further parti-

tion the plane with horizontal lines passing through the vertices of the original

partition. The slab containing the point may be found using two binary searches

[DL76], one binary search on a trapezoid tree [Pre81], or a sweep line [ST86].

Separating-chain methods [LP77, EGS86] generate chains from edges already in

Merging Spatial Data Representations 111

the planar partition. Triangulation refinement [Kir83], which inspired the work

described in chapter 3.1, uses a hierarchy of irregular triangulations to locate

points. In addition, partition trees [Ede87] and their extensions [GOS88] may also

be used to organize the space for improved performance.

6.1.2.2. Intersection problems

Sweep methods are commonly employed to rapidly find intersections

among structures as well as determine point locations. The idea is that once the

spatial entities have been sorted in some manner — an O(n log n) operation —

the sweep line may be used to examine them in linear time. The original sweep

algorithm [NP82] uses a straight line which passes over the data in question. A

list of edges/regions intersecting the sweep line is maintained at all times.

Edelsbrunner and Guibas extended this idea by introducing the topological sweep

line [EG89] which derives benefits from its ability to bend. For example, this idea

was used for reciprocal search [GS87]. Sweep lines have even been used to spa-

tially access vector data in a GIS [KBS91].

6.1.2.3. Map generalizations

In the process of making maps, cartographers generalize features by elim-

inating details, simplifying shapes, and combining or displacing features that are

very close to one another [Cla90]. As map scales decrease, more generalization is

required. This is analogous to the zoom operation discussed in the previous chap-

ter. With the advent of computer cartography, numerous algorithms generalizing

112 Spatial Data Representations

features have been developed. Among these are algorithms for generating and

manipulating hierarchical levels of detail.

Just as the triangulation hierarchy improves performance of triangle

manipulations, hierarchies of other cartographic generalizations may also be used

to improve the performance of merging algorithms. Numerous hierarchical curve

representations have been proposed. For example, the strip tree [Bal81], curve

tree [GW90], and BLG-tree [Oos89] are binary trees that retain information for

bounding each generalized curve segment. The multi-scale line tree [JA86] con-

tains levels of detail meeting accuracy constraints, similar to the adaptive triangu-

lation hierarchy. Area generalizations have also been described, such as the TR*-

tree [SK91] and the reactive tree [Oos89].

6.2. Raster/TIN

Merging a triangulated surface with a raster representation is a special

case of the more generalized problem of combining two surface meshes. When

raster data represents an image, this type of merge can be used to paint that image

on the surface. Raster data merging may also be used to attribute the triangulated

surface patches with classification categories or additional height information.

Like digital elevation models, many raster representations may be more efficient-

ly represented as irregular triangulated networks (TIN). Therefore both capabili-

ties are discussed in this section.

Merging Spatial Data Representations 113

6.2.1. Problem definition

Essentially two problems are considered here:

• Given a triangulation and a raster image covering the same area as the

triangulation, map the raster image pixels to all of the triangles at a

specified level of detail.

• Given two triangulations of the same area, find the overlay. This is a tri-

angulation that includes all vertices and edges from both of the original

two triangulations.

6.2.2. Approach

An obvious approach to merging raster and TIN data is to use a conven-

tional plane sweep algorithm [NP82]. A horizontal sweep line travels in incre-

mental steps from top to bottom, each step corresponding to a scanline in the

raster image. Initially the cut of the sweep line contains all triangle edges and ver-

tices intersecting the top scanline. Pixels are transferred to the triangles intersect-

ed by the sweep line in a left-to-right order. The sweep line then sweeps down to

the next scanline, updating the list of intersected triangles as necessary, and the

process is repeated. The cut of the sweep line changes each time a triangle vertex

is encountered. This is easily checked by stepping through a list of the vertices

sorted top to bottom, left to right.

Yet some raster data use many pixels to represent large flat regions that

could be generalized by a few large polygons. If the raster image may be seg-

mented into a few very large polygons, it is best to use a variation of the area

114 Spatial Data Representations

merge described later in 6.5. If, however, the regions are better represented by a

TIN — or if the raster data has already been triangulated — a better approach is

to use a variation of Guibas and Seidel's reciprocal search method [GS87].

Informally, the reciprocal search problem finds all pairs (b, g) of objects

such that b ∈ B, g ∈ G, and bpg for some relation p. In our case, B and G repre-

sent the two triangulations to be merged, and p is the overlay operation. Guibas

and Seidel describe a solution to this problem based on topological line sweep.

Their method finds the overlay by sweeping over each vertex in the overlay,

where a vertex either originates from B and/or G, or is formed by the intersection

of two edges, one each from B and G.

Figure 6.1 shows an example where the topological sweep line has

advanced past an intersection vertex. Here, solid lines represent one triangulation

while dashed lines represent the other. The heavy line is the topological sweep

line.

Merging Spatial Data Representations 115

Figure 6.1. A topological line sweep bends to discover one intersection at a time

Further enhancement is required to ensure that the resulting overlay is a

triangulation. I propose two possible approaches to this. The first, and most obvi-

ous, approach is to find the overlay polygons, then triangulate all those that need

it using some polygon triangulation method as described in chapter 2. The trouble

with this approach is that it will significantly worsen the time complexity of the

algorithm.

A second approach is to generate the triangles as the sweep line advances.

The cut of the sweep line is supplemented with information about each of the

regions it passes through, where each region is bounded by two edges of the cut

and possibly one other edge that the topological sweep line has already advanced

past. Each time the sweep line advances past some vertex, all regions bounded by

an edge that uses that vertex is examined. If the region has two bounding vertices

that have already been swept over, then a new edge is added to form a triangle

with the new vertex. This triangle is effectively cut off from the region, and is

added to the list of output triangles. Regions are then updated accordingly. The

advantage of this strategy is that the overhead for producing triangles is reduced

to a constant overhead, with negligible impact on the asymptotic running time.

The disadvantage is that this approach is not rotation invariant: results depend on

the order in which vertices are advanced over.

6.2.3. Analysis

The traditional sweep line method for merging raster data with a triangu-

lation benefits from the explicit adjacency ordering of triangles within the hierar-

chy. Given that N is the number of triangles in the triangulation, it takes O(N log

116 Spatial Data Representations

N) time to sort the triangle vertices (events). Therefore if M is the number of pix-

els in the raster structure, merging raster data with a triangulation takes O(M + N

log N) time.

Guibas and Seidel show that their reciprocal search method can find the

overlay of two triangulations in O(M’ + N + K) time where M’ is the number of

triangles covering M pixels in the original raster image and K is the size of the

result. If triangles are generated as the sweep line advances, this merely adds a

constant overhead to each of the K output triangles with no effect on the asymp-

totic run time. If M’ is significantly smaller than M and the raster image is trian-

gulated beforehand, then merging two triangulations (rather than a raster image

with a triangulation) could significantly improve performance of the merging

operation.

6.3. Point

Finding the triangle that corresponds to a point on a surface is the most

fundamental of the triangle/vector merging problems. Placing a three-dimensional

point feature (e.g. a tree or building) in a perspective view of a landscape requires

this capability. For many analysis functions such as line-of-sight and cross-coun-

try movement — which involve finding a path between two points — point loca-

tion is an important initial step. Point location is also used in the solutions to the

remaining triangle/vector merging problems.

Merging Spatial Data Representations 117

6.3.1. Problem definition

The spatial component of a point feature is represented as a single geo-

graphically referenced point on a map. The problem of merging a point feature

with the triangulated surface has two aspects:

• Find the triangle — at a specified level of detail — that the point lies

within.

• Considering a point feature’s width, length, and angular orientation, find

the triangle(s) covered by that point feature’s footprint.

6.3.2. Approach

The obvious approach is to take advantage of the triangulation hierarchy’s

structure and use top-down search. For a regular hierarchy — where each non-

leaf node has a fixed number of children and O(log N) levels of detail — this pro-

duces a reasonable search time of O(log N) for a model with N triangles and

O(log N) levels of detail. This is as good as the point location algorithms

described in the computational geometry literature. Yet the adaptive hierarchical

triangulation has a fixed number of levels of detail and variable numbers of chil-

dren at each node. Therefore in the worst case, a top-down search may take O(N)

time.

I propose an alternative point location strategy that approaches constant

time in the average case. My approach is to use the query point’s ground position

to calculate an index for a triangle that the point is either inside of or near.

118 Spatial Data Representations

Imagine a regular grid overlaying the triangulation. Any point on the surface will

correspond to a single grid cell, indexed in constant time using the ground posi-

tion. I associate each grid cell with one triangle so that the triangle may be

indexed in constant time given the grid cell. Although a rectangle may intersect

more than one triangle, this puts us in the correct general location: if the point is

not in that triangle, it is in a nearby triangle.

Figure 6.2 shows an example of my indexing strategy. Here, the number

of rows/columns in the grid is maxm (m2 ≤ N) over a triangulation of N triangles

(4 in the example). Given that (x,y) is the position of the point and g is the height

and width of each grid cell, the triangle index is

((x/g) x m) + (y/g) + 1.

An alternative strategy is to store a pointer for each grid cell referencing

the triangle that covers the largest portion of the cell. This approach is preferable

in cases where triangle sizes are extremely variable.

Merging Spatial Data Representations 119

1

27

3

2

4

9

7

8

6

5

10

11

12
16

14

18

15

20

26
24

2519

23

22

21

1713

Figure 6.2. Point indexing strategy

After finding a triangle in constant time, I then determine whether the

point is actually in that triangle and, if not, which neighbor it is in. There are

three edges to compare the point to when determining whether the point is inside

a triangle. Fortunately, this testing may be done rather efficiently. If all triangles

are stored with their edges in counter-clockwise order then a point is inside a tri-

angle if and only if it lies to the left of all edges of the triangle. This may be

found with two determinant calculations [Pav82]. The determinant produces a

positive value if the point (x,y) lies to the left of the edge from (x1,y1) to (x2,y2) ,

and a negative value if it lies to the right. The absolute value of this is distance d

(from the point to the edge) times distance n (from (x1,y1) to (x2,y2)). Summing

the determinants with respect to all three edges produces a value equivalent to

twice the area of the triangle:

Therefore, if the area of the triangle is known, then only two determinants

need be found. If both values are positive and their sum is less than or equal to

twice the area, then the point lies within or on the boundary of that triangle.

Otherwise, these two determinants imply which of six neighbors should be

searched next, as shown in 6.3.

If a point feature’s spatial dimensions are also to be considered in the

point location problem, all additional triangles covered by its footprint may be

found with the same determinant formula.

120 Spatial Data Representations

x1
y1
1

x
y
1

x2
y2
1

x2
y2
1

x
y
1

x3
y3
1

x3
y3
1

x
y
1

x1
y1
1

x2
y2
1

x1
y1
1

x3
y3
1

det = det + det + det

6.3.3. Analysis

The following additional information is required to support this point

location strategy:

• Store a single value (twice the triangle area) for each triangle, to deter-

mine inclusion with two edge comparisons. If storage space is more pre-

cious than processing time, three determinant calculations could be per-

formed instead, negating the need for this additional information.

• Store one value for each level of detail, to be used as a divisor calculat-

ing the grid square that a point lies within. An alternative strategy is to

store two values for each level of detail instead, for separate horizontal

and vertical position calculations.

• If no triangle is referenced by more than one grid cell, then the triangles

may be ordered such that the index of a triangle is equivalent to the

index of the grid cell that refers to it. No additional information is

Merging Spatial Data Representations 121

P1

P2

P3

P
N1

N1'

N2

N2'

N3

N3'

d1

d2

Figure 6.3. Using the determinant form reveals whether a point is inside a triangle and, if

not, which neighbor to search next

required. If, however, the mapping of grid cells to triangles is many-to-

one, then explicit indices must be stored, one for each grid cell.

With certain restrictions imposed, this strategy may be shown to have a

constant execution time on average. I use an amortized analysis, considering M

uniformly distributed point location queries for a triangulation that is covered by

a grid with M cells, so that each query point lands in a different grid cell. I

assume that the grid has been defined such that no cell contains more than one tri-

angle vertex. I also assume that for grid cells that contain no triangle vertices, the

average number of triangles covered by a cell is ≤K, where K is some constant.

These restrictions are easily met by adjusting the resolution of the grid.

As shown in chapter 3.2, the number of triangles T in a triangulation of

V = Vin + Vout vertices is

T = 2V - Vout - 2.

Applying this to Euler’s formula for a planar graph yields

E = V + T - 1

= V + 2V - Vout - 2 - 1

= 3V - Vout - 3.

Because each edge connects exactly 2 vertices, the average number of

edges — and triangles — adjacent to a vertex is less than 6.

Now imagine a grid cell containing one vertex on the triangulation with 6

adjacencies. In the worst case, 5 of those triangles will need to be examined

before the correct triangle (containing the query point) is found. Therefore I

assign an amortized cost of 5. Furthermore, I constrain K (limit on the average

number of triangles covered by a grid cell not containing a vertex) to be 5.

122 Spatial Data Representations

With these conditions in place, the total amortized cost of M point loca-

tion queries — 5M — is an upper bound on the total actual cost. The average

search time is therefore O(1).

6.4. Line

Lineal features are often associated with features on the earth’s surface,

such as rivers and roads. Merged with a triangulated surface, these lineal features

may be painted on the surface as it is, or used to mark places where the feature

needs to be carved out more carefully. Merging lines with TINs may also be used

to assign weights to paths based on the surface slope and/or material, or do topo-

graphic consistency checking (i.e. asking questions such as “is the river running

uphill?”).

6.4.1. Problem definition

Line features are homeomorphs composed of successive points implicitly

connected by straight line segments (edges). Merging lineal features with triangu-

lated surface models translates to the following problems:

• Find the triangles that the line travels through.

• Partition the line such that each resulting segment represents a homeo-

morph inside exactly one triangle.

• Given that the line feature has an associated width, find all triangles

intersected by the widened line.

Merging Spatial Data Representations 123

6.4.2. Approach

The obvious approach is to find the triangle that the starting point lies in,

then travel along all M edges of the line feature. Each time the line enters a new

triangle, record that triangle and/or partition the line appropriately. If the line

travels through N triangles, this will take O(N+M) time.

The trouble with this approach is that if the line feature contains a great

deal of detail, the algorithm could spend a lot of time wandering around inside a

single triangle. As with the triangulations, performance of this operation may be

improved by introducing a hierarchy of generalizations for the line feature.

I propose to do the following. Consider the multi-scale line tree hierarchy

[JA86] where each level of detail is approximated by line segments linking the

most critical points for that level. At the coarsest level, this is a single line seg-

ment connecting the two endpoints of the homeomorph. Each generalized line

124 Spatial Data Representations

Level 1 vertices Level 3 verticesLevel 2 vertices

e = error tolerance

e

Figure 6.4. In a multi-scale line tree the error e at each level of detail defines a polygon

that wholly contains the portion of the line being generalized

segment has an associated error tolerance ei which guarantees the goodness of fit

at level of detail i. If one were to inscribe a polygon around all points within ei of

the line segment, one would get a convex polygon that completely contains the

portion of the homeomorph that the line segment is meant to generalize. This is

illustrated in figure 6.4.

It is this inscribed polygon that helps to find the general solution to the

problem. Because the polygon is convex — and, of course, all triangles are con-

vex — the homeomorph may travel through a triangle if and only if its bounding

error polygon overlaps that triangle. In other words, the only triangles that may

be intersected by the line are those in the set of triangles [t1..tn] covered by the

ellipse defined by e .

I find the sequence of triangles intersected by such a line feature in the

following manner. First, find the triangle containing the first endpoint using the

point merge algorithm described above. This is the first triangle in the sequence.

Second, considering the error tolerance for that edge, determine whether or not

the line feature may extend outside that triangle. If not, then the entire line is

within that one triangle, and I am done. Otherwise, if the next endpoint is in a

neighboring triangle and the line may not pass through any other triangles, then

add the second triangle to the sequence: I am done. Otherwise, I must consider

the next level of detail in the lineal feature. This is repeated recursively until I’ve

found all line segments inside one triangle, spanning two neighbors, or at the leaf

level. If a leaf level in the line tree is reached, all triangles traversed by that edge

are added to the list.

If line width is a consideration, simply add the width to the error e to

extend the bounds of the ellipse.

Merging Spatial Data Representations 125

To segment the lineal feature, one must go to the leaf level to get the actu-

al edge that passes from one triangle to the next. This may be done with a binary

search method applied to successively finer levels of detail.

6.4.3. Analysis

The following additional information is required for this algorithm:

• A multi-scale line tree stores the line generalization. Note that this struc-

ture is extremely useful for many other applications involving line fea-

tures. It is better than binary representations because each level in the

hierarchy represents a single generalization with a guaranteed maximum

error.

• I may store either one error tolerance per level of detail, or one error tol-

erance per generalized line segment. The latter option is more accurate,

but takes much more storage space. Note that error = 0 at the leaf level.

Finding the triangles intersected by the line in this manner requires exam-

ining all N intersected triangles, but not necessarily all M line segments.

Therefore this algorithm should take O(N) time as opposed to O(N + M) time for

the obvious approach. Of course if all M line segments require examining any-

way, this method does incur some overhead for traversing the levels of detail. Yet

because the levels of detail in a multi-scale line tree are fixed — like those in the

adaptive triangulation hierarchy — this is a constant overhead. With the addition-

al task of segmenting the lineal feature where it crosses triangle boundaries, the

algorithm should take O(N log M) time.

126 Spatial Data Representations

6.5. Area

Areal features delineate regions characterized by attributes such as surface

material, surface configuration, or use. Areas mapped onto a triangulation may

help to determine rendering parameters for radar simulation or image synthesis,

assign weighting factors for cross-country movement, or do topographic consis-

tency checking (i.e. asking questions such as “does this lake cover a steeply

sloped region?"). This merging technique is also important for multi-resolution

viewing (as described in chapter 5) and combining information for landscape

architecture [Erv92].

6.5.1. Problem definition

Areal features are simple polygons defined by a chain of points implicitly

connected by straight line segments (edges). The merging problem for this vector

type has two parts:

• Find the triangles that the area boundary intersects.

• Find all triangles inside the area.

6.5.2. Approach

The obvious approach to this problem is to use a variation of polygon

edge or scan filling [Pav82] which is comparable to the traditional line sweep

algorithm [Nie82]. If there are N triangles inside the area, this takes O(N) time.

Merging Spatial Data Representations 127

For large N, it would be better to find all N triangles without having to examine

each one. Performance could vastly improve with a strategy that takes advantage

of the triangulation hierarchy where the following is true: if a triangle from a

coarse level of detail lies entirely within the area, then because all of its children

(i.e. triangles at finer levels of detail) lie within it, all of its children must also lie

entirely within the area.

My solution to this problem is a polygonal sweep line, a novel variation of

the topological line sweep [EG89]. Initially this sweep line corresponds to the

polygonal boundary of the area being merged with the triangulations. The idea is

to shrink the polygon by moving the sweep line over interior points, placing them

on the outside of the sweep line. Because the sweep line passes over the finite set

128 Spatial Data Representations

Figure 6.5. Interior triangles are found with a polygonal line sweep

of interior points only once, execution time for the algorithm is bounded by the

number of interior points. If a coarser-level triangle is interior to the area, points

inside of it need not be searched at all, leading to tremendous time savings.

Figure 6.5 shows an example. In this picture, darker lines represent edges

in the coarser levels of detail (which, of course, persist through all finer levels of

detail). Shading shows triangles intersected by or inside the area, with darker

regions depicting triangles from coarser levels of detail. The polygonal sweep

line need only find the points outside and bounding these larger triangles, for it is

known that all vertices inside an interior triangle must also be inside the area.

My algorithm works as follows. First, find the triangles intersected by the

area boundary using my line intersection strategy. Create a separate list of inter-

sected ancestors, i.e. the coarser triangles intersected by the area boundary, found

by following the chain of parent pointers.

Second, define the polygonal sweep line to be the area boundary. The cut

of this sweep line comes from the sequence of intersected triangles found via line

merging. Partition the polygon into m seg-

ments s1 . . sm such that each segment si

passes through the sequence of k edges that

converge at one vertex inside the polygon.

This is illustrated in figure 6.6, where the

interior of the polygon is shaded. Any trian-

gle intersected by the sweep line that does

not have a vertex inside the area must be

intersected at least twice by that line, or

fully contain the area. When this happens,

Merging Spatial Data Representations 129

s1

s2

Figure 6.6. Segmenting the

polygonal sweep line

the portion of the sweep line passing through that triangle is frozen in place. Note

that if a triangle vertex lies on the initial sweep line, a finite number of segments

may be defined at that one point.

Now the line sweeping may begin. Find an unfrozen segment si of the

polygonal sweep line, and sweep it over an interior vertex. This moves the point

to the outside of the polygon, and shrinks the polygon. This also introduces a new

set of triangles, possibly requiring si to be split into several new segments, and

possibly requiring si -1 and si +1 to be updated. Now examine the new set of trian-

gles intersected by the sweep line. Any triangles in this intersection that are not

on the area boundary must be inside: record those triangles in a list of interior tri-

angles. Then examine the ancestors of those triangles. Any ancestor not on the

area boundary must also be inside. Because all of its descendants must also be

interior to the area, the inside of that triangle need not be searched further.

Therefore that portion of the sweep line may be frozen in place. Continue until

the entire sweep line is frozen — where segments have met in the same triangle

or found the perimeter of the set of interior triangles.

6.5.3. Analysis

This algorithm works because it takes advantage of an adjacency ordering

within the triangulation. Unlike line-thinning algorithms, the order and direction

in which the vertices are swept over is irrelevant. If there are N triangle vertices

inside the original area, then each vertex will be swept over by at most one seg-

ment of the polygonal sweep line. Vertices inside coarse level triangles inside the

area will not be examined at all, hence the efficiency.

130 Spatial Data Representations

In the worst case, this algorithm will need to examine all N triangles any-

way. Although there is the additional overhead of keeping track of ancestors, the

number of ancestors is constant. Therefore this algorithm will run in O(N) time in

the worst case, which is no worse than the run time of the obvious approach. In

many cases this algorithm will do significantly better.

Merging Spatial Data Representations 131

