
Chapter 5.

Spatial Data Manipulation

Geographic databases — particularly those supporting three-dimensional

data — provide the means to visualize and analyze the world around us in ways

that until recently were only dreamed of. Yet the vast volumes of data inherent to

these databases can slow processing times down to a crawl. And although perfor-

mance of computing machines continues to improve, these improvements consis-

tently fail to meet the growing need to process even more data more rapidly.

Recognizing this problem, Guenther and Buchmann [GB90] suggest that algo-

rithms using a data filtering approach could greatly improve the performance of

many spatial operations.

5.1. Benefits of spatial filtering

Hierarchical data structures have been used in the past to reduce computa-

tion for a number of applications. These include pyramid decompositions for

image understanding [TP75], geometry hierarchies for computing visible surfaces

[Cla76], BSP trees for shadow generation [CF89], and triangular decompositions

Spatial Data Manipulation 95

of the sphere for geographic indexing [Goo89, Fek90]. Samet provides an excel-

lent overview of hierarchical data structures in [Sam90a] and their applications in

[Sam90b].

My approach is to take advantage of the adaptive hierarchical triangula-

tions’ tree structure using levels of detail as data filters. Because each triangle in

a coarser level of detail represents a generalization of its children, the tree may be

effectively pruned to provide detail where it's needed and generalizations where

it's not. Parent triangles also provide enough information about their children to

provide approximate answers for analytical queries.

To demonstrate the ability of this structure to support both visualization

and analysis, I developed manipulation techniques for three specific applications:

zoom, multi-resolution display, and line-of-sight calculation. The first two —

zoom and multi-resolution display — aid rapid visualization of the data. The third

— line-of-sight — represents a more analytical application. These are just a few

examples of how this structure can be used to improve performance of spatial

operations. All three are described in the remainder of this chapter.

5.2. Zoom

Zooming in on a model allows one to go from a generalized overview of

an object to a detailed look at some small part. Only the salient features need

appear in the generalized model, for smaller details are insignificant at that point.

As the viewer zooms in, more and more details must become apparent. For exam-

ple, one could start with a map of New York, zoom in on Long Island, zoom in

further for a view of Stony Brook, and end with a map of the campus.

96 Spatial Data Representations

Adaptive hierarchical triangulation, described in chapter 3.2, is ideal for

this type of operation. The hierarchy contains fixed levels of detail in which only

the least significant details are eliminated from the coarser levels. Hence major

features do not suddenly appear or disappear in the transition from one level of

detail to another.

I achieve a smooth transition from one level of detail to another with a

method that is similar to that used in Evans and Sutherland flight simulators

[CMR90]. Each triangulation essentially has two states: a finished state in which

all vertices are in their correct positions, and a

reduced state where those vertices are project-

ed onto the parent triangles.Because no child

edge crosses a parent edge in this reduced

state, it is visually equivalent to the parent tri-

angulation. Hence the transition

is perfectly smooth, with no sud-

den changes from level to level.

An example of the types of views

this might produce is shown in

figure 5.1. The algo-

rithm is presented in

figure 5.2.

I select lev-

els of detail for this

algori thm using a

Spatial Data Manipulation 97

Figure 5.1. Example of zoom

simple heuristic based on viewing distance. As noted by the computer graphics

community, the degree of accuracy required in a rendered image is proportional

to the projected size of a pixel [Bar86, HD91]. Likewise, errors in the model that

translate to less than a pixel in size are negligible. I therefore take a similar

approach, selecting a level of detail where the error is always less than the width

of a pixel projected onto the surface. For example, a 1˚x1˚ cell is approximately

120 kilometers on each side. Mapped to a 1024x1024 display, this level of detail

98 Spatial Data Representations

procedure zoom (i, zooming_in, steps);

Input : Triangulation hierarchy T, level of detail i., a zooming_in flag

indicating which way the zoom is moving, and a number of iteration

steps for the transition.

Output : Animation showing the smooth transition from level i to level i±1. begin

display ni triangles [Ti,1 .. Ti,ni
] at level i ;

if zooming_in then begin (*show surface at a finer level of detail*)

get all ni+1 vertices at level i+1 ;

project those vertices onto triangles [Ti,1 .. Ti,ni
] ;

display the ni+1 child triangles [Ti+1,1 .. Ti+1,ni+1
] from level i+1

with their vertices projected to the parent triangles;

calculate an interpolation vector for each vertex;

for each of the interpolation steps do

shift each vertex to the next position along its vector;

end;

else begin (*show surface at a coarser level of detail*)

project ni vertices at level i onto triangles [Ti-1,1 .. Ti-1,ni-1
] at level i-1 ;

calculate a vector for each of those ni vertices, and divide it into steps

for each of the interpolation steps do

shift each vertex to the next position along its vector;

display ni-1 parent triangles [Ti-1,1 .. Ti-1,ni-1
] at level i-1 ;

end;

end;

Figure 5.2. Algorithm for zoom

should have no error greater than 117 meters. A 15’x15’ map in the same space

must have less than 29 meters error. And so on.

5.3. Multi-resolution views

As noted by Devarajan and McArthur [DM93], an ideal terrain model for

real-time simulation is

• a tree, where all possible prunings are valid terrain models,

• continuous over the entire surface for all prunings, and

• single-valued (i.e. z = f(x,y)).

Multi-resolution display, like zoom, allows the use of fewer, more gener-

alized triangles to represent areas that are further from the camera or less impor-

tant to the viewer. Unlike zoom, multi-resolution views combine different levels

of detail in a single seamless model. Multi-resolution display is useful for render-

ing perspective views of a scene where the foreground shows greater detail than

the background. This is similar to a strategy currently employed in simulators

using quadtrees [CMR90]. Another application of multi-resolution display is the

bull’s-eye view [TSDB88] where a roving window shows a portion of the scene

in crisp detail against a generalized background. In both applications, using mul-

tiple levels of detail improves performance.

Multi-resolution displays essentially show temporary models that com-

bine different levels of detail corresponding to different levels of importance or

distance. I begin by partitioning the model into triangular patches corresponding

to some coarse level of detail. The tree-like structure of my triangulation hierar-

chy allows us to then use each patch to represent a different level of detail as

Spatial Data Manipulation 99

required. This partitioning may also be repeated recursively within the triangular

patches. Adjoining patches from different levels of detail are seamed together by

forcing high-resolution triangle vertices along the shared edge to lie on that edge.

Once the initial model is built, shifting the focus is achieved by raising or lower-

ing the level of detail in triangles along the focal boundaries. Because most trian-

gles in the model are unaffected by such changes, this may be done relatively

quickly.

My algorithm for producing an initial bull’s-eye view model is given in

figure 5.3. Levels of detail for the focal area (n) and surrounding areas (m) are

selected by the user. The polygon defining the focal area is represented by P. The

100 Spatial Data Representations

procedure multi_res (n, m, P);

Input : Triangulation hierarchy T, level of detail range n to m.

(from finest to coarsest), and polygon P outlining area to contain

finest level of detail.

Output : Multi-resolution surface model T.

begin

initialize view model to empty set of triangles: T = [] ;

for each level of detail i from n down to m do begin

find the set T’ of triangles at level i-1 crossing or inside P ;

create polygon Q from the perimeter of set T' ;

find the set of triangles T” at level i that are children of the triangles in T'

but outside boundary T ;

project all boundary vertices of T' onto Q ;

add triangles of T" to view model T ;

P := Q ;

end;

complete the view model T with triangles from level m that are outside P ;

end;

Figure 5.3. Algorithm for producing multi-resolution bull’s-eye model

algorithm for finding all triangles inside or crossing this polygon is given in the

next chapter. Figure 5.4 shows an example of a multi-resolution bull’s-eye model.

Here the shaded polygon is the area that must be represented with high precision.

Darker lines outline triangles from coarser lines in the hierarchy.

Perspective viewing models, which differ only in the number of focal

viewing ranges to be considered, are easily produced with an extension to this

algorithm. For perspective views, as with zoom, I select levels of detail at varying

distances such that each level’s error tolerance is no more than the width of the

area covered by a pixel.

Spatial Data Manipulation 101

5.4. Line-of-sight

Given two points p1 and p2 in space and an object model, line-of-sight

calculation determines whether those two points can “see” each other, i.e.

whether or not their view is obstructed by the object. Figure 5.5 illustrates this

problem. Typically, line-of-sight is calculated by traversing the path from one

point to the other. Each surface patch encountered is tested for obscuration. In a

high-precision model, the number of patches examined could be very large

indeed.

Line-of-sight calculation is an important analysis function that has merit-

ed study in the past. For example, Petty et al. [PCFP92] recently described three

line-of-sight algorithms. Significantly, one of the better-performing algorithms

102 Spatial Data Representations

uses a triangulated surface model. Clarke [Cla90] discusses other intervisibility

algorithms. Yet none of these takes advantage of a hierarchy to further improve

performance. Mine does.

I use my hierarchical triangulation model to reduce the number of trian-

gles that must be examined. The error tolerance specified for each level of detail

guarantees that no point on the actual object will be further than that from the tri-

angulated model at that level. Therefore if a triangle at level i definitely obstructs

the view between p1 and p2 — taking into consideration any possible errors at

that level — then there is no sense examining level i+1: p1 and p2 cannot see one

another. Likewise, if a triangle at level i cannot obstruct the view, then its chil-

dren need not be examined. Although this algorithm can cause more triangles to

be examined in the worst case, on average the time savings should be significant.

My algorithm works as shown in figure 5.6.

Spatial Data Manipulation 103

104 Spatial Data Representations

function line_of_sight (p1, p2);

Input : Triangulation hierarchy T, and 2 points in space — p1 to p2 —

for which intervisibility is a question.

Output : True — if p1 and p2 can see one another — or False.

begin

find triangle A in finest level of detail n containing point p1 ;

find triangle B in finest level of detail n containing point p2 ;

if (A = B) then (* there's nothing to block the view *)

return True;

else begin (* need to check surface patches between them *)

find triangles Ai and Bi , ancestors of A and B at level of detail i

such that Ai ≠ Bi and parent_of (Ai) = parent_of (Bi) ;

for each edge between p1 and p2 do

put edge, i on queue;

repeat (* see if any edge in the queue can block the view *)

get edge e and level of detail i from queue;

elevate p1 and p2 , adding error tolerance for level i ;

if elevated points can't see over edge e then (* view is blocked *)

return False;

else begin

lower p1 and p2 , subtracting error tolerance for level i ;

if elevated points can't see over the edge then (* check further *)

put e, n+1 on queue;

end;

until queue is empty;

end;

return True; (* nothing is blocking the view *)

end;

Figure 5.6. Line of sight algorithm

