
Chapter 3.

Triangulation Hierarchies

The trouble with most surface triangulation algorithms, as described in the

previous chapter, is that they add triangle edges without considering the effect of

these edges on the third dimension. Many surfaces — especially natural ones —

form continuous linear patterns which aren’t adequately represented by isolated

points. This may be clearly seen in the

hypsoshaded rendering1 of digital eleva-

tion data shown in figure 3.1. These linear

features form critical lines which are just

as important as surface points in describ-

ing a surface.

To retain integrity of the surface, a

triangulation algorithm must consider the

surface topology in determining place-

ment of triangle edges. In this chapter I

describe two hierarchical triangulations

32 Spatial Data Representations

Figure 3.1. Hypsoshading reveals

coherence of cartographic features

1. Hypsoshading assigns a grey level to every elevation post, ranging from black at the lowest ele-
vations to white at the highest elevations.

that I have developed which do consider surface topology. The first, a refined tri-

angulation hierarchy, is based on Kirkpatrick’s point search strategy [Kir83]. It

triangulates the surface in a bottom-up fashion to produce progressively coarser

levels of detail. Critical points and edges in the model play a key role in deciding

how points are eliminated and polygons are re-triangulated. Alternatively the sec-

ond method, adaptive hierarchical triangulation, uses a top-down approach pro-

ducing progressively finer levels of detail. Again, estimated locations of critical

points and edges determine how these levels of detail are produced. This chapter

describes the strategies and structures of both.

3.1. Refined triangulation hierarchy

The refined triangulation hierarchy builds triangulated levels of detail in a

bottom-up manner, preserving the most critical points and approximating critical

lines at each level. I began this work to meet the requirements described in

[TSDB88] and outlined earlier in section 1.1.1.

3.1.1. Foundations

The refined triangulation hierarchy is based on a structure described by

Kirkpatrick [Kir83] which was originally intended to facilitate optimal search in

planar subdivisions. In his paper, Kirkpatrick demonstrated that his model facili-

tates O(n log n) search time on a structure built in O(n log n) time using O(n log

n) storage space. I extended Kirkpatrick’s model to consider the special character-

istics and requirements of terrain data bases. First, I enhanced his temporary

Triangulation Hierarchies 33

search structure with additional data to facilitate fast level of detail retrieval and

neighborhood search. These additional structures are described later on in this

section. More importantly, I devised a means of measuring the importance of

points to the terrain data base and a method for removing those points from the

data base. The re-triangulation step respects critical line information, using trian-

gle edges to generalize critical lines.

3.1.2. Input Data

This bottom-up algorithm requires an initial triangulation to start with.

Because only coarser levels of detail are generated, this method can only preserve

accuracy; it cannot improve on the accuracy of the initial triangulation. Yet any of

the sources described in chapter 2.1 may be used to derive this initial surface.

If the data source is a gridded digital elevation model, the initial triangula-

tion may be generated by creating two triangles for every neighborhood of four

points. The orientation of these triangles (i.e. the direction of the diagonal) may

be determined by considering both possibilities with respect to the bilinear sur-

face patch defined by the four points.

This algorithm also expects critical line information, defining which edges

in the initial triangulation are critical to the surface. These are the ridge lines,

channel lines, and break lines discussed in chapter 2.2. Some data sources auto-

matically provide critical edge information, such as ridge and drainage lines from

digital line graph products. For an initial triangulation derived from contours,

critical lines may be derived by first finding the slope lines, which intersect con-

tour lines at right angles. A ridge is then a slope line from a peak descending to a

34 Spatial Data Representations

pass, and then climbing up to another peak [D86]. Likewise, a channel is a slope

line from a pit to a pale to another pit. For gridded data, numerous methods have

been suggested for finding critical lines based on local neighborhoods [FL79,

PD75, FB89, Sca90a].

3.1.3. Approach

A refined triangulation hierarchy is a rooted graph, where graph nodes

represent triangular facets that approximate the terrain. Each depth level in the

graph represents a single level of detail. Hence the collection of nodes at a given

depth completely covers the area of interest with an irregular triangular mesh.

Edges within the graph link triangles with the next higher and lower levels of

detail. Because this structure is an acyclic graph, and not a tree, a triangle may

have more than one parent in a coarser level of detail. The algorithm that gener-

ates this appears in figure 3.2.

3.1.3.1. Algorithm

The refined triangulation hierarchy is based on a number of key concepts

which are defined here.

Point Significance is based on 1) the difference between the elevation of a

point and the weighted average of adjacent vertices, and 2) the number of adja-

cencies for that point. The first measure assures that removal of that point will not

significantly alter the geometry of the model, thereby retaining significant fea-

tures. The second measure is used to choose between two points that have equal

Triangulation Hierarchies 35

significance to the model. Removing one point from a triangulation reduces the

number of triangles by no more than two, so more triangles may be removed if

points with fewer adjacencies are selected. Maximizing the number of triangles

36 Spatial Data Representations

procedure build_refined_triangulation_hierarchy (Point, Edge, T0)

Input : A fine level-of-detail triangulation T0 that references an Edge list —

where critical edges are marked — and a Point set defining

the surface.

Output : n triangulated levels of detail [T0 .. T1].

begin

initialize adjacency list Adj[p] for each point p ∈ Point ;

level n = 0;

while Tn can be reduced further do begin (*build next level of detail *)

n ++; (* starting next level of detail n *)

initialize Tn with values from Tn-1 ;

for each point p ∈ Point that is not on the convex hull do begin

calculate point significance value & store in Sig_List ;

p is OK to remove;

end;

sort Sig_List on point significance values in ascending order;

for each point p in Sig_List order do

if it’s OK to remove p then begin (* remove p from triangulation *)

find polygon Poly which is the composite of all triangles at p ;

re-triangulate Poly , generalizing critical edges in Edge ;

update triangulation Tn and affected adjacency lists;

for each point q ∈ Adj[p] do begin

update Adj[q] ;

it's NOT OK to remove q at this level of detail;

end;

end;

end;

end;

Figure 3.2. Building the refined triangulation hierarchy

removed causes refinement to occur more quickly, generates fewer hierarchical

levels, and thereby decreases search time in the final structure.

Once significance factors have been determined for all of the points, the

list of factors is sorted in ascending order. This sorted list acts as a queue of

points to be removed from the current triangulation. However, not all points on

the queue may be removed. This is

because a point’s significance is based

on its relationship to its adjacencies.

When a point is removed, its adjacen-

cies must remain in the triangulation.

Hence, points along the perimeter of a

re-triangulated polygon are marked as

“not OK” for that level, to ensure that

they (and the new triangulation)

remain in the current level of detail.

Corner points on the convex hull of

the triangulated area are never “OK”

to remove.

Star Polygons defined by the

vertices are key to this algorithm.

Each vertex v ∈V can be thought of

as defining a star polygon Pv. As

shown in figure 3.3, v is the centroid

of this polygon, and vertices adjacent

t o v form Pv’s perimeter. Corner

Triangulation Hierarchies 37

v

v

Figure 3.3. A star polygon is the union of all

triangles that share vertex v

Figure 3.4. A corner point does not form the

centroid of a star polygon

points which lie outside the perimeter of their neighbors, as shown in figure 3.4,

form the exception and do not define polygons. Points that lie on the perimeter of

their polygon form a special case that is easily handled.

Triangulation Criteria determine how to re-connect the points along the

perimeter of a star polygon after its centroid is removed. It is desirable to retain

the general shapes of critical lines, as they characterize terrain topology.

However, if the initial triangulation represents the terrain economically and accu-

rately, then nearly every vertex will lie on a critical line. The problem is to retain

the shapes of these lines while removing points from them. I solve this problem,

relying on critical line information in edge list E, as follows.

First, find critical edges for which v is an endpoint, and try to connect the

other endpoints of these critical edges to one another. If several possible combi-

nations exist, new connections that approximate the old critical lines are given

preference. Figure 3.5 shows how this would be done in one case. Successful

connections of critical edge endpoints are marked as new critical edges in the tri-

38 Spatial Data Representations

Original Re-triangulated

Figure 3.5. Re-triangulation approximates critical lines

angulation. These new connections slice the polygon into smaller polygons. After

all critical edges have been considered, the smaller star polygons are simply trian-

gulated with an O(n log n) algorithm [FM84].

3.1.3.2. Data Structures

The final triangulation hierarchy contains O(log n) levels of detail. This

hierarchy is supplemented with additional information to facilitate visualization

and analysis of the resulting data base. A header record indicates the area of cov-

erage and contains pointers to the various resolution levels, and the starting

records for the point, triangle, and polygon data. A resolution level is character-

ized by the number of points at that level (N) and a list of indices representing the

triangles and their neighbors at that resolution. Points contain 3D coordinate val-

ues, and are ordered in the file so that the first point is used by all resolution lev-

els, and the last point is used only in the highest resolution. Thus, only points 1..N

need to be retrieved for a given resolution level. Triangles, which are defined by

3 point indices each, are also arranged to reflect the order in which they were cre-

ated. In addition, the triangle points to a polygon for tree traversal. The polygon

is a collection of adjacent triangles, used to find the children of those triangles.

This is necessary because a node may have more than one parent.

3.1.4. Results

I implemented this algorithm on a VAX 8530 and tested it on data sets

taken from the Defense Mapping Agency’s Digital Terrain Elevation Data

Triangulation Hierarchies 39

(DTED Level 1)1. I selected an area of interest in southern Nevada, replete with

both large flat areas and mountainous regions, covered by 256x256 elevation

posts. Figure 3.6 shows a view of the original data, represented by 130,050 trian-

gles. A refined triangulation hierarchy was generated for this region in 7.75 CPU

minutes containing 27 levels of detail, starting with an initial triangulation of crit-

ical lines containing 11,774 triangles.

To test my results, I selected three levels of detail from my refined trian-

gulation hierarchy containing approximately 10,000, 5000, and 2500 triangles.

These represent compression ratios (in terms of number of triangles) over the

40 Spatial Data Representations

Figure 3.6. Original digital elevation model with 130,050 triangles

1. DTED Level 1 elevation points are three seconds of arc apart, approximately 100 meters near
the equator. Data accuracy is generally 30 meters vertically and 180 meters horizontally.

Triangulation Hierarchies 41

Figure 3.8. Three levels of detail from a

subsampled grid with approximately

10000, 5000, and 2500 triangles

(top to bottom)

Figure 3.8. Three levels of detail from a

refined triangulation hierarchy with approxi-

mately 10000, 5000, and 2500 triangles

(top to bottom)

original terrain model of 13:1, 26:1, and 52:1 respectively. Figure 3.7 shows these

levels of detail with the coarsest representation in the bottom frame. As expected,

the major features retain their basic positions and characteristics (compare to fig-

ure 3.6).

For comparison, I subsampled the elevation matrix to produce terrain

models with approximately 10,000, 5000, and 2500 triangles. Figure 3.8 shows

these models rendered from the same view seen in figures 3.6 and 3.7. Notice

how the subsampled terrain features radically change shape and even shift across

the landscape.

For a more analytic comparison of the models, I projected the original ele-

vation data onto each of the six surface models and measured the distance (error).

As shown in tables 3.1 and 3.2, levels of detail in the refined triangulation hierar-

chy had relatively small average and maximum errors. In contrast, errors in the

subsampled grids were much larger, with errors generally ten times greater than

those in the same-size TIN. This demonstrates that the levels of detail in the

refined triangulation hierarchy retain critical information, producing a more accu-

rate terrain representation with fewer triangles.

42 Spatial Data Representations

Number of Terrain Models
Polygons TIN Grid

10,000 8 75

5,000 9 94

2,500 11 130

Table 3.1. Average Error: Refined

Triangulation (TIN) vs. Subsampled

Grid at different levels of detail (error

in meters)

Number of Terrain Models
Polygons TIN Grid

10,000 119 1260

5,000 125 1701

2,500 143 1774

Table 3.2. Maximum Error: Refined

Triangulation (TIN) vs. Subsampled

Grid at different levels of detail (error

in meters)

3.1.5. Reflections

I am not the first — or last — to suggest building a triangulation hierarchy

from the bottom-up. Several others have defined similar approaches since this

work was first published. DeFloriani [DeF89], Lee [Lee91], and Schroeder et al.

[SZL92] are examples, all having developed similar bottom-up heuristics for pro-

ducing the TIN, which essentially discards the “least important" point at each

stage.

What makes this work unique is that it also attempts to generalize critical

lines in the refinement process. This approach minimizes the degradation of the

surface model at coarser levels of detail. Yet there are drawbacks to this and the

other bottom-up approaches. First, they do not allow for refinement down to a

specified level of accuracy corresponding to each level of detail. Second, the

algorithm produces more levels of detail than are generally needed. Finally, the

resulting hierarchical structure is an acyclic graph, not a tree, which complicates

the transition from one level of detail to another. It was these concerns that drove

continuing research leading to the second solution.

3.2. Adaptive hierarchical triangulation

Adaptive hierarchical triangulation achieves the same surface integrity as

the refined triangulation hierarchy, constructing levels of detail in a top-down

fashion. Yet adaptive hierarchical triangulation has three advantages over the ear-

lier approach. First, it requires no prior knowledge of which triangle edges and

Triangulation Hierarchies 43

vertices are critical to the surface. Second, the resulting hierarchy is a tree which

lends itself well to manipulations such as multi-resolution views. Third, the levels

in the hierarchy comply with specified error tolerances.

In this structure, every hierarchy level corresponds to a different level of

detail, approximating the surface within a given tolerance or maximum error. The

top level is the coarsest, containing the smaller number of triangles which

approximate the surface within some tolerance t0. The i+1th level is related to the

ith level as follows. Tolerance ti+1 is smaller than ti. For each triangle Tj
i of the

ith level there exists a set of triangles [Tj1
i+1..Tjn

i+1] at the i+1th level, such that

The number of descendant triangles (n) can be any integer greater than or

equal to one. The resulting tree structure provides the many benefits of a hierar-

chical organization while eliminating unnecessary intermediate triangulation lev-

els. Each level of the hierarchy corresponds to a guaranteed level of accuracy.

Because this algorithm focuses on the topology of a surface, it reduces the num-

ber of long and slivery triangles within each level of detail. Only triangles from

the required levels of detail are saved, reducing the number of triangles that must

be stored and searched. The tree structure of the adaptive hierarchical triangula-

tion facilitates adaptive pruning and simplifies tasks such as rendering multiple-

resolution views (see chapter 5). And aside from a few initial specifications, this

algorithm produces the data base automatically. These features add up to a trian-

gulation that provides good accuracy in a model that can be rapidly produced,

searched, rendered, and otherwise manipulated.

44 Spatial Data Representations

n

k = 1
U i+1 i

j jT = T
n

3.2.1. Foundations

Adaptive hierarchical triangulation’s top-down method was inspired by

another hierarchical triangulation strategy described by DeFloriani et al.

[DFNP84]. One advantage of DeFloriani’s method is that it produces a tree struc-

ture that facilitates easier pruning and filtering via levels of detail, an important

characteristic for time-critical applications [DM93]. Yet as illustrated in figure

2.3, simply splitting a triangle at the point of greatest error can generate a mass of

unnecessarily slivery triangles that poorly approximate the surface.

My extension of this idea is based on two premises. First, that many of the

critical points on a surface — especially terrain — are merely part of some larger

critical line feature. Second, that for triangles that are sufficiently small, critical

line features generally extend beyond the bounds of any one triangle. When a

critical edge travels through a triangle, points significantly distant from the trian-

gle surface should be found at the triangle edges as well as within the interior.

Adaptive hierarchical triangulation incorporates this idea as follows. It

starts by calculating an error value for each point in the original elevation matrix.

This error value represents the degree to which the triangulation deviates from the

actual elevation model at that particular point. It then finds for each triangle four

points with maximum error values: one inside the triangle, and one on each of the

three edges. These points are then used to split the triangles that need refinement.

Figure 3.9 shows the five ways that a triangle may be refined. In all cases

adaptive hierarchical triangulation approximates the surface form by splitting

edges if necessary, thereby reducing the number of splits or refinements required

Triangulation Hierarchies 45

to achieve a desired level of detail. If an isolated peak or pit resides within the tri-

angle, it is split at that central peak or pit point as shown. If a single ridge or

channel line travels up to that peak or pit, the triangle is split where that line

crosses the edge of the triangle and at the central peak or pit point. If, however, a

single ridge or channel line enters the triangle and ends at a saddle point or flat,

then the center point is insignificant and the triangle is split by one edge as

shown. If a ridge or channel line passes through the triangle, significant errors

will be found on two edges of the triangle. A line connecting these points approx-

imates the topographic line, and an additional edge splits the remaining quadrilat-

eral into the least slivery pair of triangles possible. Finally, if a triangular patch

corresponds to a rapidly fluctuating surface, it is likely that many of the points in

46 Spatial Data Representations

Peak/Pit Ridge/Channel
ending at Peak/Pit

Ridge/Channel
ending at Saddle

Ridge/Channel Rough Terrain

Figure 3.9. Triangle splitting strategies

that triangle have significant errors. Splitting this type of triangle on all edges

partitions high-frequency regions which may then be further refined.

This refinement technique strives primarily to add edges that approximate

critical lines on the surface, and secondarily to minimize the number of slivery

triangles in the model. Of course, triangles with very sharp angles may be

inevitable for some types of data. For example, the model of a steep cliff will

have large differences in elevation values between adjacent points as illustrated in

figure 3.10. Then triangles with very sharp angles are inevitable. When this

occurs, the only way to reduce sliveriness and retain surface integrity is to split

the slivers into smaller tringles with less acute angles.

3.2.2. Data

Adaptive hierarchical triangulation depends on surface data in a grid for-

mat to provide data for successively finer levels of detail. The grid format pro-

vides 2 advantages. First, a position on the surface identifies a single grid cell,

Triangulation Hierarchies 47

Side view Map view

Figure 3.10. Some slivers in the model are inevitable, as in this triangulation (right) of a

steep cliff (left)

which is known to correspond to exactly one point. Hence points may be indexed

in constant time. Second, the nearest neighbors of a point are those points resid-

ing in neighboring grid squares. Furthermore, the neighborhood has a sense of

direction (i.e. north, east, south or west of the point). Hence locality information

may also be found in constant time.

Yet as described in chapter 2, not all data sources are in a grid format.

Therefore it is useful to handle irregular data as well. I have overcome this prob-

lem by generating an adaptive grid structure for irregular data. There are two key

issues to this problem. First, each grid square may contain no more than one point

(although for irregular data, some grid cells will inevitably contain no points).

Second, the grid structure works best if it is nearly square (i.e. it has the same

number of rows and columns). The method works as follows.

First, determine the desired number of rows and columns, which is √n for

a surface defined by n points. Sort the points on their x coordinate, then begin

collecting data in columns. A column may not contain two points with the same y

coordinate, and ideally should consist of √n points. Once the columns have been

created, sort the points on their y coordinates and collect rows of points similarly.

A point-to-grid and grid-to-point mapping is maintained for rapid searching while

the triangulation is being constructed. Figure 3.11 shows an example of an irregu-

lar grid constructed in this manner.

In addition to the underlying discrete elevation data, adaptive hierarchical

triangulation requires some initial triangulation. This may be as simple as split-

ting the area of interest in half. However, the initial triangulation is important

because all edges introduced at this stage persist throughout all levels of detail.

Initial triangulations are discussed at greater length in the next chapter.

48 Spatial Data Representations

3.2.3. Approach

Adaptive hierarchical triangulation produces a specified number of levels

of detail, each with a specified accuracy requirement specified as an error toler-

ance given in meters. For each level of detail, the above steps are repeated until

all triangles meet the given accuracy requirements for that level. This accuracy is

checked by projecting all original grid points to the surface of the triangulated

model and measuring the difference. Intermediate triangles, used to produce but

not included in the final triangulation for the current level of detail, are discarded.

This reduces the number of levels in the hierarchy and the number of triangles

within each level, making faster search, display, and processing possible. For

some applications such as Project 2851 [Luf89] there is a limit on the number of

triangles allowed in each level of detail. In general these limits are imposed by

the simulators that must render these levels of detail in real time. If such polygon

Triangulation Hierarchies 49

Figure 3.11. Adaptive grid structure for irregular data

constraints are more important than the level of error, adaptive hierarchical trian-

gulation is easily modified to check the number of triangles and terminate a level

when the limit is approached.

In addition to the elevation data in some grid and the level of detail infor-

mation, this algorithm maintains several other data structures supporting develop-

ment of the adaptive hierarchical triangulation. Each data point has an associated

ground position and elevation, and is also associated with zero, one or two trian-

gles in a membership list. These are the triangles that that point can split into

smaller triangles. Triangle vertices are already part of the triangulation and hence

cannot be added as splitting points. Therefore triangle vertices are associated with

no triangles. Of the remaining points in the elevation matrix, a point that does not

lie near any triangle edges is associated with the single triangle that the point’s

ground position lies within. A point that lies near an edge is associated with the

two triangles that share that edge; a point is considered to be near the edge if the

edge intersects its grid cell. The distance to that edge is stored along with the tri-

angle associations. Because a point may be close to more than one edge, each

membership entry is actually a linked list of triangle associations, sorted in order

of increasing distances to a line.

Multiple triangle membership is important because lines in a triangulation

frequently fall between grid points, thereby reducing the number of points on an

edge. I compensate for this by considering points close to a line to be on that line.

If several lines are close to a point, that point only belongs to the line closest to it.

As shown in figure 3.12, splitting at these points will introduce minor bends

along the edges. To retain a strict hierarchy, bends are restricted to ensure that

they are less than a grid cell's width from the edge that was divided. By allowing

50 Spatial Data Representations

lines to bend I am able to introduce fewer points to the model than I would if

those points were considered to be inside the triangles. This produces fewer and

less slivery triangles.

Three point indices define a triangle. Each triangle is associated with a

level of detail and contains pointers to its parent, its children, and its three neigh-

bors (ie the triangles that share its edges). In addition, triangles have temporary

structures keeping track of their splitting points, the maximum error found within

them, and the number of edges to be split. A flag indicates whether the triangle

meets the accuracy standards of the current level.

3.2.3.1. Main Program

Besides retrieving the input data and writing the results to a data base, the

main program executes an outer loop once for each specified level of detail. At

the start of iteration i, the current triangulation level i is a copy of level i-1, the

finest level of detail generated thus far. When i = 1, this is the initial triangulation.

At the conclusion of iteration i, triangulation level i is complete. All triangles at

Triangulation Hierarchies 51

Figure 3.12. Allowing edges to bend, to avoid unnecessary slivery triangles

52 Spatial Data Representations

procedure triangulate (Triangle, Point , L, E)

Input : An initial triangulation Triangle that references a Point set defining

the surface, the desired number of levels of detail L for the model,

and a set of error tolerances E , one for each level.

Output : L triangulations of the surface meeting the given error criteria.

begin

initialize lists of 3 neighbors for each triangle and 0..2 triangle memberships

for each Point ;

for each level of detail i do

repeat

for each triangle t ∈Triangle do

error[t] = measure_error (t, Point, membership);

for each triangle t ∈Triangle do

for each edge j := 1 to 3 do

if error[t][j].distance is significant then

ensure neighbor[t][j] has significant error on that edge;

for each triangle t ∈Triangle with some significant error do

case of significant error on

1 edge :if error[t][4].distance is significant then

split_1_edge_plus_center (T, SP1, SP2);

else

split_1_edge (T, SP1);

2 edges : split_2_edges (T, SP1, SP2);

3 edges : split_3_edges (T, SP1, SP2, SP3);

interior : split_center (T, SP1);

end;

for each triangle t ∈Triangle with no significant error do

update neighbor and membership relations;

until all errors are within E[i];

write resulting hierarchy to data base;

end;

Figure 3.13. Adaptive hierarchical triangulation

this new level of detail are linked to parent triangles in level i-1. An inner loop

iterates until all triangles in the current triangulation meet the specified accuracy

requirements (error tolerance) of the current level of detail. Pseudocode for the

main program appears in figure 3.13.

3.2.3.2. Measuring Errors

The level of error within a triangle is found by taking all grid points with-

in the boundaries of that triangle and projecting them to the surface of the trian-

gle. The aforementioned point membership list determines which triangle or edge

to project each point to. An error value for a point is the difference between this

projected elevation and the elevation given in the original matrix. Once the errors

have been found, maximum error in each category is found in linear time. The

algorithm shown in figure 3.14 outlines the method for finding these error values.

Input to this algorithm is a triangle T for which errors are found. Output of this

algorithm is an Error list of four points furthest from the plane of triangle T, and

their respective distances to the triangle. These points determine how the triangle

will be split (if at all) later on.

3.2.3.3. Significance of Error

Every point that yields the maximum error in some category for a triangle

is a candidate splitting point. Whether or not that point is used depends on its sig-

nificance. I employ two alternate strategies to determine significance of a point.

My first strategy is to consider a point significant if its error is greater than the

Triangulation Hierarchies 53

54 Spatial Data Representations

function measure_error (T , Point, membership);

Input : A triangle t, the Point set it's meant to approximate, and the

membership of each point.

Output : Returns Error for 4 regions of triangle T (on each edge and within

triangle interior), each represented by a point index and measured

error distance for the point farthest from T ‘s surface in that region.

begin

for i := 1 to 4 do Error[i].distance := 0;

calculate planar equation of triangle T ;

for each p ∈Point such that T ∈membership[p] do begin

calculate distance from p to its projection onto the plane of T ;

case of membership[p] on

1st edge : if distance > Error[1].distance then begin

Error[1].index := p ;

Error[1].distance := distance ;

end;

2nd edge : if distance > Error[2].distance then begin

Error[2].index := p ;

Error[2].distance := distance ;

end;

3rd edge : if distance > Error[3].distance then begin

Error[3].index := p ;

Error[3].distance := distance ;

end;

interior : if distance > Error[4].distance then begin

Error[4].index := p ;

Error[4].distance := distance ;

end;

end;

end;

return Error ;

end;

Figure 3.14. Measuring errors at the points

given error tolerance for the current level of detail. My alternate strategy is to

consider a point significant if the given value is more than some percentage of the

maximum error found within a triangle. In either case, a point is insignificant if

its error falls at or below the threshold for the current level of detail. If a triangle

has no significant error points in any of its four categories, then it is not split at

that iteration. The main program ensures that if a point splits one triangle on its

edge, then the neighboring triangle is also split on that edge.

3.2.3.4. Splitting Triangles

Although a triangle may be split in five different ways as shown in figure

3.9, the five routines that do this splitting are actually very similar. The algorithm

below (figure 3.15) demonstrates how a triangle is split on three edges as an

example. Input to the routine is a triangle T and indices of the three points —

SP1, SP2, SP3 — with maximum error on triangle T’s three edges.

All five triangle-splitting routines rely on two important local procedures

for adding edges to the triangulation. One routine adds a new edge connecting

two splitting points. Endpoints of the new edge are given null membership val-

ues, so those points no longer belong to any triangle and therefore are not candi-

dates for splitting a triangle again. The second routine splits an existing edge into

two new edges, possibly adding a bend in the middle. If the edge has not already

been split (because the triangle sharing that edge was processed first), this routine

adds two new edges by calling the other routine twice. Otherwise this routine

finds the new neighbors added by the split and returns those. The primary task of

both routines is updating point membership values alongside the new line.

Triangulation Hierarchies 55

Each new triangle is assigned a distinct triangle index. I do not need to

keep intermediate triangles, so to save space I recycle the index of the triangle

that was split. After the new triangles have been generated, I update point mem-

berships and triangle neighbors to facilitate splitting in the next iteration.

3.2.3.5. Special Triangulation

Associating points with nearby lines can introduce a rare anomaly which

must be treated as a special case. Consider figure 3.16. When two edges of a tri-

angle form a very obtuse angle, the points defining those edges are nearly co-lin-

ear. Because the algorithm may select a splitting point that is not quite on the

56 Spatial Data Representations

procedure split_3_edges (T, SP1, SP2, SP3);

Input : A triangle t and 3 splitting points SP1, SP2, SP3 .

Output : Adds elements to Triangle, updates neighbor and membership

relations.

begin

split 1st edge of T at point SP1;

split 2nd edge of T at point SP2;

split 3rd edge of T at point SP3;

if any splitting point is co-linear with an edge it does not split then begin

generate a polygon from the 3 vertices of T and SP1, SP2, SP3 ;

split_anomalies (polygon);

end;

else begin (* typical triangle split *)

add 3 new edges connecting splitting points SP1, SP2, and SP3 ;

create 4 new Triangle entries;

update neighbor and membership relations;

end;

end;

Figure 3.15. Split triangle at all 3 edges

edge, the selected point may actually be co-linear with the adjacent edge as

shown. When this happens, the aforementioned triangulation schemes will pro-

duce at least one “triangle” that is actually a line. Therefore a separate triangula-

tion algorithm must be called.

The algorithm that handles this special triangulation appears in figure

3.17. A triangle’s vertices and splitting points are passed to the procedure as the

vertices of a polygon to be triangulated. The procedure considers each group of

Triangulation Hierarchies 57

Figure 3.16. Very long and thin triangles can cause anomalies that must be handled spe-

cially by the triangulation algorithm

procedure split_anomalies (Polygon.);

Input : A list of points defining a Polygon..

Output : Adds elements to Triangle that triangulate the given Polygon.,

updates neighbor and membership relations.

begin

define previous and successor relationships for all points in Polygon.;

while Polygon. is not a triangle or line do begin

find sequence of 3 points on Polygon. forming the least slivery triangle;

generate new Triangle with an edge connecting 1st & 3rd points;

update previous and successor relationships;

end;

if remaining Polygon. is a triangle then

generate new Triangle ;

update neighbor and membership relations;

end;

Figure 3.17. Split long, thin triangles

three consecutive points on the polygon, selecting the triple forming the least

slivery triangle. That triangle is then removed, leaving a polygon with one less

vertex on its perimeter. This is repeated until the remaining polygon is a triangle.

In my tests this special triangulation was required less than 0.1% of the time.

3.2.3.6. Asymptotic Analysis

The run time of this algorithm can be evaluated in terms of V, the number

of vertices (points) in the original elevation matrix. Given that E is the number of

edges and R is the number of regions in the graph, Euler’s formula for a planar

graph shows that

V - E + R = 2

In a triangulation, V may be partitioned into two categories, Vin and Vout,

such that for all v ∈ Vout, v is a vertex on the outer boundary of the triangulation.

For a rectangular area of interest where V = m x n,

Vout = 2(m-1 + n-1) = 2m + 2n - 4.

A triangulation of all V vertices will produce a planar graph where R-1

regions are bounded by 3 edges, and the remaining outer region is bounded by

Vout edges along the perimeter of the area of interest. Each edge bounds two

regions, so

2E = 3(R-1) + Vout.

Therefore, the number of triangles T in a triangulation of all V points in

the elevation matrix is

T = 2V - Vout - 2.

58 Spatial Data Representations

Because no triangulation may ever have a number of triangles T which is

greater than 2V, T = O(V).

In the main program, initialization takes O(V) time to initialize point

memberships and neighbor values. The outer loop executes a constant number of

times (specified by a user). Within the next loop, measure_error is called once for

each triangle in the current triangulation. Yet the end result of all these procedure

calls is that each point in the original elevation matrix is projected to the plane of

a triangle — once, twice, or not at all, depending on the number of triangles in

the point’s membership — and that result is compared to the original elevation

value. Finding maximum error is done simultaneously, so the overall cost of all

calls to measure_error is O(V). The next step compares the splitting points of

each triangle to all three of its neighbors, which also takes O(V) time.

The innermost loop of the main program splits each triangle that does not

meet the accuracy requirements for the current level of detail. For each triangle

that is split — and there are O(V) of them — a constant number of new triangles

is generated (between two and four) and a constant number of neighbor pointers

is updated (three per new triangle). Adding edges simply updates the membership

values of points in the original elevation matrix. Once again, over all iterations of

the loop this is done once, twice, or not at all for each point in the matrix.

Therefore, the time to run all iterations of this inner loop is also O(V).

Therefore, the overall run time of this algorithm is N x O(V) where N is

the number of iterations of the repeat loop in the main program. In the worst case,

this will start with an initial triangulation of two triangles and generate a single

level of detail which contains all V vertices. Then, in each iteration of the repeat

loop, every triangle will be split into two to four new triangles, until all points are

Triangulation Hierarchies 59

included. This indicates that there may be up to O(log V) iterations of the repeat

loop. Hence the worst case running time of the algorithm is O (V log V).

3.2.4. Data Structure

The adaptive hierarchical triangulation structure is designed to facilitate

fast spatial search and data retrieval. It is composed of three parts: a header, a ver-

tex list, and a triangle list.

The header indicates what levels of detail are available and how to

retrieve them. Each level of detail is represented by an error tolerance, i.e. the

maximum error allowed at that level of detail. It is accompanied by the number of

vertices and triangles used in that level of detail, and a pointer to the sequence of

triangles. A grid width/length is also stored for fast point location.

Each vertex is represented by three-dimensional coordinates which may

be encoded to reduce storage space. All vertices used in level of detail I are also

vertices of finer level of detail I+1. Vertices are listed in the order that they appear

in the model, so that all N vertices used at a particular level of detail are stored

contiguously (numbered 1..N). This improves data retrieval times for a single

level of detail. Any vertex introduced as a splitting point on the edge of a coarser-

level triangle also has a reference to the edge that it split. This is useful for zoom-

ing, as described in chapter 5.

Each triangle within the level of detail is defined by three references to a

point list. Three neighbor references and a value representing twice the area of

the triangle aid point location and line following within that level of detail . Child

references and one parent reference aid traversal between levels of detail.

60 Spatial Data Representations

Triangles are ordered such that their indices indicate their relative positions on

the surface. As with the vertices, all triangles defining a level of detail are stored

contiguously for fast retrieval of a single level of detail.

Data retrieval is greatly simplified by this arrangement of the data. If only

one level of detail is required, the following steps are taken:

• Read the header record to identify the desired level of detail, based

either on error tolerance or number or triangles,

• Seek the start of the vertex list, and read in the appropriate number of

vertices,

• Seek the first triangle in this level of detail, then read in the appropriate

number of triangles.

The entire hierarchy may also be retrieved at once. To reduce the amount

of data that this encompasses, a regular tiling scheme such as those proposed by

Goodchild or Fekete [Goo89, Fek90] may be used to subdivide the globe.

3.2.5. Results

I selected eight areas of interest (AOI) as test data, each one covering

75x75 elevation points from the Defense Mapping Agency’s DTED Level 1. I

selected these areas to represent a variety of terrain types. Areas 1 and 2 cover an

area of Alabama where plateaus rise steeply out of an otherwise flat region. Areas

3 and 4 represent parts of Montana with low rolling hills. Areas 5 and 6 depict a

region in Nevada where the Rocky Mountains begin to ascend from the plains.

Areas 7 and 8 feature Oregon’s Cascade Mountain range. In each AOI a triangu-

lation employing all 5625 contains 10,952 triangles.

Triangulation Hierarchies 61

I implemented the adaptive hierarchical triangulation program with vary-

ing parameters to see which behaved best. The first parameter determines how

the significance of a point p’s error ep is evaluated. Error ep may be considered

significant compared to

• tolerance value ti for level i, so that ep ≥ ti, or

• a percentage N of the maximum error etmax found for current triangle t,

so that ep ≥ etmax.

The second parameter determines when a triangle should be split at both a

significant center point and one edge (as shown in figure 3.9). Center point c may

be considered significant compared to

• error ev of splitting point v on the edge of the triangle, so that ec ≥ ev, or

• the same value used to determine the significance of all other points, as

determined by the first parameter.

These two parameters gave me four test options. Option 1 uses tolerance

to determine significance, and requires a center point to be at least as significant

as an edge point in order to be used. Option 2 uses 75% of the maximum error

within a triangle to determine significance, and also requires a center point to be

at least as significant as an edge point. Options 3 and 4 are like options 1 and 2

respectively, except that a center point’s significance is determined by the usual

measures. As a basis of comparison, I implemented DeFloriani’s first algorithm

[DFNP84] and ran it with the same test data.

All four options and DeFloriani et al.’s hierarchical triangulation algo-

rithm [DFNP84] were executed on the eight AOIs, producing triangulations with

a maximum error of 10 meters at the highest level of detail. For my algorithm, I

chose to generate five levels of detail with error tolerances of 160, 80, 40, 20, and

62 Spatial Data Representations

10 meters. I measured the average sliveriness of the triangles, the average number

of children for interior nodes, the number of triangles at the highest level of

detail, and the total number of triangles in the hierarchy. I also generated several

perspective views to visually verify the results.

Table 3.3 shows how slivery the resulting triangles were. I measured sliv-

eriness of each triangle using the formula described in chapter 2.3, then calculat-

ed the average sliveriness for the entire structure. I divided the result by the sliv-

eriness ratio for an equilateral triangle to show how close to equilateral the trian-

gles were. The best results for each AOI — i.e. the least slivery triangulation, rep-

resented by the lowest sliveriness value — are shown in bold text in the table. On

the average, most triangles have angles much sharper than sixty degrees. With the

DeFloriani algorithm (DFNP), some angles are as small as 0.25 degrees. For all

AOI’s, adaptive hierarchical triangulation produced less slivery triangulations,

Triangulation Hierarchies 63

AOI DFNP Option 1 Option 2 Option 3 Option 4

1 32.294 5.037 5.071 6.301 6.578

2 52.487 9.864 12.107 11.074 11.107

3 35.889 6.047 5.739 6.398 5.998

4 50.682 11.619 11.164 12.581 12.854

5 56.835 15.054 8.521 14.329 8.676

6 40.932 5.461 5.578 7.376 7.437

7 51.261 4.336 5.029 6.089 7.367

8 39.925 5.873 6.112 6.805 7.153

Table 3.3. Measures of sliveriness, values normalized to 1 for an equilateral triangle

using all four options. Options 1 and 2 seem to work about equally well, indicat-

ing that the best measure of point significance is determined by data characteris-

tics. Options 3 and 4 consistently performed a little worse. This led me to con-

clude that a center point should only be included in the division of a triangle if it

is more significant than the edge point.

Search time in a hierarchical triangulation is determined by the number of

levels that must be searched, and the number of child nodes that must be exam-

ined at each level. The number of levels in DeFloriani’s structure depends on the

number of iteration levels required to build the triangulation. Non-leaf nodes in

this hierarchy have either two or three children. Adaptive hierarchical triangula-

tion, on the other hand, guarantees a fixed number of levels in the hierarchy, but

can split a parent triangle into any number of children. Table 3.4 shows that the

64 Spatial Data Representations

Number of Levels Average Number of Children

AOI DFNP Option 1 DFNP Option 1

1 15 5 2.5 2.8

2 17 5 2.4 2.4

3 17 5 2.5 3.6

4 17 5 2.5 3.6

5 19 5 2.4 2.4

6 18 5 2.4 2.5

7 17 5 2.3 2.4

8 18 5 2.5 2.3

Table 3.4. Comparison of hierarchies

average number of children in my hierarchy is not significantly larger than that in

DeFloriani’s structure. I expect search times to be comparable.

Table 3.5 shows the total number of triangles in the hierarchy. The best

results for each test area — i.e those with the fewest total triangles — are shown

in bold text. Notice that the options that produced the fewest total triangles also

produced the least slivery triangles. Table 3.6 shows the number of triangles at

the highest level of detail, with a maximum error of 10 meters at each point. This

should be compared to 10,952 triangles for the original grid. As shown in the

tables, adaptive hierarchical triangulation did not produce significantly fewer tri-

angles than DeFloriani et al.’s algorithm.

Figures 3.18 and 3.19 illustrate the merits of the adaptive hierarchical tri-

angulation. These figures show two different views of an area of interest in

Oregon (AOI 7) modeled with (a) the original grid data, (b) DeFloriani et al.’s

Triangulation Hierarchies 65

AOI DFNP Option 1 Option 2 Option 3 Option 4

1 2918 2848 2848 3208 3195

2 4198 3914 4048 4344 4364

3 2576 1834 1786 2022 2055

4 2007 1563 1539 1737 1757

5 5433 5169 5040 5508 5372

6 3935 3254 3263 3624 3604

7 4908 4520 4611 4995 5109

8 7962 7795 7972 8312 8516

Table 3.5. Total number of triangles in the hierarchy.

hierarchical structure, and (c) adaptive hierarchical triangulation using option 1.

The original grid data is represented by 10,952 triangles. The model generated

with DeFloriani et al.’s hierarchical structure contains 2883 triangles for a maxi-

mum error of 10 meters. The adaptive hierarchical triangulation model contains

2644 triangles, also for a maximum error of 10 meters.

3.2.6. Observations

Adaptive hierarchical triangulation apparently has great potential for

approximating surfaces with the desired accuracy — both mathematical and visu-

al — using a reduced set of polygonal patches. Yet the outcome of this triangula-

tion depends on the initial triangulation, which guides the development of succes-

sive levels of detail. This is because adaptive hierarchical triangulation only

66 Spatial Data Representations

Table 3.6. Number of triangles in the finest level of detail (error tolerance = 10m)

AOI DFNP Option 1 Option 2 Option 3 Option 4

1 1741 1836 1832 1942 1935

2 2474 2306 2354 2442 2452

3 1547 1327 1291 1439 1470

4 1211 1129 1125 1196 1237

5 3185 2986 2992 3127 3135

6 2318 1979 1974 2167 2137

7 2883 2644 2673 2899 2901

8 4568 4334 4323 4436 4586

Triangulation Hierarchies 67

a

b

c

Figure 3.18. Perspective view of AOI 7 represented by

(a) original digital elevation model, (b) DeFloriani et al.’s hierarchical structure, and

(c) adaptive hierarchical triangulation

68 Spatial Data Representations

Figure 3.19. Long shot of AOI 7 represented by

(a) original digital elevation model, (b) DeFloriani et al.’s hierarchical structure, and

(c) adaptive hierarchical triangulation

c

b

a

approximates edges across existing triangles. Artifacts, such as edges cutting in

the wrong direction, persist through all levels of detail. Furthermore, if the initial

triangles are too large, covering an area that many critical lines travel through,

this triangulation method can generate false critical lines across those triangles.

Therefore the model would be greatly improved if a good initial triangulation

could reliably be found. Ideally, the initial triangulation should not contain false

edges or cover large areas of detail with disproportionately large triangles. This

was the motivating factor for the research described in the next chapter.

Triangulation Hierarchies 69

